On the Critical Domination Numbers

Ye Miaolin(叶森林)

(Dept. of Math., Anging Normal Institute, Anging 246011)
Zhang Kemin(张克民)

(Dept. of Math., Nanjing Univ., Nanjing 210093)

Abstract In this paper, we give a series of upper bounds of the critical domination number and show some characterizations of a graph with critical domination number $\triangle + 1$.

Keywords: Star; Whips; Critical dominatioon number

AMS(1991)Subject Classification: 05C35; 05C75

We use [1] for terminology and notation not defined here. Let G = (V(G), E(G)) be a graph. The closed neighborhood of $x \in V(G)$ is denoted N[x], If $A, B \subseteq V(G)$, Let $E(A, B) = \{uv | u \in A, v \in B, uv \in E(G)\}$ and $e(A, B) = |E(A, B)|, e(\{v\}, B)$ is in brief as e(v, B). We say A dominate B, denoted $A \Rightarrow B$, if for each $b \in B, N[b] \cap A \neq \emptyset$. When B = V(G) we say A is a dominating set of G. The domination number e(G) of G is the size of a smallest dominating set G. It is a graph G to be the cardinality of a smallest set G of edges for which e(G) = F(G), and obtained some bounds for them. Replacing the deletions of edges in the concept of bondage number with additions of edges, G introduces the concept of critical domination number as follows: for e(G) = F(G), the critical domination number e(G) = F(G) is defined as e(G) = F(G) = F(G). The component of e(G) = F(G) is a star and e(G) = F(G) denote the set of all whips in e(G) = F(G), we denote the e(G) = F(G) stars as e(G) = F(G) = F(G). Without loss of generality, we assume e(G) = F(G) = F(G) and characterize the properties of e(G) = F(G) =

Lemma^[8] If $S \subseteq E(\overline{G})$, r(G+S) < r(G) and $r_c(G) = |S|$, then r(G+S) = r(G) - 1.

Theorem 1 $r_c(G) = \min\{|X| | r(G - X) = r(G) - 1, X \subseteq V(G)\}.$ Proof Let $X_0 \subseteq V(G), r(G - X_0) = r(G) - 1$ and $|X_0| = \min\{|X| r(G - X) = r(G)\}.$

 $\begin{array}{l} \text{Total } Ect \, X_0 \subseteq r(G), \ r(G) = r(G) = r(G) = r(G) \\ -1, X \subseteq V(G)\}, \ \{x_1, x_2, \cdots, x_{r-1}\} \text{ is a smallest dominating set of } G - X_0, E_1 = \{x_1 x \mid x \in X_0, x_1 x \in E(\overline{G})\}, \ \text{then } r(G + E_1) = r(G) - 1, r_c(G) \leqslant |E_1| = |X_0|. \ \text{Let } S_0 \subseteq E(\overline{G}), r(G + S_0) \end{aligned}$

 $\langle r(G), r_c(G) = |S_0|$. Suppose $D_1 = \{y_1, y_2, \dots, y_t\}$ is a smallest dominating set of $G + S_0$. Ac-

Received date: December 17,1997

cording to Lemma, t = r(G) - 1. For every $e = ab \in S_0$, $|\{a,b\} \cap D_1| = 1$ by the definition of $r_c(G)$, Let $X = \{x \mid xy \in S_0, x \in V(G), y \in V(G)\}$, $X_0 = X - D_1$, then $|X_0| = |S_0| = r_c(G)$, $r(G - X_0) = r - 1$. Thus $\min\{|X| \mid r(G - X) = r(G) - 1, X \subseteq V(G)\} \le r_c(G)$.

Let K_{n_1,n_2,\dots,n_t} be a complete t-partite graph, by Theorem 1, we have following

Corollary $1^{[8]}$ $r_c(K_{n_1,n_2,\cdots,n_t}) = \min\{n_2 - 1 | i = 1,2,\cdots,t\}.$

Let (d_1, d_2, \dots, d_n) be a nondecrease degree sequence of G. If $S_1, S_2 \subseteq V(G)$, $|S_1| = r(G) - 1 = r - 1$ and $S_1 \Rightarrow S_2$, obviously we have $|S_2| \leq d_n + d_{n-1} + \dots + d_{n-r+2} + r - 1$.

Corollary 2 Let (d_1, d_2, \dots, d_n) be a nondecrease degree sequence of G, then $r_c(G) \ge n - (d_n + d_{n-1} + \dots + d_{n-r+2} + r - 1)$.

For $F \in W(G)$, let $F = S_1 \cup S_2 \cup \cdots \cup S_r$ and the center of S_i is $x_i, i = 1, 2, \cdots, r = r(G)$. And let $X = \{x_1, x_2, \cdots, x_r\}, C(x_i) = N(X - \{x_i\}) \cap V(S_i), (i = 1, 2, \cdots, r(G))$. By the definitions of $r_c(G)$ and W(G) we can obtain the following

Theorem 2 $r_c(G) \leqslant \min_{F \in W(G)} \{ |S_1| \}.$

Proof
$$r_c(G) \leqslant \min_{F \in W(G)} (\min\{|V(S_i)| - |c(x_i)| | i = 1, 2, \dots, r(G)\})$$

 $\leqslant \min_{F \in W(G)} (\min\{|V(S_i)| | i = 1, 2, \dots, r(G)\}) \leqslant \min_{F \in W(G)} \{|S_1|\}.$

Let (d_1, d_2, \dots, d_n) be a nondecrease degree sequence of G as above. since $F \in W(G)$, $F = S_1 \cup S_2 \cup \dots, \cup S_r, |S_1| \leq d_{n-r+1} + 1$,

$$|S_2| \leq d_{n-r+2} + 1, \dots, |S_r| \leq d_n + 1.$$
 So $r_c(G) \leq d_{n-r+1} + 1.$

On the other hand, if $d(x_0) = \triangle(G)$, and $S = \{vx_0 | vx_0 \in E(\overline{G}), v \in V(G)\}$, then r(G + S)

= 1 < r(G). Hence $r_c(G) \le n - \triangle - 1$. Thus $r_c(G) \le n/2$. Therefore we have the following Corollary 3 $r_c(G) \le \min\{d_{n-r+1} + 1, n/2\} \le \min\{\triangle + 1, n/2\}$.

If G there exists a vertex of with degree 1, by Theorem 2 we have following.

Corollary 4 $r_c(G) \leqslant \min\{d(v) + 1 | uv \in E(G), d(u) = 1\}$.

If diam $(G) \leq 2$, then for every $F \in W(G)$, $F = S_1 \cup S_2 \cup \cdots, S \cup r, N[x_i] \cap N[x_j] \neq \emptyset$, $i \neq j$. By Theorem 2, we have following

Corollary $5^{[8]}$ If diam $(G) \leq 2$, then $r_c(G) \leq \triangle(G)$.

Corollary
$$6^{[8]}$$
 $r_c(P_n) = r_c(C_n) = \begin{cases} 1, n \equiv 1 \pmod{3}, \\ 2, n \equiv 2 \pmod{3}, \\ 3, n \equiv 0 \pmod{3} \end{cases}$

where P_n and C_n denote the path and cycle with n vertices respectively.

Remark 1 The first inequality of the proof of Theorem 2 can't be changed to equality. We consider G = (V(G), E(G)), $V(G) = \{x_1, x_2, x_3, x_4, x_5\} \cup V_1 \cup V_2$, $|V_1| = |V_2| = k \ge 2$, $E(G) = E_1 \cup E_2 \cup E_3$, $E_1 = \{x_1x_4, x_2x_5\}$, $E_2 = \{uv | u, v \in V_1 \cup \{x_1, x_3\}\}$, $E_3 = \{uv | u, v \in V_2 \cup \{x_2, x_3\}\}$. The smallest dominating set of G is only $\{x_1, x_2\}$. i. e. r(G) = 2. $r_c(G) = 2$, since $S = \{x_3x_4, x_3x_5\}$, r(G + S) = 1. $F = S_1 \cup S_2$, $|s_i| = k + 3$, $c(x_i) = x_3$, i = 1, 2.

Theorem 3 $r_c(G) = \Delta + 1$ if and only if G have following properties: (i) Every smallest dominating set S is an independent set; (ii) If S is a smallest dominating set, then for each $x \in S$, $d(x) = \Delta$; (iii) If S is a smallest dominating set, then for each $v \in V(G) - S$, e(v,S) = 1; (iv) $r_c(G) * r(G) = n$.

Proof For every $F \in W(G)$, $F = S_1 \cup S_2 \cup \cdots \cup S_r$, $\Delta + 1 = r_c(G) \leq |S_1| \leq |S_2| \leq \cdots \leq |S_r| \leq \Delta + 1$, then $|S_i| = \Delta + 1$, for all i. Furthermore, $c(x_i) = \emptyset$, otherwise $r_c(G) < |S_i|$. This is to say $S = \{x_1, x_2, \cdots, x_r\}$ is an independent set and $N(x_i) \cap N(x_j) = \emptyset$, $i \neq j$. $c(x_i) = \emptyset$ also implies e(v, S) = 1 for every $v \in V(G) - S$, since $V(G) = V(S_1) \cup V(S_2) \cup \cdots \cup V(S_r)$. (iv) is obvious from above.

Following, we assume that G have properties (i) \sim (iv) and $r_c(G) < \Delta + 1$. Let (d_1, d_2, \cdots, d_n) be a nondecrease sequence of G, then $\Delta \geqslant r_c(G) = n/r(G) \geqslant n - (d_n + d_{n-1} + d_{n-r+2} + r - 1) \geqslant n - (r - 1)(\Delta + 1)$. i. e. $n \leqslant (r - 1)(\Delta + 1) + \Delta(*)$ by (iv) and Corollary 2. On the other hand, for every $F \in W(G)$, $F = S_1 \cup S_2 \cup \cdots \cup S_r$, we have $V(G) = V(S_1) \cup V(S_2) \cup \cdots \cup V(S_r)$ and $|V(S_i)| = \Delta + 1$, $V(S_i) \cap V(S_j) = \emptyset$ by (i) \sim (iv). Thus $n = r * (\Delta + 1)$. this contradicts (*). Therefore $r_c(G) \geqslant \Delta + 1$. By Corollary 3, we have $r_c(G) = \Delta + 1$.

Reference

- 1 Bondy JA, Murty USR. Graph Theory with Applications. New York, North-Holland, Amsterdam 1976.
- 2 Chvatal V, Cook. W. The Discipling Number of a Graph. Dis. Math. 1990,86:191~198
- 3 Fink J F, Jacobson M S, Kinch L F and Robert J. The Bondage Number of a Graph. Dis. Math. 1990,86: 47~57
- 4 Hartnell B L, Rall D F. Bounds on the bondage number of a graph. Dis. Math. 1994,128:173~177
- 5 Sumner D P, Blitch P. Domination critical graph. J. Combin. Theory, 1983, B34:65~76
- 6 Sumner D P. Critical Concepts in Domination. Dis. Math. 1990,86:33~46
- 7 Teschner V. New results about the bondage number of a graph. Dis. Math. 1997,171:249~259
- 8 Zhang Jianzhou. The critical domination number of a graph. J. of UEST of China, 1993,22(3):317~319

关于控制临界数

叶森林 (安庆师院数学系 246011)

张克民 (南京大学数学系 210093)

摘要

本文给出控制临界数的一系列上界,且刻划了控制临界数为△+1的图的特征. 关键词,星,控星族,控制临界数