Edge-face Coloring of 1-outerplane Graphs

Wang Weifan (王维凡)

(Department of Mathematics Liaoning University Shenyang 110036)

Zhang Kemin(张克民)

(Department of Mathematics Nanjing University Nanjing 210093)

Abstract In this paper, M elnikov conjecture on the edge-face coloring is proved affirm a tively. **Keywords** Edge-face chrom at ic number; 1-outerplane graph. **AM S**(1991) **Subject Classification** O 5C15

Throughout this paper, we shall restrict ourselves to finite simple plane graphs Let G be a plane graph, whose vertex set, edge set, face set, vertex number, edge number, maximum degree and minimum degree of vertices are denoted by V(G), E(G), F(G), P(G), P(

Conjecture 1 For each plane graph G, $\chi_f(G)$ $\Delta(G) + 3$

Recently, [4] gives a affirm ative answer for Conjecture 1 by means of Four-Color Theorem. However, because of the length of machine proof of Four-Color Problem, one expect a new proof for Conjecture 1 without the aid of Four-Color Theorem. Moreover, note that the edgeface chromatic number of an odd cycle is five, the upper bound $\Delta + 3$ of Conjecture 1 is sharp. But we so far have not found other examples to illustrate this fact. Thus we raise that

Conjecture 2 For each plane graph G with $\Delta(G)$ 3, $\chi_f(G)$ $\Delta(G)$ + 2

Therefore another research subject in this area is to find precise upper bounds of X_f for Δ 3. In this paper, we consider the situation of 1-outerplane graphs. A plane graph G is called a 1-outerplane graph if there is a vertex u = V(G) such that G-u is an outerplane graph, where u is called a base of G. A vertex w ith degree k in G is called a k-vertex and let $V_k(G)$ denote the set of all k-vertices in G, $k = 0, 1, ..., \Delta(G)$. For an edge e = xy in G, we define $w_G(e) = d_G(x) + d_G(y) - 2$ as a weight of e in G and call e a k-edge of G if $w_G(e) = k$. Let $w_G(e) = k$ be a $w_G(e) = k$

^{*} Received: November 24, 1998 The project is supported by NSFC and SFECLN.

ement y = E(G) = F(G) under a given coloring σ , and $C_{\sigma}(u)$ denote the set of colors which are colored on the edges incident to a vertex u under σ Moreover, y[m] is denoted that at most m colors can not be used when coloring the element y. Let H be a block of G. If H contains at most one cut vertex of G, say x, then H is said to be a suspending block of G at x and x a suspending cut vertex of G. Obviously, every plane graph w ith cut vertices has at least two suspending blocks W hen G contains no cut vertex, each component of G is considered to be a suspending block at any vertex.

Lemma 1([5]) If G is an outerplane graph, then $\delta(G)$ 2

Lemma 2([7]) Let G be an outerplane graph with $\delta(G) = 2$ and H a suspending block of G. Then (i) There are two vertices $u, v = V_2(H) = V_2(G)$ such that uv = E(G); or (ii) G contains a 3-face xyz such that $x = V_2(H) = V_2(G)$ and $y = V_k(H) = V_k(G)$ with 2 = k

Lemma 3 If G is a 1-outerplane graph, then $\delta(G)$ 3

Lemma 4 Let G be a 2-edge connected 1-outerplane graph with $\Delta(G)$ 5, then at least one of the following is true: (i) A 2-vertex u is adjacent to a k-vertex v, k $\Delta(G)$ - 2, where u is not on any triangle of G. (ii) A 2-vertex u is on a 3-face f. (iii) An edge e is on a 3-face f with $w_G(e)$ 5 (iv) A 6-edge e is on the common boundary of a 3-face f_1 and a k-face f_2 with 3 k 4; and moreover if f_2 contains a 2-vertex v. (v) Two 2-vertices u and v are on a 4-face f_2 and f_3 are on a 4-face f_4 and f_4 and f_5 contains a 2-vertex v.

Proof Let t be a base of G. Then H = G - t is an outerplane graph Since G has no cut edge, $\delta(G)$ 2 Further, by Lemmas 1 and 3, we obtain 1 $\delta(H)$ 2

Case 1 $\delta(H) = 2$ By Lemma 2, we have (a) H contains two adjacent 2-vertices u and v; or (b) H contains a 3-face xyz with $d_H(x) = 2$ and $2 < d_H(y)$ 4 Suppose that (a) holds for H. Let $u_1 = N_G(u) \setminus \{v\}$ and $v_1 = N_G(v) \setminus \{u\}$. If $u_1 = v_1$, i.e. uvu_1 is a 3-face of H, then (iii) holds for G since $w_G(uv) = d_G(u) + d_G(v) - 2 = (d_H(u) + 1) + (d_H(v) + 1) - 2 = 4$ If $u_1 = v_1$, then when ut, vt = E(G), (iii) holds for G and otherwise (i) follows If (b) is true for H, then, $w_G(xy) = w_H(xy) + 2 = d_H(x) + d_H(y) - 2 + 2 = 2 + 4 = 6$, and $w_G(xy) = 6$ if and only if $d_H(y) = 4$ and xt, yt = E(T). This implies that xy is either on a 3-face xyz with $w_G(xy) = 5$, or on two 3-faces xyz and txy with $w_G(e) = 6$. Hence either (iii) or (iv) holds for G.

Case 2 $\delta(H) = 1$. We first, by $\delta(G) = 2$, claim that $V_1(H) \subseteq N_G(t) = V_2(G)$. Next note that each component of H contains at least two vertices since G is 2-edge connected. Let B be a suspending block of H with as many vertices as possible. If |V(B)| = 3, then B is a 2-connected outerplane graph. By Lemma 2, we may reduce the problem to Case 1. Now assume that |V(B)| = 2, i.e. $B = K_2$. This implies that B is a pendent edge of H. If some suspending cut vertex of H is adjacent to at least two 1-vertices of H, then (ii) or (v) holds for G. O there is each vertex of H is adjacent to at most one 1-vertex in H. Set $H_1 = H_2 = V_1(H)$. Obviously, 1 $\delta(H_1) = 2$. If $\delta(H_1) = 1$, then H contains a 1-vertex adjacet to a 2-vertex, and thus either (i) or (ii) follows easily. So suppose $\delta(H_1) = 2$. By Lemma 2, we have

(a1) H_1 contains two adjacent 2-vertices u_1 and v_1 ; or

(b1) H_1 contains a 3-face $x_1y_1z_1$ with $d_{H_1}(x_1) = 2$ and $2 = d_{H_1}(y_1) = 4$

Suppose that (a1) holds If neither u_1 nor v_1 are adjacent to 1-vertices of H, the problem can be reduced to Case 1. If either u_1 or v_1 is adjacent to some 1-vertex of H, it is easily checked that (i) or (ii) holds for G because $\Delta(G) = 5$ and $\max\{d_G(u_G(u_1), d_G(v_1))\} = 4$. Second suppose that (b_1) holds If x_1 is adjacent to some 1-vertex of H, a similar discussion can yield (i) or (ii). Otherwise, suppose that x_1 is not adjacent to any 1-vertex of H. When y_1 also is not adjacent to any 1-vertex of H, the proof is similar to Case 1. Hence let y_1 be adjacent to some 1-vertex in H, say w. Then obviously w = E(G). If $tx_1 \notin E(G)$ or $ty_1 = E(G)$, we have (ii). If $tx_1 = E(G)$ but $ty_1 \notin E(G)$, we have either (iii) when $d_G(y_1) = 5$.

Theorem 1 If G is 1-outerplane graph with $\Delta(G)$ 4, then $X_f(G)$ max { $\Delta(G) + 1$, 7}.

Proof First note that the cases $\Delta = 4$, 5 are the relaxations of the case $\Delta = 6$ Thus it suffices to prove the theorem for $\Delta = 6$ We use induction on q(G). When q(G) = 6, the theorem holds trivially. Suppose that the theorem holds for m - 1, let G be a 1-outerplane graph with $\Delta(G) = 6$ and |E(G)| = m = 7. If G contains a cut edge e, we set $G - e = G_1 - G_2$ By the induction assumption, G_1 and G_2 are $(\Delta + 1)$ -EF colorable. Based on the colorings of G_1 and G_2 , we form easily a $(\Delta + 1)$ -EF coloring of G. Thus we may assume that G is 2-edge connected. A ccording to Lemma 4, we consider five cases:

Case 1 There are a 2-vertex u and a k-vertex v with k $\Delta(G)$ - 2 such that uv E(G) and u is not on any triangle of G. Let w $N_G(u) \setminus \{v\}$, and set H = G - u + vw. Thus $\Delta(H) = \Delta(G)$ 6 By the induction assumption, we can color H with $\Delta + 1$ (7) colors and then color the remaining edges of G: $uv[\Delta]$

Case 2 There is a 2-vertex u on a 3-face f = uyz. Let f_0 and f_1 be two neighbour faces of f in G with $u = b(f_0)$ and $yz = b(f_1)$. If $f_0 = f_1$, without loss of generality, we assume that $\{yz, yu\}$ is a 2-edge cut of G and so y is a cut vertex of G. Let $G = G_1 = G_2$ such that $G_1 = G_2 = \{y\}$ and $d_{G_1}(y) = 2$. By the induction assumption, G_1 and G_2 are $(\Delta + 1)$ - EF colorable. Selecting suitable colorings of G_1 and G_2 , we can get a $(\Delta + 1)$ - EF coloring of G. Now suppose $f_0 = f_1$. Set $f_0 = f_1$ and $f_0 = f_1$ denote the face of $f_0 = f_1$ which is divided into the union of $f_0 = f_1$ and $f_0 = f_1$ and $f_0 = f_1$ are formally $f_0 = f_1$ and $f_0 = f_1$ are formally $f_0 = f_1$ and $f_0 = f_1$ are formally $f_0 = f_1$ and $f_0 = f_1$ are formally $f_0 = f_1$ and $f_0 = f_1$ are formally $f_0 = f_1$ and $f_0 = f_1$ are formally $f_0 = f_1$ and $f_0 = f_1$ are formally $f_0 = f_1$ and $f_0 = f_1$ are formally $f_0 = f_1$ are formally $f_0 = f_1$ and $f_0 = f_1$ are formally $f_0 = f_1$ are formally $f_0 = f_1$ and $f_0 = f_1$ are formally $f_0 = f_1$ and $f_0 = f_1$ are formally $f_0 = f_1$ are formally $f_0 = f_1$ and $f_0 = f_1$ are formally $f_0 = f_1$ are formally $f_0 = f_1$ and $f_0 = f_1$ are formally $f_0 = f_1$ are formally $f_0 = f_1$ and $f_0 = f_1$ are formally $f_0 = f_1$ and $f_0 = f_1$ are formally $f_0 = f_1$ are formally $f_0 = f_1$ and $f_0 = f_1$ are formally $f_0 = f_1$ are formally $f_0 = f_1$ and $f_0 = f_1$ are formally $f_0 = f_1$ are formally $f_0 = f_1$ and $f_1 = f_2$ are formally $f_1 = f_1$ and $f_2 = f_2$ are formall $f_1 = f_2$ and $f_2 = f_3$ are formall $f_1 = f_2$ are formall $f_2 = f_3$ are formall $f_1 = f_2$ are formall $f_2 = f_3$ are formall $f_1 = f_3$ are formall $f_2 = f_3$ are formall $f_2 = f_4$ are formall $f_1 = f_4$ are formall $f_2 = f_4$ are formall $f_2 = f_4$ are formall $f_3 = f_4$ are formall $f_4 = f_4$ are formall $f_4 = f_4$ are

Case 3 There is an edge e on a 3-faces f with $w_G(e)$ 5 Color G - e with $\Delta + 1$ colors and then put: e[6], f[6].

Case 4 First let a 6-edge e be on two 3-face f_1 and f_2 Co lor G_2 - ew ith $\Delta + 1$ co lors and then put: $e[6], f_1[5], f_2[6]$. Second let a 6-edge e be on a 3-face f_1 and a 4-face f_2 , where $b(f_2)$ contains a 2-vertex. It is easily seen that f_2 is adjacent to at most three faces. Thus color G_2 - ew ith A_2 + 1 co lors and then put: $e[6], f_2[6], f_1[6]$.

Case 5 There is a 4-face f = uxvy with $d_G(u) = d_G(v) = 2$ Set H = G - u and form a $(\Delta + 1)$ -EF coloring λ of H with a color set C. Let f_u and f_v denote two neighbour faces of f in G with u $b(f_u)$ and v $b(f_v)$. Let f_u be the face of H which is divided into the union

© 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

of f_u and f_v in G. First suppose f_u f_v . Note that the colors $\lambda(f_u^*)$, $\lambda(f_v)$, $\lambda(vx)$ and $\lambda(vy)$ are pairw ise distinct under λ Put $\sigma(f_u) = \lambda(f_u^*)$. Then, by the symmetry, it is enough to consider several cases as follows: If $\lambda(f_u^*)$ $C_{\lambda}(x)$, then we put: $uy[\Delta]$, $ux[\Delta]$, f[G]. If $\lambda(f_v)$ $C_{\lambda}(x)$, then we put: $\sigma(ux) = \lambda(vx)$, $\sigma(uy) = \lambda(vy)$, $vy[\Delta]$, $vx[\Delta]$, f[G].

If $(C_{\lambda}(x) \quad C_{\lambda}(y)) \quad \{\lambda(f_{u}^{*}), \lambda(f_{v})\} = \emptyset$, first suppose that $C_{\lambda}(x) \setminus \lambda(vx)\} = C_{\lambda}(y) \setminus \{\lambda(vy)\}$. Since $|C_{\lambda}(x) \setminus \{\lambda(vx)\}| \quad \Delta(G) - 2$, there must exist three different colors \emptyset , β and γ in $C \setminus C_{\lambda}(x) \setminus \{\lambda(vx)\}$. Let $\emptyset \in \{\lambda(f_{u}^{*}), \lambda(f_{v})\}$. Hence we put: $\sigma(ux) = \sigma(vy) = \emptyset$, $\sigma(uy) = \lambda(f_{v}), \sigma(vx) = \lambda(f_{u}^{*}), f[6]$. Next let $C_{\lambda}(x) \setminus \{\lambda(vx)\} = C_{\lambda}(y) \setminus \{\lambda(vy)\}$. If $C_{\lambda}(x) \setminus \{\lambda(vx)\} = C_{\lambda}(y) \setminus \{\lambda(vy)\}$, it follows that $|C_{\lambda}(x) \setminus \{\lambda(vx)\}| = \Delta(G) - 3$ and so $d_{G}(x) = d_{H}(x) + 1 = |C_{\lambda}(x)| \setminus \{\lambda(vx)\}| + 2 = \Delta(G) - 1$. In this case, we put: $uy[\Delta], ux[\Delta], f[6]$. O there ise, we can take a α $(C_{\lambda}(x) \setminus \{\lambda(vx)\}) \setminus (C_{\lambda}(y) \setminus \{\lambda(vy)\})$ and β $(C_{\lambda}(y) \setminus \{\lambda(vy)\}) \setminus (C_{\lambda}(x) \setminus \{\lambda(vx)\})$ such that α β . Then we put: $\sigma(uy) = \alpha$, $\sigma(vx) = \beta$, $\sigma(ux) = \lambda(f_{v}), \sigma(vy) = \lambda(f_{u}^{*}), f[6]$. If $f_{u} = f_{v}$, the proof is similar and simpler.

Corollary 1 M elnikov's conjecture is true for all 1-outerplane graphs

Corollary 2 If G is a 1-outerplane graph with $\Delta(G)$ 6, then $\Delta(G)$ $\chi_f(G)$ $\Delta(G)$ + 1.

References

- 1 Borodin O V. Simultaneous coloring of edges and faces of planar graphs Discrete Math., 1994, 128: 21~33
- 2 L in Cuiqin Hu Guanzhang and Zhang Zhongfu A six-color theorem for the edge-face coloring of plane graphs D iscrete M ath , 1995, 141: 291~ 297
- 3 Melnikov L S. Recent advance in graph theory. Proc. Internat. Symp. Prague, Problem Section: 1975, 543
- 4 Waller A O. Simultaneously coloring the edges and faces of plane graphs J. Combin Theory, 1997, B 69:
- 5 Wang Weifan On the colorings of outerplanar graphs Discrete Math, 1995, 147: 257~ 269
- 6 W ang W eifan and Zhang Kem in A proof of M elnikov conjecture for the case Δ = 4 Chinese Science Bulletin, 1998, 3(43): 330~331
- 7 Wang Weifan and Zhang Kem in The total chromatic number of pseudo-outerplane graphs Applied Math. A J. of Chinese Universities, 1997, B (4): 455~ 462

1-外平面图的边面全色数

王维凡 (辽宁大学数学系 沈阳 110036) 张克民 (南京大学数学系 南京 210093)

摘要

一个平面图 G 被称为 1- 外平面图如果存在一个顶点 u 使得 G - u 是一个外平面图 本文证明了M $e \ln i kov$ 的边面染色猜想对所有1-外平面图成立

关键词 1-外平图: 边面全色数