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Abstract In thispaper, M elnikov conjecture on the edge-face coloring isproved affimatively.
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Throughout thispaper, we shall restrict ourselves to finite smple plane graphs LetG
be aplane graph, whose vertex set, edge set, face set, vertex number, edge number, maxi-
mum degree and minimum degree of vertices are denoted byV (G) ,E (G),F (G),p (G), q(G),
A(G) and 6(G), regectively. L etN ¢ (u) denote the neighboor set of avertex u inG. A plane
graph G isk- edge face colorable if the elenentsof E (G)  F (G) can be oloredw ith k colors
such that any two distinct adjacent or incident elanents receive different colors The edge-
face chromatic number X« (G) of G is defined as them inimum number k for w hich G isk- edge
face colorable Clearly X (G) 2 A(G). On theother hand, M elnikov put forw ard in [3] that

Conjecture 1 For each plane graph G, X« (G) < A(G) + 3

Recently, [4] givesa affimative answ er for Conjecture 1 by meansof Four-Color Theo-
ran. How ever, because of the length of machine proof of Four-Color Problen, one expect a
nev proof for Conjecture 1w ithout the aid of Four-Color Theoran. M oreover, note that the
edgeface chromatic number of an odd cycle isfive, the upper bound A + 3of Conjecture 1 is
sharp. Butwe o far have not found other exanples to illustrate this fact Thuswe raise
that

Conjecture 2 For each plane graphGw ith A(G) = 3,X: (G) < A(G) + 2

T herefore another research subject in thisarea is to find precise upper boundsof X« for A
= 3 In thispaper, we consider the situation of l-outerplane graphs A plane graph G is
called a l-outerplane graph if there is a vertex u  V (G) such that G-u is an outerplane
graph, whereu is called a base of G. A vertex w ith degreek in G is called a k-vertex and let
V«(G) denote the set of all k-verticesinG,k= 0,1, ,A(G). Foranedgee= xy inG, wede
finews(e) = de(x) + de(y) - 2asaweight of einG and call eak-edgeof G ifwe (e) = k L et
b(f ) denote the boundary of a facef of G. A facef is said to be a k-faceof G if v (b(f)) |=
k Sometimes, f isdenoted by a sequence of all vertices in b(f ). A k-edge face coloring of a
plane graph G is smply w riten asa k-EF coloring L et 0(y) denote the color assigned to a el-
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enenty E(G) F(G) under agiven coloring 0, and C+(u) denote the set of colorsw hich
are oolored on the edges incident to a vertex u under @ M oreover, y[m] is denoted that at
mostm colors can not be usedw hen cloring the elenenty. L etH beablock of G IfH ocon-
tains at most one cut vertex of G, say x, thenH is said to be a sugpending block of G at x and
X a sugpending cut vertex of G. Obviously, every plane graph w ith cut vertices has at least
two sugpending blocks W hen G contains no cut vertex, each component of G is considered to
be a sugpending block at any vertex

L enma 1([5]) If G isan outerplane graph, then 6(G) < 2

Lenma 2([7]) L etG be an outerplane graphw ith 6(G) = 2andH a supending block
of G Then (i) Thereare two verticesu,v  V2(H) n V2(G) such thatuv  E (G); or (ii) G
ocontains a 3-facexyz such thatx V2(H) n V2(G) andy V«H) n Vk(G)with 2< k<
4

Lenma 3 If G isa l-outerplane graph, then 6(G) < 3

Lenma 4 L etG be a 2-edge connected 1-outerplane graphw ith A(G) = 5, then at least
one of thefollow ing istrue: (i) A 2-vertex u is adjacent to ak-vertexv,k< A(G) - 2, where
u isnot on any triangleof G. (ii) A 2-vertex u ison a 3-facef. (iii) A n edgeeison a 3-face
f withwe(e) < 5 (iv) A 6-edgeeison the common boundary of a 3-facef 1 and a k-facef -
with 3< k< 4 andmoreover if k= 4,b(f 2) containsa 2-vertex v. (v) Two 2-verticesu and
v are on a 4-face uxvy.

Proof LettbeabassofG ThenH = G- tisanouterplane graph SinceG hasno cut
edge, 6(G) = 2 Further, byLenmas1and 3, weobtain1< O6(H) < 2

Cael O(H) = 2 ByLenma2, wehave (a) H contains two adjacent 2-verticesu and
v; or (b) H containsa 3-facexyzw ithdu (x) = 2and2< dn (y) £ 4 Suppose that (a) holds
forH. Letur Noe(u)v}andv: Noe(v)Nu} Ifui= vi, i e uvuiisa 3-faceofH , then
(iii) holdsforG sincews(uv) = de(u) + de(v) - 2< (du (u) + 1) + (du(v) + 1) - 2=
4 Ifui# vi, thenwhenut,vt E(G), (iii) holdsforG and othew ise (i) follows If (b) is
trueforH , then, we (xy) € wn (xy) + 2= du (x) + du (y) - 2+ 2< 2+ 4= 6, andwe (xy)
= 6if andonly if du (y) = 4andxt,yt E(T). Thisimpliesthatxy iseither on a 3-facexyz
withwe(xy) € 5, or on two 3-facesxyz and txy withwe(e) = 6 Hence either (iii) or (iv)
holds for G.

Cae2 OMH) = 1 Wefirst, by 6(G) = 2, clam thatVi(H) S Nc(t) n V2(G). Next
note that each component of H containsat least wo vertices sinceG is 2-edge connected L et
B be a sugending block of H w ith asmany vertices aspossible If |V ®B) |2 3, thenB isa2-
connected outerplane graph By L emma 2, wemay reduce the problen to Case 1 Now as
sume that I\/ ®B) |: 2, i e B= K2 ThisimpliesthatB isapendent edgeofH. If ome sus
pending cut vertex of H isadjacent to at least wo 1-verticesofH , then (ii) or (v) holdsfor
G. Othemwise, each vertex of H is adjacent to at most one 1-vertex inH. SetH:1= H -
Vi(H). Obviously, 1< 6(H:1) < 2 If 6(H 1) = 1, thenH containsa 1-vertex adjacet to a 2-
vertex, and thus either (i) or (ii) follow s easily. So suppose 6(H1) = 2 ByLenma?2, we
have

(al) H 1 contains two adjacent 2-verticesus and vi; or

(b1) H 1 contains a 3-face xiyiziw ith du, (x1) = 2and 2< dw,(y1) < 4
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Suppose that (al) holds If neither uinor viare adjacent to 1-verticesof H , theproblem
can be reduced to Case 1 If either us or vi is adjacent to some 1-vertex of H , it is easily
checked that (i) or (ii) holds for G because A(G) = 5andmax{dc (us (u1),ds(vi)} < 4 Sec-
ond suppose that (b)) holds If x: is adjacent to some 1-vertex of H , a similar discussion can
yield (i) or (ii). Othemw ise, suppose thatxiisnot adjacent to any 1-vertex of H. W heny:al-
2 isnot adjacent to any 1-vertex of H, theproof is smilar to Case 1 Hence let y: be adja-
cent to ome 1-vertex inH , sayw. Thenobviouslyw E(G). Iftx:€ E(G)orty: E(G),
we have (ii). Iftxx E(G) butty: € E(G), we have either (iii) when ds(y:) < 4, or (iv)
whends(y:) = 5

Theoran 1 If G is l-outerplane graph with A(G) = 4, then Xs (G) < max{ A(G) + 1,
7}.

Proof First note that the casesA = 4,5 are the relaxationsof the caseA= 6 Thus it
suffices to prove the theorem for A= 6 W e use induction on q(G). W henq(G) < 6, the the-
orem holds trivially. Suppose that the theoren holdsform - 1, letG be a 1-outerplane graph
WithA(G) = 6and [E(G) |= m> 7 IfG containsacut edgee, we etG- e= G1 Gz By
the induction assumption, G1 and Gz are (A + 1)- EF colorable Based on the coloringsof G:
and Gz, we form easily a (A + 1)-EF wloring of G Thuswemay assume that G is 2-edge
oconnected A coording to L enma 4, we consider five cases

Case 1 There are a 2-vertex u and ak-vertex vw ithk< A(G) - 2such thatuv  E (G)
and u isnoton any triangleof G. Letw N (u) v}, and setH = G- u+ w. ThusA(H)
= A(G) = 6 By the induction assumption, we can colorH withA+ 1(= 7) colorsand then
olor the remaining edgesof G: uv[A]

Case 2 Thereisa2-vertex uon a 3-facef = uyz Letfoandf :be two neighbour faces
of f inGwithu Db(fo) andyz b(fi). If fo= fi1, without lossof generality, we assume
that{yz, yu} isa 2-edge cut of G and 0y isacut vertex of G. LetG = Gi1 G2 such thatG:
N Gz2= {y} andds,(y) = 2 By the induction assumption, G: and Gzare (A + 1)- EF ool-
orable Selecting suitable coloringsof Giand Gz, we can get a (A+ 1)- EF cloringof G. Now
supposefo# fi SetH = G- u Letfo denote the faceof H which is divided into the union
of f andfoinG. By the induction assunption, H hasa (A+ 1)-EF cloring Aw ith a color set
C. Basedon A, weform a (A + 1)-EF wloring 0of G asfollows If de(y) < A(G) - 1lor
A(fo) Caly),weput: 0(fo) = A(fo),uz[A],uy[A],f[5] Ifde(z) < A(G)- lorA(fo)

Ca(z), weput: 0(fo) = A(fo),uy[A],uz[A],f[5] Ifds(y) = de(z) = A(G) and A(fo)
&€ Ci(y) Ca(z),weput: o(uy) = Alyz),o(yz) = o(fo) = A(fo),uz[A],f [4]

Case 3 Thereisan edgeeon a 3-facesf withwe(e) < 5 ColorG- ewithA+ lomlors
and then put: e[6],f [6]

Case 4 First let a6-edgeebeon two 3-facef 1andf 2 ColorG- ewithA+ lcolorsand
then put: e[6],f 1[5],f2[6] Second let a 6-edge e be on a 3-facef 1 and a 4-facef 2, where
b(f 2) containsa 2-vertex. It iseasily seen thatf zisadjacent to at most three faces Thuscol-
orG- ewithA+ lcolorsand then put: e[6],f2[6],f1[6]

Caee5 Thereisa4-facef = uxvywithds(u) = des(v) = 2 SetH = G- uandfom
a(A+ 1)-EF wloring Aof H with acolor setC. Letfuandf.denote wo neighbour faces of

f inGwithu b(fu) andv b(f.). Letfu be thefaceof H which isdivided into the union
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of fuandf inG. First supposefu# f. Note that thecolorsA(fu), A(fv), A(vx) and A(vy) are

paiw ise distinct under A Put 0(f.) = A(fu). Then, by the symmetry, it is enough to con-

sider several casesasfollows If A(fu) Ca(x), thenweput: uy[A],ux[A],f [6] If A(f.)
Ca(x), thenweput: o(ux) = A(vx), a(uy) = A(vy),vy[A],vx[A],f [6]

If (Ca(x) Caly)) n {A(fu),A(fV)} = @, first suppose that Ca(x) YA(vx)} =
Ca(y) MA(vy)}. Since [Ca(x) YA(vx)} |< A(G) - 2, theremust exist three different colors
® Band ¥YinC\Ca(x) YA(vx)}). Leta& {A(fs),A(fv)}. Henceweput: o(ux) = o(vy) =
o o(uy) = Afv),o(vx) = A(fu),f[6] Next let Ca(x) YA(vx)} # Caly) YAlvy)}. If
Cr(x) A(vx)} C Caly) A(vy)}, it follow s that [Ca(x) A(vx)} |€ A(G) - 3and o de (x)
= di(x) + 1= [Cax) |+ 1= [Cax) A(x)} |+ 2< A(G) - 1 In thiscase, weput:
uy[A], ux[A],f [6] Othewise, wecan takea®  (Ca(x) NA(vx)}) NCaly) A(vy)}) and
B (Caly) MA(vy)}) NCa(x) YA(vx)}) such thata# B Thenweput o(uy) = & 0(vx) =
B, o(ux) = A(f.), o(vy) = A(fu),f[6] Iffu= f., theproof is smilar and smpler.

Corollary 1M elnikov’ s conjecture is true for all 1-outerplane graphs

Corollary 2 If G isa 1-outerplane graphwith A(G) = 6, thenA(G) < X4 (G) £ A(G) +
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