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1 Introduction

Hypergraphs are an important generalization of ordinary graphs. The colorings for hyper-
graphs also are the natural extension of colorings for graphs. This field has various applications
(timetabling and scheduling problems, planning of experiments, multi-user source coding etc)
and offers rich connections with other combinatorial areas (probabilistic methods, extremal set
theory, Ramsey theory, discrepancy theory etc). Thus many research results on the field have
been obtained in last thirty years. In this paper we attempt to give a chief survey for the related
area. We first declare that the concepts and notations used here consistent with that in [18]
or [31]. However it is necessary to recall some of which are applied frequently in the following
sections. .

Let V = {v),v3,,v,} be a finite set and let E = {E;, F,,---, E,,} is a family of subsets
of V such that E; # 0 (i = 1,2,---,m) and U™, E; = V. We call H = (V,E), or simply
H = (Ey,E,,---,E,), a hypergréph, where V and E are called the vertex set and edge set of
H respectively. A simple hypergraph is a hypergraph H = (Ey, Es, -+, E,,) such that E; C E;
implies ¢ = j. Let n(H), m(H), A(H), a(H) and 7(H) denote the vertex number, the edge
number, the maximum degree of vertices, the stability number and the transversal number of
H respectively. The rank r(H) of hypergraph H is defined by r(H) = maxg/cp(m) |E'|. Anr-
uniform hypergraph H is a hypergraph such that any edge in H contains r vertices. A hypergraph
is linear if [E; N E;| < 1 for all 4 # j. The dual of a hypergraph H = (E,E3,-+-,E,) on V =
{v1,v2,---,v,} is a hypergraph H* = (V},V,,---,V,,) whose vertices ey, ez, -, e, correspond
to the edges of H and with edge V; = {¢;|v; € E; in H}. For aset J C {1,2,---,m} we call the
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family H' = (E;|j € J) the partial hypergraph generated by the set J. The set of vertices of H' is
a nonempty subset of V. For aset A C V we call the family Hy = (E;NA|1 <j <m,E;NA#0)
the subhypergraph induced by the set A.

As for graphs, the colorings of hypergraphs can be classified into the vertex coloring, the edge
coloring, the vertex and edge total coloring and other colorings satisfying certain restrictions.
A weak (strong, resp.) k-coloring of a hypergraph H is a partition (V3,Vs,---, Vi) of V(H)
into k classes such that every edge which is not loop is not monochromatic (no color appears
twice in the same edge, resp.). The weak chromatic number x(H) (strong chromatic number
Xs(H), resp.) of a hypergraph H is the smallest integer k for which H has a weak (strong, resp.)
k-coloring. A hypergraph H is weak (strong, resp.) k-colorable if H has a weak (strong, resp.)
k-coloring. H is said to be weak (strong, resp.) k-chromatic if x(H) = k (xs(H) = k resp.). For
the sake of convenience, we shall omit the word 'weak’ in the terms such as ‘weak k — coloring’,
'weak k— colorable’ weak k— chromatic’ and so on with a exception of particular declaration.
An equitable k-coloring of a hypergraph H is a k-partition (V4,V3,---, Vi) of V(H) such that
in every edge E; all the colors occur the same number of times (or to within 1). A uniform
k-coloring of a hypergraph H is a k-partition (V4,V2,---, Vi) of V(H) such that the number of
vertices of the same color is always the same (or to within 1). '

2 Some Basic Results

In this section we shall describe some fundamental properties and straightforward results
concerning the colorings of hypergraphs. Let us start with the case of two kinds of special
hypergraphs. A hypergraph is said to be a complete r-uniform hypergraph of order n, denoted
by K7, if E(K") consists of all the subsets of V(K7) of cardinality r, where 1 < r < n. A
hypergraph is said to be a complete r-partite hypergraph of order n, denoted by K7 . . .,
if VK] ppom,) = VIUVRU UV, VNV =0 (i # 35), [Vi| =n (i =1,2,---,7), and
E(K] ..n,) consists of all distinct r-subsets E’ of U_,V; such that |[E'NV;| = 1 for i =

1,2,---,r. Moreover, for a real number z, let || and [z] denote the greatest integer no more

1,12,

than z and the smallest integer no less than z respectively. The number of combinations of n
things taken r at a time is denoted by C7, or ( :‘l ) . By the definitions, the following two results
are obvious.

Theorem 2.1 Let n,r be integers with 2 <7 < n, then x(K7) = [25] and x,(K}) =n.

r—1

Theorem 2.2 Let r > 2 and ny,ns,--+,n, > 1 be integers with n; < ny < --- < n,, then
XK} ppom,) = 2,and xo (K)o ) =T

There are close relation between the chromatic number and other parameters of hypergraphs,
which are very similar to the corresponding cases of graphs. For instance, two inequalities
containing the chromatic number, the stability number and the vertex number can be stated as
follows (see [18]).

Theorem 2.3 Let H be a hypergraph of order n, then x(H)a(H) > n.

Theorem 2.4 Let H be a hypergraph of order n, then x(H) + a(H) <n+1.
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For v € V(H), we define the star H(v) with center v to be the partial hypergraph formed
by the edges containing v. A §-star of a vertex v is H?(v)(C H(v)) such that (1) E; € H?(v) =
|Eil > 2, and (2) Ex,E; € HP(v) = Ex N E; = {v}. The B-degree of a vertex v is the
largest number of edges of a S-star of v. We denote the 3-degree in H of v by d% (v) and write
AP(H) = max,ev(m) dg,(v) and 6°(H) = min,ev (g df,(v). Then we can obtain upper bounds
for the chromatic number with the following assertion (see [18]).

Theorem 2.5 Let H be a hypergraph and H/A denote the family of edges of H contained
in A. Then

H) < SP(H/A) + 1.
x( )_Aén‘;(v;” (H/A) +

From Theorem 2.5 we deduce easily the following result due to Lovdsz.
Corollary 2.5.15%1  For every hypergraph H with maximum (-degree A®, we have x(H) <
AP(H) + 1. Moreover, for each r, this bound is the best possible since x(K7) = AP(KT) + 1.
The well-known Brook’s graph-coloring theorem can be extended to linear hypergraphs:
A connected linear hypergraph H forces equality in Corollary 2.5.1 iff H is an odd cycle or a
complete graph (Lepp and Gardner 1973). However, no exact analogue is known for general
hypergraphs. Two other corollaries of Theorem 2.5 also are given in [18], which establish the re-
lations among the 3-degree, the vertex number and the stability number as well as the transversal
number.
Corollary 2.5.2 Let H be a hypergraph of order n. Then
n
H)> —&/———.
oH) 2 25y 1
Corollary 2.5.3 Let H be a hypergraph of order n without loops. Then
ndp(H)

"H) < M@ T

Tomescul®"%8] characterized the following properties of k-chromatic hypergraphs.

Theorem 2.6[57 Every hypergraph H with x(H) = k contains a path of length at least
k-1

Theorem 2.7[%8] Every (r + 1)-uniform hypergraph H with x(H) = k > 2 contains a
cycle of length at least k.

Indeed, the number of all partions of a set X with n elements into k classes is the Stirling
number of the second kind with parameters n and k and is denoted by S(n,k). Let C(n,r k)
(C*(n,r,k), resp.) denote the maximum number of weak k-colorings in the class of (r+1)-uniform
hypergraphs H of order n (which are connected, resp.) having x(H) = k. Also let

S(n) = m’?.xS(n, k), C(n,r)= m,?xC(n, r, k), C*'(n,r)= max C*(n,r,k).

In [68], Tomescu first showed an estimation
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and then by it proved the following result.

Theorem 2.8[68]  For every r > 1, we have C(n,r)= ~ C*(n,r)= ~ 1o asn — .

To obtain lower bound estimate of chromatic numbers of hypergraphs, a powerful topo-
logical method was initiated in 1978 by Lovdsz (see [31]). For any an r-uniform hypergraph
H, it associate a simplicial complex C(H) as follows: The vertices of C(H) are all the n!m(H)
ordered r-tuples (vq,va,- -, v, ) of vertices of H, where {vy, v, -+,v.} € E(H). A set of vertices
(vi,vi, -+, v )ier of C(H) forms a face if there is a complete r-partite subhypergraph of H on
the (pairwise disjoint) sets of vertices V;, Vs, -+, V; such that v; eV;forallieland1<j<r.
Alon, Frank and Lovdsz!” proved following result.

Theorem 2.9!") Let r be a prime and H an r-uniform hypergraph. If C(H) is (k—1)(r —
1) — 1-connected, then x(H) > k.

This theorem extends a result of Lovdsz (in case r = 2, see [31]) and is conjectured to hold
for every positive integer r. Another stronger result was recently obtained by a different use of
simplicial complexes.

Theorem 2.1008] Let n, h, j,k,r be positive integers. If n(j — 1) > (k — 1)(r — 1) +rh,
then for every k-coloring of the h-subsets of an n-set, there is at least one r-tuple of h-sets having
the same color such that any j of them have empty insection.

Generally speaking, to prove that a chromatic number is large is by no means easy. The
question is widely related to Ramsey theory. Lovdsz/5®) and then Negetril and R6dl%®, gave a
constructive proof of the following important result of Erd6 s and Hajnall®4,

Theorem 2.11 For all integers r,k,s with 7 > 2, there exists an r-uniform hypergraph
H with x(H) > k in which no cycle is shorter than s.

Now let us observe the chromatic numbers of product and union of hypergraphs. Given
two hypergraphs H; and Ho, their direct product is a hypergraph H; x H; with vertex set
V(H, x Hy) = V(H,) x V(H3) and with edge set E(H; x Hy) = {E; x E3|Ey € E(H,),E; €
E(H,)}. Given p,q > 0, let f(p,q) denote the smallest chromatic number x(H; x Hj) of any
direct product where x(H,) = p and x(H3) = q. Is it true that f(p,q) — oo as p,q = 0o? This
problem was posed by Berge and Simonovits (15] They remarked that the problem of finding
a good estimate for f(p,q) seems to be difficult. However they proved the maximum chromatic
number of a direct product Hy x Hy, with x(H;) = p and x(H;) = g, is attained by the product

K2 x KZ. Sterboul!®? proved among other similar results

2 2
i x(K;, x KZ2)

m—o0 \/T_n

The chromatic number of direct products K7, x K2 were also studied by Erd6s and Radol*?) and

=1.

by Chvétall?¥ (also see [49]). In particular Zhul™l proved the following two interesting results
which determine the chromatic number of the product H; x Hj of two hypergraphs H; and Hj
with large complete subhypergraphs.

Theorem 2.12["5  Let H, and H; be two (k+ 1)-chromatic hypergraphs such that each of
H, and H, contains a complete subhypergraphs of order k and each of Hy and H; has a vertex-
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critical (k+1)-chromatic subhypergraph which has nonempty intersection with the corresponding
complete subhypergraph of order k. Then H; x H; is of chromatic number &k + 1.

Theorem 2.13["%) Let H; be a (k + 1)-chromatic hypergraph such that each vertex of H;
is contained in a complete subhypergraph of order k. Then for any (k + 1)-chromatic hypergraph
H,, H, x H, is of chromatic number k + 1.

Problem 2.14 Determine or estimate the value of f(p,q) for given p,qg > 0 and for all
hypergraphs.

Next an excellent sufficient and necessary condition characterizing the chromatic number of
union of finite hypergraphs has been obtained by Miller and Miiller.

Theorem 2.15[53] Let H be a hypergraph and let m;,mg,---, m; be positive integers.
Then H is the union of k& hypergraphs H; (z =1,2,---,k) with no edges in common and x(H;) <
m; if and only if x(H) < mymsy---my.

In studying the uniform k-coloring of hypergraphs, Berge and Sterboul established the
following result.

Theorem 2.16!" Let H be an r-uniform hypergraph of order n = kr which has no
uniform k-coloring and which has the minimum number of vertices for this condition. Then H

is a star of K.

3 Critical Hypergraphs

In hypergraph coloring theory, k-critical hypergraphs have attracted much attention. The
purpose of this section is to collect some significant results about edge critical hypergraphs and
vertex critical hypergraphs. A hypergraph H is edge k-critical if it is k-chromatic but any proper
partial subhypergraph is (k — 1)-colorable. Similarly, a hypergraph H is verex k-critical if it is
k-chromatic but H — v is (k — 1)-colorable for all vertices v of H. Clearly, every hypergraph
which is not 2-colorable has a partial hypergraph which is edge critical, and similarly, every
hypergraph which is not 2-colorable contains a set A of vertices such that the hypergraph H/A
is vertex critical. Further, an edge critical hypergraph must be vertex critical, but the converse
is not true.

As mentioned above with regard to Theorem 2.9, construction of edge x-critical r-uniform ‘
hypergraphs often use r’-uniform hypergraphs with ' > r: a consequence of various construc-
tions of this type is the existence of edge x-critical r-uniform hypergraphs with arbitrarily large
minimum S-degree, for x > 4 and r > 2 (see [66]). Moreover, in contract with the case of graphs,
Miiller, R6dl and Turzik exhibited, for any integers r > 3 and h, an edge 3-critical r-uniform
hypergraph with all 3-degrees at least h and proved the existence of a linear hypergraph with
same properties. Notice that an edge k-critical r-uniform hypergraph on n vertices exists for
n > (k—1)(r—1)+1 (Abbott and Hanson for r = 3, Toft for r > 4, see [66]). Seymour!®? gave
a characterization of edge 3-critical hypergraphs such that m(H) = n(H) as follows:

Theorem 3.1 Every edge 3-critical hypergraph H satisfies m(H) > n(H). Moreover, the
bipartite incidence graph admits a vertex-to-edge matching.
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Seymour’s proof is by linear algebra. Aharoni and Linial!® extended Theorem 3.1 to the
infinite case and gave a purely combinatorial proof. In addition, Lovdsz found an upper bound
for the size of edge 3-critical r-uniform hypergraphs (see [31]):

Theorem 3.2 For any edge 3-critical r-uniform hypergraph H on n vertices, we have
m(H) < Cr7L.

There are only a finite number of edge 3-critical intersecting r-uniform hypergraphs. Bounds

on their maximum size N(r) were given by Erdos and Lovdsz[®®!:

™

Z:—i =|(e—1)r!] < N(r) <r".
=1

The lower bound is conjectured to be exact. Furthermore, the other results of edge critical
hypergraphs may be found in Toft’s work (see [64, 65]). We only present an interesting result in
[65], which is very similar to the corresponding case of graphs.

Theorem 3.3[%5! Let H; and H, be two vertex-disjoint hypergraphs and let H denote
the hypergraph obtained from H; and Hs by joining each vertex H; to each vertex of H, by an
ordinary edge. Thus x(H) = x(H1) + x(Hz), and H is edge critical if and only if H; and H> are
edge critical.

We shall now turn our attention to the constructions and properties of vertex critical hy-
pergraphs. Several results describing the existence of vertex critical hypergraphs which are not
edge critical have been shown in [22] by Brown and Corneil.

Theorem 3.4122] For all k,r > 3, there is a vertex k-critical r-uniform hypergraph of
order $k(k — 1)(r — 2) + k that is not edge k-critical.

Theorem 3.51221 For all n > 3, there is a vertex 3-critical 3-uniform hypergraph of order
2n + 1 that is not edge 3-critical.

Theorem 3.622]  For all n > 13, there is a vertex 4-critical 3-uniform hypergraph of order
n that is not edge 4-critical.

Theorem 3.7221 For all k > 4 and all n > 7.2%73 —1, there is a vertex k-critical 3-uniform
hypergraph of order n that is not edge k-critical.

We consider an old conjecture, due to Dirac, which asks whether every vertex k-critical
graph (k > 2) has a critical edge (i.e. an edge whose removal decrease the chromatic number).
The following result is to show the corresponding question for hypergraphs has a negative answer.

Theorem 3.8(221 For all n > 3, there is a vertex 3-critical 3-uniform hypergraph of order
2n + 1 without critical edge.

If H,,H,, --,H,_; are pairwise disjoint hypergraphs and v is a new vertex, then let
H(v,H,,Hs,---,H,_,) denote the hypergraph on V(H;)UV(H3)U--- UV (H,_1)U {v} formed
by adding in all edges of the form {v,v;,v2, -, vr_1}, Where v; € V(H;). In [22], the authors
discussed the criticality of H(v, Hy, Ha,- -+, Hr_1).

Theorem 3.9122) Let H; (i = 1,2---,r — 1) be vertex k-critical hypergraphs. Then
H(v,Hy, Ha, ---, H,_;) is vertex (k + 1)-critical; and H(v, Hy, Hz, -, H 1) is edge (k+ 1)-
critical if and only if Hy, Hs,---, H,_, are edge k-critical.
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What properties does a vertex critical hypergraph have? Berge[?®! answered partly this
question. His first result is to present a algebriac illustration for a vertex critical hypergraph.

Theorem 3.10?°! Let H be a vertex critical hypergraph with n vertices and m edges.
Then m > n, and at least one of the n x n subdeterminants of the incident matrix A is not equal
to 0.

The following two results expose the structure of cycles in a vertex critical hypergraph.

Theorem 3.11(2°] Let H be a vertex critical hypergraph, and let vo € V(H). Then there
exists an odd cycle (v, Ey, v, -+, Eg,v1) such that (1) vo = vo; (2) E; N E; = 0 if E; and E;
are two non-consecutive edges; and (3) Ey N E; = {vo}.

Theorem 3.12/2%  Let H be a vertex critical hypergraph. Then there exists an odd cycle
(v1, E1,v2,- -+, Ex,v1) such that

(1) |[E,NE;NE, | =0forp<g<r<Ek;

(2) |EiNEsq| =1,i=1,2,-+,k— 1;

3) |[E1NEx| > 1.

4 Bicoloring of Hypergraphs

A 2-coloring of a hypergraph H is said to be a bicoloring of H. Since such coloring plays
an important role in coloring theory of hypergraphs, it is necessary to study it in a whole
section. What properties of bipartite graphs do bicolorable hypergraphs share? Fournier and
Las Vergnas®7:38 gave some precise information on the obstructions to bicolorability.

Theorem 4.13738  Let H be a hypergraph without odd cycle (vy, E1,v2, - - -, Ex,v;) sat-
isfying three properties in Theorem 3.12. Then H is bicolorable.

Given a hypergraph H, we call a positional game on H the situation where two players, say
A and B, play in turn at coloring a vertex of H, with the color red for A and the blue for B.
A vertex already colored can not be recolored. The winner is the one who first colors an edge
of H completely with his color. If neither of the players obtains a monochromatic edge then the
game is a draw. It is easily seen that in a positional game on a hypergraph H which admits no
uniform bicoloring, the first player A has a strategy which assures him a win. Moreover we have

the following interesting result (see [18]).
Theorem 4.2 Let H be a hypergraph such that

2 2"E°|+ma.x Z 2~ 1B < 1.
E°cE(H) Y E'eH(v)

Then H is uniform bicolorable. Furthermore in the positional game on H the second player B
has a strategy ensuring a draw.

Corollary 4.2.135 Let H be a hypergraph without loops such that the number of edges
m and the maximum degree A satisfy m+A < 2?, where s = ming/¢ Ew) |E'|- Then H is uniform
bicolorable. Furthermore in the positional game on H the second player B has a strategy for

forcing a draw.

Theorem 4.3 Let H be a hypergraph without loops, of order n such that
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2, ) < (')

Then H is uniform bicolorable.

A proof for Theorem 4.3 is given in {18]. Hansen and Loréa (see [45]) extended this theorem
to the general situation: Let H be a hypergraph of order n > k, and let p= | %], ¢ =n — pk. If

n—|E |E'| n
> ( n—p )+q 2 pr1i-1E8] “\p )

E'€E(H) E'€E(H)

then H admits a uniform k-coloring.

A cycle (z1, Ey, 2, Es,- -, Eg,x1) of a hypergraph H is said to be a B-cycle if (1) k is
odd; (2) H' = (E1, Es,, -+, Ex) has maximum degree A(H') = 2; (3) |E; N E;jyy| = 1(z =
1,2,---,k — 1); and (4) |Ex N E1} > 1. It follows from the definition that a B-cycle of a
hypergraph must be an odd cycle but not vice versa. Note that the projective plane P; and the
complete hypergraph K3, _;, which are not 2-colorable, contain B-cycles of length 3. Fournier
and Las Vergnasl®7l proved a general result below.

Theorem 4.457] Every non-bicolorable hypergraph contains a B-cycle.

Corollary 4.4.1%71 In a non-bicolorable hypergraph of rank < 3, there exists a B-cycle
such that every pair of two non-consecutive edges are disjoint.

Corollary 4.4.287 In a non-bicolorable hypergraph, there exists an odd cycle of maxi-
mum degree 2 such that every pair of two non-consecutive edges are disjoint.

Combining the previous results we can obtain the following characterization of the hyper-
graphs which contain no odd cycles. A short proof is given in [18].

Theorem 4.5 A hypergraph H = (E4, E»,- - -, E,,) has no odd cycles if and only if every
hypergraph H' = (E{, E},- -, E! ) with E! C E; for each i is bicolorable.

The class of hypergraphs without odd cycles has been studied from the view point of matrices
by Commoner(?”); Yannakakis(™! has given a polynomial algorithm to test whether a given
hypergraph in this class. In particular we obtain

Theorem 4.618] A hypergraph H = (E1, E3, - - -, E,,) is cycle-free if and only if for every
nonempty subset J of {1,2,---,m}, we have

|Ujes Bl > D (1Bl — 1)
jeJ

A matrix A = (a;;) is said to be totally unimodular if every square submatrix of A has
determinant equal to 0, +1 or —1. A hypergraph is said to be unimodular if its incidence matrix
is totally unimodular. A combinatorial property of unimodular hypergraph is related to the
concept of an equitable coloring.

Theorem 4.7(27) A hypergraph H is unimodular if and only if for every S C V(H) the
subhypergraph Hg has an equitable bicoloring: That is to say a bipartition (Sy, Sz) of S such-
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that each edge E’' of Hgs satisfies

A direct consequence of Theorem 4.7 is that every hypergraph with odd cycles is unimodular.
Furthermore de Werral??! generalized the necessity of the theorem.

Theorem 4.8(?% A unimodular hypergraph H has an equitable k-coloring for every k > 2.

A hypergraph is said to be balanced if its each odd cycle has an edge containing three
vertices of the cycle. It is easily checked that every unimodular hypergraph is balanced, but the
converse 1s not true. However we know that a hypergraph of rank < 3 is unimodular if and only
if it is balanced. This is a direct corollary of the following result (see [18]).

Theorem 4.9 A hypergraph is balanced if and only if its induced subhypergraphs are
bicolorable.

A hypergraph H is said to be normal if every partial hypergraph H’' has the edge-coloring
property, that is to say v(H') = A(H') for every H' C H, where v(H’) denote the chromatic
index of H. (see Section 6).

Theorem 4.100”)  Every normal hypergraph is bicolorable.

In 1994, Berge further studied some properties of bicolorable hypergraphs. In order to
introduce his work, we need a concept. Let z and y be two vertices of the hypergraph H =
(Ey, E2,- -+, E,). We say that z is dependent on y if every edge containing x contains also y. A
vertex of degree 0 or 1 is always a dependent vertex.

Theorem 4.11(%°) Let H be a hypergraph and let A be the set of dependent vertices.
If H/(V(H) — A) is bicolorable, then every bicoloring of H/(V(H) — A) can be extended to a
bicoloring of H.

Corollary 4.11.1[2°) A vertex critical hypergraph H contains no dependent vertices.

Corollary 4.11.2[20) The hypergraph H of the maximal cliques in a triangulated graph
G is bicolorable.

Let H be a hypergraph such that one of the (induced) subhypergraphs obtained from H by
removing successively a remaining dependent vertex is bicolorable. Obviously, H is bicolorable,
and we call H a deeply bicolorable hypergraph. In [20], Berge also gave the following two results.

Theorem 4.12 A hypergraph H and all its partial hypergraphs are deeply bicolorable if
and only if every odd cycle of H has three edges with a non-empty intersection.

Theorem 4.13 Let H be a hypergraph having no two intersecting edges of size > 4 and
no B-cycle, then H is bicolorable.

Alon and Bregman!®! investigated the bicolorability of r-uniform r-regular hypergraphs.
They proved the following result.

Theorem 4.148  For every r > &, every r-uniform r-regular hypergraph is bicolorable.

In fact, for 7 > 9, the proof of the above theorem can be completed by applying the Lovdsz
Local Lemma to show that a random vertex coloring of the given hypergraph with 2 colors

contains no monochromatic edges with positive probability(®!]. However, for r = 8, Alon and
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Bregman!®! presented a completely different proof from the probabilistic one. Obviously, if r = 2,
a 2-uniform 2-regular connected hypergraph is a graph that is a cycle. When this cycle is odd,
it is not bicolorable. If r = 3, we consider H to be a projective plane P;. It is easy to see that
P; is a 3-uniform 3-regular hypergraph, but it is not bicolorable. For 4 < r < 7, it is still a
open problem. However, it seems plausible that in fact every 4-uniform 4-regular hypergraph is
bicolorable. Thus we pose the following problem:

Problem 4.15 For 4 < r < 7, prove or disprove that every r-uniform r-regular hypergraph
is bicolorable.

There are many applications of the bicoloring of hypergraphs. An interesting result related
to the famous Four-Color Theorem is contributed by Berge[2®l. For a simple graph G, let H(G)
denote the hypergraph on V(G) whose edges are the minimal odd cycles of G. Then H(G) is
simple.

Theorem 4.16/2%1 A graph G is 4-colorable if and only if the hypergraph H(G) is bicol-
orable.

Corollary 4.16.1[20) A graph G which is not 4-colorable contains a subgraph G4 such
that the hypergraph H(G4) is vertex critical.

In addition, the question of deciding satisfiability of Boolean forms in conjunctive normal
form (CNF) can be reduced to the bicolorability problem of a kind of special hypergraphs. The
detailed description about it can be seen in [6].

A cycle (v, Ey,vs, E3,- -+, Ex,v1) of a hypergraph H is said to be a hypercycle if the sets
E; 1\ E; (with k+ 1 = 1) form a partition of E; UF2U---U E;. We conclude this section with
the following conjecture.

Conjecture 4.17 A non-bicolorable hypergraph contains an odd hypercycle such that
|[EiNEjtq|=1fori=1,2,---,2k.

5 Extremal Problems

As for graphs, there are a variety of extremal problems related to the chromatic number of
hypergraphs. This field is of great importance in both theory and applications. Therefore we
shall give a short survey for several main directions.

5.1 Extremal Problems Related to Number of Edges

We first introduce a few notations. Let

Mi(n,r) = m(H)

max
x(H)<k n(H)<n

denote the largest number of edges in an r-uniform hypergraph of order < n which is k-colorable.
Similarly let

m(H)

denote the smallest number of edges in an r-uniform hypergraph of order < n which is not k-

mg(n,r) = m

= in
x(H)>k n(H)<n

colorable. Moreover, we denote by M?(n,r) the largest value of m for which there is an r-uniform
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hypergraph H with n(H) < n, m(H) = m, and such that by adding a set of n — n(H) isolated
points we can find a uniform k-coloring; and by ml(n,r) the smallest number of edges in an
r-uniform hypergraph of order < n which has no uniform k-coloring. By the definitions, we have

immediately

1 < my(n,r) < Mi(n,r) < Cr,
1 < ml(n,r) < MP(n,r) < CT,
mi(n,r) < mi(n,r),
MR(n,r) < Mi(n,r).

It is easy to calculate Mi(n,r) and M2(n,r), in fact, which are given by the following result.
Theorem 5.163]  Let H; , be an r-uniform hypergraph of order n on V defined by a
uniform k-partion (Y7,Y3,--+,Y%) of V and by

nk=(FE'E CV;|E|=rE ¢Y;,i=12,---,k).

Then we have My (n,r) = Mg (n,r) = m(H}, ). Morover, every r-uniform k-colorable hypergraph
of order n with My (n,r) edges is isomorphic to Hp ..

In general, it is difficult to calculate my(n,r). We however have trivially ma(n,2) = 3 for
n > 3; mg(5,3) < 10 and my(n,3) = 7 for n > 7. In the case of graphs we readily find that
mi(n,2) = C}? 41 for n > k+1 and the only extremal graph is Kp1i. Erdésl33] presented a lower
bound of my(n,r) for the quite general case.

Theorem 5.28331  For r > 2,k > 2,n > kr, we have my(n,r) > k™1,

For k = 2, the best lower bound for m(n, ) has been obtained by Beck(!2}: For every § > 0
and every n > n(8) we have my(n,r) > 27739, Further it was proved that ma(n,r) < 27r?
ma(n,4) < 23 and my(n,5) < 51. Applying a similar method to that of Theorem 4.3, we can
prove the following theorem.

Theorem 5.3(45] Let H be a hypergraph of order n such that

k2 —k+1
S kEE ST S e g
EeH |E| EeH

Then x(H) < k.
Corollary 5.3.1481  For r > 2,k > 2,n > kr, we have

rk”

mg(n,r) > m

Corollary 5.3.204] For r > 2,n > 2r, we have

rk"

> .
mg(n,r) > —

© 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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For k = 2 we have upper bounds of mz(n, k) due to Erdés®3], Chavdtall?®! and Beck(1!. In
particular, Herzog and Schoheim![4¢! have made a good estimate of upper bounds of m; (n,r) for
the general case.

Theorem 5.446]

ma(n,r) < ( kr—r+1 )

r

Some bounds with the maximum degree are given by Erdés and Lovasz[®®). We now propose

to find some bounds for m%(n,r). Two nice upper bounds listed below can be referred to [18].

Theorem 5.5 If p= % is an integer (> r), then

mimn) 2 (711 ) (27 )

Theorem 5.6 Let r > 2, k > 2, n > rk. In an r-uniform k-partition of X with |X| =n,

let g; be the number of classes of size [ ], and let g2 be the number of size [%], we have

o= () o (1) e0(19)]

Abbott and Harel® considered the special case in which H is a critical linear hypergraph.
A k-critical r-uniform hypergraph H of order n is called a (n, r, k)-hypergraph. Let

my(n,r) = () n(H)<n{m(H)|H is a linear hypergraph }.
7
o(r, k) = lim mi(n,r) r)’ a(r,k) = lim me(n,7) r).
n—oo n n—oo n

If r = 2, Dirac®® proved that

mi(n,2) > Zn(k~ 1) + 5(k - 3

and Gallail4ll showed that

ml(n,2) > Sn(k 1)+ %n(k —3)(k2 —3)" 1.

1
2
In the other direction Hajés[*4 gave a constrution which shows that

mi(n; + na — 1,2) < mp(n1,2) + my(ng,2) — 1
and from this it may be deduced that a'(2,k) = lim,_, o Mnfﬁl exists and satisfies

1 k-3 k 1
—(k—1)+§(k2—_§5 o'(2,k) < - — ——.

2 2 k-1
No value of a(2,k) has been determined, but it has been conjectured that the above equality
holds on the right for all k£ > 4. In fact, for all r > 3, the result that a(r,3) = 1 is also shown in

{3]. Furthermore we have

© 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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Theorem 5.703l  For all »,k > 3, we have a(r,k + 1) < a(r, k) + 1.

As an immediate consequence of Theorem 5.7, we can deduce that a(r,k) < k — 2 for all
k>4

Theorem 5.8 Let 7 > 3,k > 3. Let p and [ be such that (p,r — 1,k + 1) and (I, 7, k)-
hypergraphs exist. Let ¢ = myy1(p,r — 1), and t = my(l,r). Then

mk+1(ql +p, T,k + 1) < Q(t + l)

From Theorem 5.8 we shall deduce the following results:

(a) a(r,k +1) < a(r, k) + 1

(b) a(r,k) <k —2forr >3 and k > 4; and

(c) Let t = t(r) be the least integer for which there exists a (¢, r, 3)-hypergraph of size ¢,

then for » > 3 we have
2

S P S—
o(rd) <2 - T 1)

Theorem 5.98 a(r,r+1)>1+ =2
Combining this theorem and the previous results we can obtain 19—0 < a3,4) < %. It should
be pointed out that we have not known if a'(r, k) < k — 2 for k > 4, or ar, k) < o/(r, k). We

remain this open probiem to readers.

5.2 Extremal Problem Related to Number of Vertices

For r > 3, k > 3, let M*(r,k) denote the least integer such that for all n > M*(r,k)
there exists a k-critical r-uniform linear hypergraph of order n. In [1] it is shown that for each
pair of integers r and k, v,k > 3, there exists a k-critical r-uniform linear hypergraph with n
vertices. It is also verified that linear (n, 3, 3)-hypergraph exist only when n = 7 or n > 9, so that
M=(3,3) = 9. This is the only value of M*(r, k) that has been determined. However, Abbott
and Hare obtained the bounds M*(4,3) < 51 and M*(3,4) < 94 (see [4]). A improved result
was given in [5].

Theorem 5.10/5) M*(3,4) < 56.

Other results on this subject can be referred to [2, 57]. Moreover there exist many unsolved
problems in the field, two of which are listed as follows.

Problem 5.11 What is the exact value of M*(3,4)?

Problem 5.12 For r =3,k > 5 or 7 > 4,k > 3, what is the lower bound and the upper
bound of M*(r, k)?

5.3 Minimal Uniquely Colorable Hypergraphs

A hypergraph H is said to be uniquely strong k-colorable if there exists a strong k-coloring
of H such that the partition of vertex set is uniquely determined. Let n,r,k be integers with
n > 2,k >r2>2 andlet f{(n) denote the minimum number of edges of an r-uniform hypergraph
of order n which is uniquely strong k-colorable. Moreover we write fix(n) = fF(n) for all integers
n > 2, k > 2. Burosch et al.??] gave the following result.
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Theorem 5.13 Let n be an integer, then

(1) fo(n) =n—1forn > 2;

(2) fa(n) =[] -1forn>3;

(3) fa(n) = |3] forn > 4,n #Z 0 (mod 4); and 2s — 1 < f4(4s) < 2s for every integer s > 1;

(4) filn) > —1forn>k>2

(5) fu(n) < 22 + £ 1 for all k;

(6) lim,, 00 u"nﬂ = %; and fi(k+ 1) = [logz2q] + a4 for k > 2; 1 < g < k, where ag = 2 if
g =27 for some r € N and a, = 1 otherwise.

6 Edge-coloring of Hypergraphs

What we have investigated in previous sections are aimed at the vertex coloring of hyper-
graphs. In fact, great advances have been made about the edge coloring of hypergraphs in recent
thirty years. So the present section shall be devoted to this subject.

Let k¥ > 2 be an integer. A weak k-coloring of edges of a hypergraph H is a coloring
defined by a weak k-coloring of vertices of the dual hypergraph H*. Thus it is a partition
H = H, + Hy + - -- + Hj, (edge-disjoint sum) such that for every vertex v with dg(v) > 1, the
star H(v) has at least two edges of different colors. A good k-coloring of the edges of H is a
weak k-coloring of the edges of H such that if dg(v) > k, the star H(v) contains at least one
edge of each of the colors, and if dg(v) < k, the edges of H(v) all have different colors. A strong
k-coloring of the edges of H is a partition H = Hy + Hs + - - - + Hj, such that edges of the star
H(v) all have different colors. The chromatic index y(H) of H is the smallest value of k for
which a strong k-coloring of edges exists.

By the definition, v(H) > A(H) is trivial. Further, if y(H) = A(H), we say that H has
the edge-coloring property. In general, it is very difficult to determine the exact value of the
chromatic index of a given hypergraph. We do not know what hypergraphs possess the edge-
coloring property. However, the following theorem summarizes the minimax types properties of
balanced hypergraphs (see [18]).

Theorem 6.1 For a hypergraph H, the following properties are ethiva:lent:

(1) H is balanced;

(2) H™ is balanced;

(3) Every subhypergraph of H is bicolorable;

(4) Every subhypergraph of H has the Kénig property (i.e.the transversal number is equal
to the matching number).

(5) Every subhypergraph of H has the edge-coloring property;

(6)The blocker of any subhypergraph of H has the Konig property.

The edge-coloring property on the complete multi-partite hypergraphs and the complete
uniform hypergraphs has been settled completely.

Theorem 6.25!  For every k > 2, K7, n, admits a good k-coloring of the edges.

N1,N2,0y

Baranyail!® extended the above theorem to the stronger result that for every k > 2, the
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edges of K,

Corollary 6.2.1(1451  Let k > 2 and nq,na, -, n, > 1 be integers with n; < ng < ---
n,. Then v(K7, ) =nang---n,. = A(K],

The existence of good k-colorings of edges of K7, has been already proved by Baranyai.

Theorem 6.3 Let n,r be integers, n > r > 2, and let m;,my,---,m; > 0 be integers
with m; + mg + +-+ + my; = C7. Then K], is the edge-disjoint sum of ¢ hypergraphs H;, each
satisfying

(1) m(Hj;) = my;

(2) | =2 < dy;(z) < [Z2] for each x € V(H).

From the above theorem we can obtain the following four corollaries (see [18]).

Corollary 6.3.1 K, is the edge-disjoint sum of partial h-regular hypergraphs H; if and
only if r|hn and L"—_’ﬁ divides C7. In this case, H;’s make up a uniform coloring of the edges of
K7.

As a special case of Corollary 6.3.1, we clearly have that the complete graph K,, is the sum
of h-regular graphs if and only if hn is even and 22 divide C2.

Corollary 6.3.2 ~(K7)=[Cr|2]7].

Corollary 6.3.3 K, has the edge-coloring property if and only if r|n. In this case, there

1mz,n, admits an equitable k-coloring which is uniform.

IA

15N2,° Ny 1:"2»"'.'%)'

exists an optimal coloring of edges of K, which is uniform.

Corollary 6.3.4 There exists a good k-coloring of the edges of K7, if and only if either
k< |CRl21 Y or k2> [Cr 2] 7).

In 1989, Pippenger and Spencerl®®! studied the asymptotic behavior of the chromatic index
for hypergraphs. A remarkable result is shown as follows.

Theorem 6.41%¢ Let H be an r-uniform hypergraph of order n such that any vertex
belongs to d(1 + o(1)) edges and any two different vertices are in o(d) edges (r is fixed, d =
d(n) — oo0). Then

(1) v(H) = d(1 + o(1)), and

(2) Edges of H can be partitioned into d(1 + o(1)) edges covers.

If a hypergraph H is endowed with a partition Vi, V3, -+, V, of its vertex set, we say H is
p-partitioned. Given a mapping M : N? — N and integers n; = |V;|, the complete p-partitioned
hypergraph K,’g \n2,--m,, 18 the multiset where every subset S of V occurs with multiplicity M (ISn
Vil, ISNV3),- - -, |SNV,|). If M takes value 1 for a single p-tuple (1,72, -+, 7p) and is 0 otherwise,
the standard notation is K,',‘lj';.’,';fff,',{’p, abridged to K}, n,,....n, if 11 =72 = --- =7, = 1 (complete
p-partite hypergraph) and to K, if p = 1 (complete r-uniform hypergraph of order n). To any
(possibly improper) coloring of edges of a complete p-partitioned hypergraph H corresponds a
color-chart A which matches to every color ¢ the multiset A(c) formed with the the tinctures of
the edges colored c; for 1 < k < p, the sum of the kth components of A(c) is denoted by Ax(c).

Theorem 6.51431 Let H = (V, (E;)ics) be a complete p-partitioned hypergraph with par-
tition V = VUV U---UV,. Let V' C V and V| = V' N V,. Let X denote a coloring of
edges, with color chart A’, of the subhypergraph H’' = (V',(E; N V');cr) and assume that X’

extends to some (possibly improper) edge-coloring of H, with color chart A. Then, a necessary
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and sufficient condition for A’ to be extendable to a coloring of edges of H is that, for every color
¢, we have Ag(c) — Ai(e) < |Vi| — |V{| for 1 < k < p.

This theorem has many interesting consequences. In fact, Theorem 6.3 is one of its corol-
laries. Furthermore we have

Corollary 6.5.1 Let H = K}, ... ; be the complete p-partite p-uniform hypergraph on pg
vertices. Let A C V(H) and Hq = (E N A)acn- Then every edge-coloring of H4 where each
color occurs ¢ times can be extended to all of H.

It follows from Theorem 6.5 that complete p-partite hypergraphs and also their hereditary
closure have the edge-coloring property. The hereditary closure Hofa simple hypergraph H =
(Ey1,Ez,---,E,,) on a set V is a hypergraph on V whose edge set is the set of all nonempty
subsets F C V such that F C E; for at least one index 1.

Conjecture 6.6 (181 If H is a linear hypergraph, then v(H) = A(H), where H denotes
the hereditary closure of a hypergraph H.

Conjecture 6.6 is true when H is a star (Berge, see [16]) and, as Berge observed, is equivalent
to the famous Vizing theorem when H is a graph. In order to give the following conjecture we
need a useful term. For two positive integers k and r with k < r, the k-section of a simple
hypergraph H on V of rank r is a hypergraph Hj, whose edges are the sets F C V such that
either |F| =k, and F C F' for some E’' € E(H); or |F| < k and F = E’ for some E’' € E(H). It
is easily seen that the 2-section H[y of a hypergraph H is a simple graph which is obtained by
joining two vertices of V if they belong to the same edge of H.

Conjecture 6.7 [*9 If H is a simple linear hypergraph, then v(H) < A(Hp) +1.

Berge and Hilton!'?] proved Conjecture 6.7 if the edges of H with more than 2 elements are
assumed pairwise disjoint.

Conjecture 6.8 Let H be a linear hypergraph of order n, then v(H) < n.

Conjecture 6.8 was proved up to n = 10 (Hindman [47]), also in case H is a cyclic Steiner
system (Colbourn and Colbourn [26]) and in case H is intersecting (Fiiredi [40]).

7 Other Colorings of Hypergraphs

Just as for the colorings of graphs, there exist many other kind of colorings for hypergraphs
which are, in general, more complex than the vertex coloring and edge coloring. The several
directions selected in the following reflect to some extent the development of coloring theory for
hypergraphs.

7.1 Total Chromatic Number

The total chromatic number of hypergraphs is a natural generalization of the total chromatic
number of graphs. A weak (strong, resp.) total coloring of a hypergraph H is a mapping
¢ : V(H)U E(H) — {1,2,---,k} which induces a weak (strong, resp.) vertex coloring and a
strong edge coloring of H and if v € V(H) is in some edge E; € E(H) then ¢(v) # ¢(E;). The
least m for which such a mapping exists is the weak (strong, resp.) total chromatic number
Xy (H) (3. (H), resp.).
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According to the definition, the following two results are trivial.

Proposition 7.1 For each hypergraph H, max{x(H),v(H),A(H) + 1}
x(H) +~(H).

Proposition 7.2 For each hypergraph H, max{x,(H),v(H),A(H) + 1} < x2(H) <
Xs(H) + 7(H )-

So far there have existed very few known results about the total colorings of hypergraphs,

IA
3

xy(H) <

except for the colmplete r-uniform hypergraphs and complete h-partite hypergraphs.
Theorem 7.3052 Let n,r be integers with 2 < r < n, then

Xy (K7) = [( 2_>1[$J_1] if n % 0(mod r).

Theorem 7.4 28] Let n,r be integers with 2 < r < n, then

(n—1)+2 if n=0(mod r),

(n—1)+r if n=0(mod r),

Xz (K7) = ;— Y
"( r ) FJ -‘ if n # 0(mod r).

Theorem 7.50521 Let r > 2 and Ny, N, -, N > 1 be integers with ny < ny < --- < n,.
Then X:(K;,,m,'--,n,) =ngng---n, +1if n; < n, and x2(K}, ... . ) =nng n. +2if
ny = n,.

Theorem 7.6128] Let r > 2 and ny,n,,---,n, > 1 be integers with n; < ny < --- < n,
and let £ = max{ijn; = n;}. Then X3 (Kq, ngroom,) = M2na - np + k.

We would like to see that the following problems can be settled in the future.

Problem 7.7 What are the exact upper bounds of x4 (H) and x%(H) for a hypergraph
H?

Problem 7.8 Determine or estimate the strong and weak total chromatic number of 3-
uniform hypergraphs.

If G is a graph, then the weak total coloring and the strong total coloring of G both
correspond to the classical notion of total coloring. Behzad['®] and Vizing[™ raised independently
that

Total Coloring Conjecture: For each graph G, A(G) +1 < x,(G) < A(G) + 2.

This conjecture is still open. The detailed description on the progress of total coloring of graphs
can be referred to the monograph{™ by Yap.

7.2 Star Chromatic Number

The concept of star chromatic number of a graph, introduced by Vincel®® is a natural
generalization of the chromatic number of a graph. This concept was studied from a pure
combinatorical point of view by Bondy and Helll?!]. Recently, Haddad and Zhoul4?] have further
extended the star chromatic number to hypergraphs.
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Let r > 2 and H be an r-uniform hypergraph, k and d be positive integers such that &k > 2d.
A mapping ¢: V(H) - K = {0,1,---,k — 1} is a strong (k, d)-coloring of H if, for every pair
u,v € V(H), we have |¢(u) — ¢(v)|r > d, where |z|x = min{|z|,k — ||}, whenever the {u,v}
appear in some edge of H. The mapping ¢ is called a weak (k, d)-coloring of H if the following
conditions are satisfied: (1) no edge of H is monochromatic and (2) if a pair {u,v} C V(H)
appear in some edge of H, then ¢(u) # ¢(v) implies |¢(u) — ¢(v)|x > d.

Note that a strong (or weak) (k, 1)-coloring of H is just a strong (or weak) k-coloring of H.
The strong star chromatic number of H is defined by

X:(H) = inf {ng has a strong (k, d)-coloring} .

Similarly, we can define the weak star chromatic number x*(H) of H. Obviously, when d = 1,
X5 (H) = xs(H) and x*(H) = x(H).

Haddad and Zhoul*?! studied the basic properties of strong star chromatic number. We
shall display the main part of their work (from Theorem 7.9 to Theorem 7.14).

Theorem 7.9 If an r-uniform hypergraph H has a strong (k,d)-coloring, then it has a
strong (k',d')-coloring for all positive k', d’ with ";—: > 5.

Corollary 7.9.1 If an r-uniform hypergraph H has a strong (k, d)-coloring, then it has a
strong (k’,d’)-coloring with 5—: = * and ged(k',d’) = 1.

Theorem 7.10 If an r-uniform hypergraph H has a strong (k, d)-coloring with ged(k, d) =
1 and k > |V(H)|, then it has a strong (k’,d’)-coloring with k' < k and 5—: < &

Combining Corollary 7.9.1 and Theorem 7.10, we can obtain the following simplified ex-
pression of the strong star chromatic number, which will play an important role in calculating
or estimating the value of x3(H).

Theorem 7.11 Let H be an r-uniform hypergraph, then
k
xXa(H) = min{ElH has a strong (k, d)-coloring and k < IV(H)I} .

Theorem 7.12 Let H be an r-uniform hypergraph, then x,(H) — 1 < x3(H) < x,(H).

It should be pointed out that Theorems 7.9 and 7.10 also hold when replacing x,(H) and
x:(H) by x(H) and x*(H) respectively. Note that if k > rd and H is an r-uniform hypergraph,
then a strong (k,d)-coloring of H is just a hypergraph homomorphism H — H.(k,d), ie. a
map ¢ : V(H) — V(H,(k,d)) so that {¢(u1), #(uz2), - -,$(u,)} is an edge of H,(k,d) whenever
{u1,uz2, -, ur} is an edge of H.

Theorem 7.13 x;(H.(k,d)) = 5 for all r, k,d with k > rd.

Corollary 7.13.1 For each r > 2 there exists an infinite family (Hn)n>1 of r-uniform
hypergraphs with x;(Hyn) < xs(Hy) for alln > 1.

Theorem 7.14 Deciding whether a simple r-uniform hypergraph has a strong (k,d)-
coloring is NP-complete for all fixed k,r,d such that either r > 2 and k > rd or r = 2 and

k> 2d.
If we restrict ourselves to the case of graphs, the following two results are very interesting.
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Theorem 7.15[781  For any rational number = > 2 and any integer g > 3, there is a graph
G of girth at least g and x*(G) =r.

Theorem 7.16[5477] If r is a rational number between 2 and 4, then there exists a plane
graph with star chromatic number r.

A very nice survey on the star chromatic number of hypergraphs and graphs is given recently
by Zhul™l. In the survey 30 open problems are presented, two of which are as follows:

Problem 7.17 Which graphs G has the property x*(G) = x(G)?

Problem 7.18 What is the least integer g(n) such that any n-critical graph G with girth
at least g(n) has x*(G) < x(G)?

7.3 Upper Chromatic Number

In order to solve a scheduling problem in reality, Voloshin!”!l introduced the notions of
the mixed hypergraphs and upper chromatic number. A mixed hypergraph H = (V,S) is a
hypergraph with S = AU E, where A and E are the families of subsets in V and AN E = §.
We call each subset E; of E an edge of H and each subset A; of A a co-edge of H. If A = 0,
H = Hg is the ordinary hypergraph, and if £ = @, H = H, is called a co-hypergraph. A free
k-coloring of a mixed hypergraph H = (V, AU FE) with k colors is a map ¢ : V — {1,2,---,k}
such that every edge in E is not monochromatic and every edge in A has at least two vertices
of the same color. A free coloring of a hypergraph H with i(> 0) colors is said to be a strict
coloring if exactly i colors are used. The maximum i for which there exists a strict coloring of a
mixed hypergraph H with ¢ colors is called the upper chromatic number of H and is denoted by
X(H).

Let p(H,)), A > 0, be the chromatic polynomial of a mixed hypergraph H, which is the
number of different free colorings of H with A colors. Let ;(H) be the number of strict colorings
of H with (i > 1) colors.

Theorem 7.19"2)  For any mixed hypergraph H,

X(H)
p(H,N) = Y wm(H)AO,
i=x(H)
where A) = A(A—1)..-(A—i+1).

Theorem 7.20("%  x(Hg) < x(H) < X(H) < X(Ha).

The cardinality of maximum stable set of an all-vertex partial hypergraph generated by co-
edges is called the co-stability number a4(H). A hypergraph H is called co-perfect if X(H') =
a4(H’) for all its wholly-edge subhypergraphs H'.

Problem 7.21 Is there any relationship between perfect graphs and uniform co-perfect
co-hypergraphs?

Problem 7.22 What is the upper chromatic number of co-and maxied hypergraphs with-
out cycles, and of unimodular, balanced, normal co-and mixed hypergraphs?

Problem 7.23 Find the meaning of the chromatic polynomail’s coefficients for co-and
mixed hypergraphs.
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Problem 7.24 Let H ba a mixed hypergraph such that its dual hypergraph H* represents
a multigraph. In this case x(H) and X¥(H) can be called the lower and upper chromatic indexes
of a graph respectively. What are they equal to ?

Note that Vizing Theorem on the edge coloring of graphs resolves only the special case
of final problem. The other results and problems of the mixed hypergraphs and their upper
chromatic numbers can be referred to [71, 72].
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