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Abstract Let G be a 2-connected graph of order n(> 3). I I(u,v) > S(u,v) or
max {d(u),d(v)} > n/2 for any two vertices u, v at distance two in an induced subgraph
K, 3 or P; of G, then G is hamiltonian. Here I{u,v) = |[N(u) N N(v)|, S(u,v) denotes the

number of edges of maxinum star containing %, v as an induced subgraph in G.
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1 Introduction

In this paper, We use [1] for terminology and notation not defined here and consider finite
simple graphs only.

The distance between vertices u and v is denoted by d(u,v). For each vertex u € V(G),
we denote by N(u) the set of all vertices of G adjacent to u. The subgraph of G induced by
N(u) U {u} is denoted by G(u). If uv ¢ E(G), we denote by S(u,v) the number of edges of
maximum star including u, v as an induced subgraph in G. Let z and y be two vertices in G
with d(z,y) = 2, we define I(z,y) = |N(z) N N(y)|. Let C be a cycle of G with a fixed cyclic
orientation. For u € V(C), let ut be the successor and u~ be the predecessor of u in the chosen
direction on C.

Theorem A[®l Let G be a 2-connected graph of order n(> 3). If I(u,v) > S(u,v)
whenever d{u,v) = 2 and max{d(u),d(v)} < n/2, then G is hamiltonian.

In this paper, we obtain the following result.

Theorem Let G be a 2-connected graph of order n(> 3). If I(u,v) > S(u,v) or
max{d(u),d(v)} > n/2 for any two vertices u, v at distance two in an induced subgraph Kj 3
or P3 of G, then G is hamiltonian, where P; is a path with length 3.

Consider the graph G obtained from K, _3 and {z,y. z} by adding an edge set {zy, yz, yu,
yv, zu, zv}, where {u,v} C V(K,_3). Obviously, G; satisfies the condition of Theorem, but
does not satisfy the condition of Theorem A. Hence Theorem generalizes Theorem A.
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2 Proof of Theorem

In the proof, we need the following Lemuma.

Lemmal®! Let G be a 2-connected graph of order n, then G contains a cycle passing
through all vertices of degree at least n/2.

Proof of Theorem By contradiction, let G be a nonhamiltonian graph with maximum
number of edges satisfying the condition of Theorem. Let 4 = {u € V(G)|d(v) > n/2}. If
A # 0, then by the choice of G, the induced subgraph G[4] is complete.

By Lemma G contains a cycle passing through all vertices of degree at least 5. Among
such cycles, take C a longest cycle with a fixed cyclic orientation. Set R = V(G)\V(C), then
R # 0. Let B be a connected component in G[R] and let vy,v2,---, vy be the elements of
N¢(B) occuring on C in consecutive order. Since G is 2-connected, we have m > 2. Let z; bea
vertex of B which is adjacent to v; (for 7 # j, possibly z; = ;). It is easy to show that for any
1<i<j<m, v;"vf & E(G), v vj ¢ E(G). f v v, € E(G), then v ,v; € E(G). Choose
a. € {vf,v}*, .-, v} such that for any v € {v]",---,a;}, vv; € B(G) but afv; ¢ E(G). If
ofe; & E(G), set a; = v}. By the choice of C, it is easy to check that for any 1 < i < m,
{a;,z;} is in an induced subgraph K; 3 or P; of G with d(a;,z;) = 2. Forany 1 <i < j < m,
we denote the vertices of a,;"éaj by S; and the vertices of a}‘éa; by S;. For any =z € V(B),
by the choice of C the sets N, (a;), N_;"l(a.j), N;2(a,-), Ns,(a;), Nr(ai), Nr(a;), {z} are
pairwise disjoint. So we have n > |Ng,(a;)| + |N§’1 (a;)| + INY (a:)| + [Ns,(a;)| + |Nr(a:)| +
IN(a;)] + Ha} = INo(a)| + Ne(aj)l + [Na(a)] + |Na(ay)] + l{z}] = d(as) + d(a) + 1. So
min{d(a;),d(a;)} < n/2, say d(e;) < n/2. By the condition of Theorem we have I(a;,z;) >
S(ai,zi) > 2. Since Ng(a;) N Ng(z:) = 0 by the choice of C, |Nc(z;)| > 2. Hence there is a v
such that N(v) NV (C) = W = {wy,ws,---,wp} #0 and p > 2.

It is easy to show that for any 1 < ¢ < j < p, ww! ¢ E(G) wyw; & E(G). If
wlw; € E(G), then w,,w; ¢ E(G). Choose u; € {w], + ---,'wi__'_l} such that for any
u € {w}, -+, %}, uw; € E(G) but u}w; ¢ E(G). If wf w,- ¢ E(G), set u; = w}. Let
U = {u1,u2,++,up}. By the choice of C, it is easy to check that for any 1 < i < p, {u;,v} is
in an induced subgraph K, 3 or P; of G with d(v,u;) = 2 and U U {v} is an independent set of
G. Since the induced subgraph G[A] is complete, there is at most one vertex of degree at least
n/2 in the set U U {v}. If such vertex exists, we assume d{u,) > n/2,1 < s < p.

Now we consider the following two cases.

Case 1 For any i, 1 <i<p,d(u;) <n/2.

Consider the following iterated definition. Let AJl- = {v,u;}, B} ={w;j},j=12,---,p
Clearly A} C N(w;) N (U U{v}), B} C N(u;)NW, and |4} > |B}l-

Assume sets A%, BF, with A;'f C N(w;) N (U U {v}), Bf C N(u;) "W and |A¥| > B},
i=1,2,---,p, k> 1 are well defined. If there exists t {1 < ¢ < p) such that |A¥| > |BF|, then
by d(v,us) = 2 and S(v, us) > |A¥| we have I(v,ur) > S(v,u) > |A¥] > [BF| 4+ 1. So |(N(v) N
N(u:))\BF| > 1. Thus there exists 7 (1 < r < p) such that w, € (N(v)NN(u,))\BF. Hence we
can define Ak+1 = A%, Bk+1 = Bf,when j #r,tand 1 < j < p; AFFTt = Ak B — BF U {w,}
and AFt+l = A" U {u,} B"'*1 Bk Clearly Ak+1 C N(w;) N (U U {v}), Bk+1 C Nuj)Nw
and |Af+1| > [B;-‘+1|, i=12--,p Partlcularly [A¥+1) > |B¥+1| and |B"+1| = |BF| + 1.

So the above iterative process can be done infinitely.
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P
Set b = > |BF|, k =1,2,---, then 0 < by < by < --- < by < ---. On the other hand,
Jj=1

P
DY |BJ"| <p* k=1,2,---, since B}‘ C W, a contradiction.
Jj=1

Case 2 d(u,) > 3.

Let I = {1.2,---.p} and J = {j|j € Tandw,u; € E(G)}. In this case we define A} =
{v.u;}. Bf = {w;}ifj € {1.2.---,p\(J U {s}) ; A} = {v,uj,u,}, Bf = {wj,w,}if j € J\{s}.
A, Bf. k>1,j=12---.5—1,5+1,---,p can be defined as case 1. We will also deduce a
similar contradiction as case 1. This completes the proof of Theorem.

Corollary 14! Let G be a 2-connected graph of order n. If max{d(u),d(v)} > % for any
two vertices u, v with d(u, v) = 2, then G is hamiltonian.

Corollary 2 Let G be a 2-connected graph of order n. If max{d(u),d(v)} > % for any
two vertices u, v at distance two in an induced subgraph K 3 or P3 of G, then G is hamiltonian.

Corollary 3 Let G be a 2-connected graph. If G has neither Ky 3 nor P; as induced
subgraph, then G is hamiltonian.

Corollary 4%1 Let G be a connected graph of order n. If d(u) + d(v) > n for each pair
u, v of nonadjacent vertices, then G is hamiltonian.

Corollary 5] Let G be a connected graph of order n. If dg(u)(z) + dg(u)(y) > d(u) + 1
for any u € V(G), {z,y} C V(G(v)), zy ¢ E(G), then G is hamiltonian.

Proof It is sufficient to prove that G satisfies the condition of Theorem. In fact we
can prove that I(u,v) > S(u,v) for any two vertices u, v with d(u,v) = 2. Let u,v € V(G),
d(u,v) = 2. By the definition of S(u,v), there exists w € V(G) such that {u,v,z,,---,2,-2} C

N{(w) is an independent set, where s = S(u,v) > 2. By the condition of Corollary 5, we have

de(w)(4) + de(w)(v) 2 d(w) + 1 = [V(G(w))],
V(G(w)) = N(w) U {w} 2 (NG(w)(u) U NG(w)(v)) U {ue UV, Ty, 35—2}7

(NG(w)(’U.) U NG(W)(v)) n {U,’l), L1, xs—'z} = 0

So [V(G(w))| > |Ng(w)(u) U Ng@)(v)| + 5

= |Ngw)(u)] + [ Ng(w)(0)| = INg ) (1) N Ng ) (v)| + 5.
Hence
I(u,v) = |N(u) N N(v)|] > |Ng(w)(u)2apNe(w)(v)]
> ING(w)(u)I + |NG'(w)(lU)| - IV(G(U’))l + 8
> dg(w)(®) + deu)(v) — (Hw) + 1)+ s> s = S(u,v).
On the other hand, |[N(u) N N(v)| > S(u,v) > 2 implies that G is 2-connected. Therefore

Corollary 5 follows from Theorem.

References

1 Bondy J A. Murty U S R. Graph Theory with Applications. New York: Macmillan, London and Elsevier,
1976

2 Shi Ronghua. Some localization Hamiltonian conditions. J of Nanjing University of Science and Technol-
ogy, 1994,(3): 19-23

3 Shi Ronghua. 2-Neighborhoods and Hamiltonian conditions. J of Graph Theory, 1992,16: 267-271

4 Fan G. New sufficient conditions for cycles in graphs. J Combin Theory Ser B, 1984,37: 221-227

5 Ore O. A note on Hamiltonian circuits. Am Math Month, 1960,87: 55



