The Minimal Solutions of Boolean Matrix－equation $A^{k}=J$

MIAO Zheng－ke＊）（苗正科）and ZHAN G Ke－min（张克民）
（Department of Mathematics，Nanjing University，Nanjing，210093）

Abstract

Let A be a primitive Boolean matrix． $\mathrm{Y}(A)$ is the least number k such that $A^{k}=J$ ． $\sigma(A)$ is the number of 1－entries in A ．In this paper，the parameter $N^{\prime}(k, n)=\min / \sigma(A) \mid A^{T}$ $=A, \operatorname{trace}(A)=0, Y(A)=k\}$ is considered．Furthermore，we describe the set $E G(k, n)=$ $\left\{G(A) \mid \sigma(A)=N^{\prime}(k, n), A^{T}=A, \operatorname{trace}(A)=0, \mathrm{Y}(A)=k\right\}$ and obtain a characterization of the minimal solutions with zero trace of the Boolean matrix equation $A^{k}=J$ ．

Key words：primitive，exponent，norm
1991 MR subject classif ication ：05C20，05C50，15A33，15A24
CLC number：O157． 5 ，O151． 21
Document code ：A
Article ID ：1000－1778（2000）02－0155－05

Let $B=\{0,1\}$ be the usual binary Boolean algebra．The matrices over B are called Boolean matrices．An $n \times n$ Boolean matrix A is called a primitive matrix if there exists a positive integer k such that $A^{k}=J$（where J is the universal matrix）．The least such k is called the exponent of A ，denoted by $\mathrm{Y}(A)$ ．

In projective plane theory，although a lot of results are obtained on Boolean matrix equation，it is still a famous open problem to find the square roots of a Boolean matrix．

Let A be an $n \times n$ Boolean matrix．Define the norm of A ，denoted by $\sigma(A)$ ，to be the number of 1 －entries in A ．Clearly，σ satisfies the norm axioms．As you know，a special Boolean matrix－equation $A^{k}=J$ has solutions．In general，it is very difficult to solve this equation．So，the parameter

$$
N^{\prime}(k, n)=\min \left\{\sigma(A) \mid A^{T}=A, \operatorname{trace}(A)=0, \mathrm{Y}(A)=k\right\}
$$

must be considered．And we need the following concepts and propositions．The associated graph of an $n \times n$ symmetric Boolean matrix $A=\left(a_{i j}\right)$ ，denoted by $G(A)$ ，is the graph

[^0]with vertex set $V=\{1,2, \cdots, n\}$ such that there is an edge arc between i and j in $D(A)$ if and only if $a_{i j}=a_{j i}=1$. A graph G is primitive if there exists an integer $k>0$ such that for all pairs of vertices $i, j \in V(G)$ (not necessary distinct), there is a walk from i to j with length k. The least such k is called the exponent of G, denoted by $Y(G)$. Clearly, a symmetric Boolean matrix A is primitive if and only if its associated graph $G(A)$ is primitive and $\mathrm{Y}(A)=\mathrm{Y}(G(A))$.

Let G be a primitive graph with order n. For any $i, j \in V(G)$, the local exponent from i to j, denoted by $\mathrm{Y}(i, j)$, is the least integer k such that there exists a walk of length m from i to j for all $m \geq k$. It is obvious that $Y(G)=\max _{i, j \in V(G)} Y(i, j)$.

Proposition ${ }^{[1]}$ The exponent set of symmetric primitive $(0,1)$-matrices with zero trace is $\mathbb{E}_{n}=\{2,3, \cdots, 2 n-4\}-Y$, where Y is the set of all odd numbers in $\{n-2, n-1, \cdots$, $2 n-5\}$.

In this paper, we describe the set

$$
E G(k, n)=\left\{G(A) \mid \sigma(A)=N(k, n), A^{T}=A, \operatorname{trace}(A)=0, \mathrm{Y}(A)=k\right\}
$$

and give a characterization of the minimal symmetric solutions with zero trace of $A^{k}=J$. Other terms and notations not defined here, we refer the reader to [2].

According to the definition of $N^{\prime}(k, n)$ and Proposition $3, k \in E_{n}$.
Theorem $1 \quad N^{\prime}(2, n)=2\left[\frac{3 n-3}{2}\right]$ for $n \geq 3$. Moreover, $G \in E G(2, n)$ is unique in the sense of permutation similarity.

Proof Since $\mathrm{Y}\left(G_{1}\right)=\mathrm{Y}\left(G_{2}\right)=2$ for $n \geq 3$ (see Figure 1), we have $N^{\prime}(2, n) \leq$ $2\left[\frac{3 n-3}{2}\right]$.

$G_{1}(n=$ odd $)$

$G_{2}(n=$ even $)$

Figure 1
If $A^{T}=A, A^{2}=J$ and $\operatorname{trace}(A)=0$, then there is a walk with length 2 from one vertex to another in $G(A)$. So any vertex of $G(A)$ is on some 3-cycle. Otherwise, there would exist a vertex $u \in V(G(A))$ such that u is a pendant vertex or u is on an s-cycle ($s \geq 4$). Let v be a neighbouring vertex of u. Then $Y(v, u)>2$, a contradiction. Since $A^{2}=J$, for any $u, v \in V(G(A))$ there exists 3-cycles C_{1}, C_{2} such that $u \in C_{1}, v \in C_{2}$ and $C_{1} \cap C_{2} \neq$ \varnothing. For any 3-cycle C, let

$$
\begin{aligned}
t=\left.\right|_{\{u:} & \text { There exists a 3-cycle } C^{\prime} \text { containing } u \\
& \text { such that } C^{\prime} \cap C \text { is exactly one vertex } \mid
\end{aligned}
$$

Thus we have

$$
\begin{align*}
\in(G(A)) & \geq 3+\left[\frac{3 t}{2}\right]+2(n-3-t)=\left[\frac{2 n-3-t}{2}\right] \\
& \geq\left[2 n-3-\frac{n-3}{2}\right]=\left[\frac{3 n-3}{2}\right] . \tag{1}
\end{align*}
$$

So $\sigma(A) \geq 2\left[\frac{3 n-3}{2}\right]$. Hence $N^{\prime}(2, n)=2\left[\frac{3 t}{2}\right]$.
If $G \in E G(2, n)$, then (1) is an equality. So $G \cong G_{1}$ when n is odd and $G \cong G_{2}$ when n is even.

Theorem $2 N^{\prime}(3, n)=2\left[\frac{3 n-4}{2}\right]$ for $n \geq 6$. Further, $G \in E G(3, n)$ is unique in the sense of permutation similarity.

Proof Since $\mathrm{Y}\left(G_{3}\right)=\mathrm{Y}\left(G_{4}\right)=3$ for $n \geq 6$ (see Figure 2), we have $N^{\prime}(3, n) \leq$ $2\left[\frac{3 n-4}{2}\right]$

$G_{3}(n=o d d)$

$G_{4}(n=$ even $)$

Figure 2
Let $A^{T}=A, \operatorname{trace}(A)=0$ and $Y(A)=3$. Then for any $u \in V(G(A))$ there is a 3-cycle containing u. Otherwise, $Y(u, u)>3$. By $Y(A)=3$, the diameter of $G(A)$ is less then 4 and greater then 1 .

Case 1 The diameter of $G(A)$ is equal to 3 .
We claim that $G(A)$ has a subgraph H (see Figure 3).

Figure 3 H
We take any two 3 -cycles C_{1}, C_{2}, and let $d=d_{G}\left(C_{1}, C_{2}\right) \leq 3$. . Thus there exists a path with length d. For $d=3$ (similary for $d=2$), let $P=x u v y, x \in C_{1}$ and $y \in C_{2}$. If there is a 3 -cycle C_{3} containing v such that $C_{2} \cap C_{3}=\varnothing$, then the claim holds. Hence $C_{2} \cap C_{3} \neq$ \varnothing. Now, we consider a 3-cycle C_{4} with $u \in C_{4}$. Thus we have $C_{1} \cap C_{4} \neq \varnothing$ and $C_{3} \cap C_{4}$ $\neq \varnothing$. Hence $d_{G}\left(C_{1}, C_{2}\right) \leq 2$, a contradiction. So $G(A)$ contains a subgraph H.

Case 2 The diameter of $G(A)$ is equal to 2 .
If there exist two 3-cycles C_{1}, C_{2} such that $u \in C_{1}, v \in C_{2}$ and $C_{1} \cap C_{2} \neq \varnothing$ for any u, $v \in V(G(A))$, then $Y(A)=2$. This is a contradiction. If there exist two vertices u, v and two 3 -cycles C_{1}, C_{2} such that $u \in C_{1}, v \in C_{2}$ and $C_{1} \cap C_{2}=\varnothing$, then we can prove that
$G(A)$ has a subgraph H as in the proof of the case 1 . Let

$$
\begin{aligned}
t= & \left.\right|_{\{u:} \text { There exists a 3-cycle } C \text { containing } u \\
& \text { such that } C \cap H \text { is exactly one vertex }\}
\end{aligned} .
$$

Thus we have

$$
\begin{align*}
\in(G(A)) & \geq 7+\left[\frac{3 t}{2}\right]+2(n-6-t)=\left[\frac{2 n-5-t}{2}\right] \\
& \geq\left[2 n-5-\frac{n-6}{2}\right]=\left[\frac{3 n-4}{2}\right] . \tag{2}
\end{align*}
$$

So $\sigma(A) \geq 2\left[\frac{3 n-4}{2}\right]$. Hence $N^{\prime}(3, n)=2\left[\frac{3 n-4}{2}\right]$.
If $G \in E G(3, n)$, then (2) is an eqality. So $G \cong G_{3}$ when n is odd and $G \cong G_{4}$ when n is even.

Theorem $3 N^{\prime}(2 q, n)=2 n$ for $2 \leq q \leq n-2$.
Proof Since $\mathrm{Y}\left(G_{5}\right)=2 q$ for $2 \leq q \leq n-2$ (see Figure 4), we have $N^{\prime}(2 q, n) \leq 2 n$ for $2 \leq q \leq n-2$.

Figure 4
If A is a symmetric primitive matrix with zero trace, then $Y(A) \geq 2 n$. Hence $N^{\prime}(2 q, n)$ $=2 n$.

Lemma Let G be a primitive undirected graph with exactly one cycle C. Then $\bar{Y}(G)$ is even.

Proof Let $G_{1}, G_{2}, \cdots, G_{r}$ be the components of $G-E(C)$, and c the length of C. Let

$$
t_{i}=\max _{v_{i} \in V\left(c_{i}\right)} \min _{u \in V(C)} d\left(u, v_{i}\right), \quad t=\max \left\{t_{1}, t_{2}, \cdots, t_{r}\right\} .
$$

It is obvious that there exists a vertex u_{0} such that the distance from u_{0} to C is t. Hence

$$
\mathrm{Y}\left(u_{0}, u_{0}\right)=2 t+c-1 .
$$

If $u, v \in V\left(G_{i}\right)$, then

$$
\mathrm{Y}(u, v) \leq 2 t_{i}+c-1 \leq 2 t+c-1 .
$$

If $u \in V\left(G_{i}\right), v \in V\left(G_{j}\right)(j \neq i)$, then

$$
\mathrm{Y}(u, v) \leq t_{i}+t_{j}+c-1 \leq 2 t+c-1
$$

Therefore $\mathrm{Y}(G)=2 t+c-1$ is even.
Theorem $4 N^{\prime}(2 q+1, n)=2(n+1)$ for $2 \leq q \leq\left[\frac{n-4}{2}\right]$.
Proof If $\mathrm{Y}(A)$ is odd, then $G(A)$ has at least two odd cycles by the above Lemma. So $N^{\prime}(2 q+1, n) \geq 2(n+1)$.

Since $Y\left(G_{6}\right)=2 q+1$ for $2 \leq q \leq\left[\frac{n-4}{2}\right]$ (see Figure 5), we have

$$
N^{\prime}(2 q+1, n)=2(n+1) \quad \text { for } 2 \leq q \leq\left[\frac{n-4}{2}\right] .
$$

Figure 5
We assume that G is a primitive graph of order n with one cycle C exactly. Clearly, $\sigma_{A}(G)=2 n$. Let $m=\max \{d(u, C): u \in V(G)\}$ and c be the length of C. We denote G by $T(c, m)$. By the above Lemma $Y(G)=2 m+c-1$ if c is odd. So $E G(2 q, n) \supset$ $\{T(c, m): 2 m+c-1=2 q\}$. On the other hand, if $G \in E G(2 q, n)$, then G is a graph with no loop and $Y(G)=2 q, \sigma(A(G))=2 n$. So G is a connected undirected graph with exactly one odd cycle C. Let $c(>1)$ be the length of C, and m the maximum length of the path from a vertex to C in G. Thus $Y(G)=2 m+c-1=2 q$. So $G=T(c, m) \in_{\{ } T(c$, $m): 2 m+c-1=2 q\}$. Hence $E G(2 q, n)=\{T(c, m): 2 m+c-1=2 q\}$. So we have

Main Result A is the minimal symmetric solution with zero trace of $A^{k}=J$ if and only if $G(A) \in \cup_{4 \leq 2 q \leq k, 2 q \in E_{n}} E G(2 q, n)$ for $k \geq 4$. A is that of $A^{2}=J$ if and only if $G(A) \cong G_{1}$ as n is odd and $G(A) \cong G_{2}$ as n is even. A is that of $A^{3}=J$ if and only if $G(A) \cong G_{1}$ or G_{3} as n is odd and $G(A) \cong G_{4}$ as n is even.

References

[1] Liu Bolian, Mc Kay ,B. D. , Wormald, N. and Zhang Kemin, The exponent set of symmetric primitive (0,1)-matrices with zero trace, Linear Algebra A ppl., 136(1990), 107-117.
[2] Bondy ,J. A. and Murty ,U. S. R. , Graph Theory with Applications, Macmillan, London, 1976.

[^0]: Received date ：Jan．19， 1998.
 Foundation item：The NSF（19871040）of China and NSF（B K97041105）of Jiangsu Province．
 ＊）Permanent address ：Department of Mathematics，Xuzhou Normal University，Xuzhou， 221009.

