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Abstract

A k-outpath of an arc zy in a multipartite tournament is a directed path with length k
starting from zy such that = does not dominate the end vertex of the directed path. This concept
is a generalization of a directed cycle. We show that if T is an almost regular n-partite (n>8)
tournament with each partite set having at least two vertices, then every arc of T has a k-outpath
for all k, 3<k<n-—1.
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1. Introduction

Throughout the paper, we use the terminology and notation of [1} and [2]. Let D =
(V(D),A(D)) be a digraph. If zy is an arc of a digraph D, then we say that £ dominates
y, denoted by  — y. More generally, if A and B are two disjoint vertex sets of D such that
every vertex of A dominates every vertex of B, then we say that A dominates B, denoted
by A = B. The outset N*(z) of a vertex z is the set of vertices dominated by « in D,
and the inset N~ (z) is the set of vertices dominating z in D. We define the outdegree
d*(v) = |N*(v)| and the indegree d~(v) = |N~(v)|. The maximum outdegree of D is
denoted by A" and the minimum outdegree is denoted by §*. The irregularity i(D) is
Max |d*(z) — d~(y)]| over all vertices z and y of D (z = y is admissible). If i(D) = 0, we say
D is regular; if i(D) = 1, we say D is almost regular. A digraph obtained by replacing each
edge of a complete n-partite graph with exactly one arc is called an n-partite tournament
or a multipartite tournament. If T is a multipartite tournament and = € V(T'), we denote
by V(z) the partite set of T' to which z belongs. If U C V(T), we denote by T[U] the
subdigraph induced by U. A k-outpath of an arc zy in T is a directed path with length k
starting from zy such that = does not dominate the end vertex of the directed path. Note
that if 7" is a tournament, a k-outpath of an arc zy is in fact a (k + 1)-cycle through zy, so
the concept of an outpath is a generalization of a directed cycle. In this paper, || denotes
the largest integer not more than «, and [a] denotes the least integer not less than o.

It is well known that if T is a regular tournament with n vertices, then each arc is
contained in cycles of all lengths m, 3 < m < n (see [3]); and if T is an almost regular
tournament with n vertices (n > 8), the each arc is contained in cycles of all lengths m,
4 < m < n (see [4]). Guol® proved that if T is a regular n-partite tournament, then every
arc of T has an outpath of length k for all k, 2 <k <n - 1.

The main result of this paper is the following
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Theorem. Let T be an almost regular n-partite (n > 8) tournament. If each partite
set of T has at least two vertices, then every arc of T has a k-outpath for allk,3 < k <n-—1.

In order to prove the theorem, we need the following lemma:

Lemma. Let T be an almost regular n-partite tournament with partite sets V1, V, - - -
Voo Then (a) AT —67 <2. (b)If At -6+ =2, thend (z) =6* + 1foreach z € V(T)
) | Vil = Vil || < 2forall i 5. (d)If d*(z) — d+(y) = 2, then d*(z) = AT, dt(y) =67
and |V ()] = V(@) +2

Proof. (a) Suppose there exist u,v € V(T') such that d*(u)—d*(v) > 3. By the almost
regularity of 7', we have d~(u) > d*(u) — 1 > d*(v) + 3 — 1 = d*(v) + 2, a contradiction.

(b) Suppose AT —§t = 2. Let u,v € V(T) with d*(u) —d*(v) = 2, where d¥(u) = A*
and dt(v) = 6%. Let z € V(T). If d~(z) > 61 + 2, then d~(2) — d* (v) > 2, a contradiction;
if d=(z) < 6%, then d*(u) — d=(z) > 2, a contradiction too. So we have d~(z) = 6+ + 1 for
each z € V(T).

(c) Note that d*(z) +d~(z) = |V(T)| — |V(z)| for each = € V(T). Let z,y € V(T') so
that V(e) =V, and V() = ¥ Then |V - V3| = | V)]~ 1V )| =t (0) + ()~
d+($) g (@) = |(d* () —d~ () + (d~ () —d* ()| < ld*(z) —d~ (y)|+]d~ (z) —d* (y)| <

1+41=

(d) By (a), it is easy to see that d*(z) = A* and d*(y) = 6. By (b), we know that
d~(z) = d™(y). Hence we have |V (y)| - [V(z)] = (V(T)| = d*(y) - d~(»)) — (V(D)| -
d*(z) —d~(z)) = dt(z) — d¥(y) = 2.

2. Proof of the Theorem

Let V1, Vs, -, V, be the partite sets of T, and let s = min {|V;|}. By Lemma (c) and
the initial hypothesis, we have s > 2 and |V;| < s+2. Further, since d(z) = d*(z)+d~(z) >
(n — 1)s and d*(z) > d~(z) — 1, we have 6t > i'_‘:z_Dﬁ Let e = (ap,a1) € T. There are
at least three vertices (say, z,¥,z) in N (a;) such that V(z),V(y) and V(z) are pairwise
distinct. Otherwise we must have d*(a;) < 2(s + 2) and d~(a;) > (n — 3)s. Noting that
n > 8 and s > 2, we have d~(a;) — d*(a1) > (n — 3)s — 2(s +2) > 3s — 4 > 2, which
contradicts the almost regularity of 7. Without loss of generality, we assume z — y — 2.

We shall first show that e has a 3-outpath and a 4-outpath.

Suppose that e has no 3-outpath. If ap does not dominate y (or z), then apa;zy (or
apa1yz) is a 3-outpath of e, a contradiction. So we have that ag = {y,z}. Similarly, we
have ag = N*+(z). Thus d*(ag) > d*(z) + |{a1,y, z}|, which contradicts Lemma (a). This
proves that e has a 3-outpath.

Suppose that e has no 4-outpath. If ag # z, then apa;zyz is a 4-outpath of e, a
contradiction. So ag — 2. Similarly, we have ag = N*(z). If [N*(z)| > é+ + 1, then since
z,a1 € N*(z) and z,a; € N*(ag), d*(ao) > |[N1(2)| + |{z,a1}| > 61 + 3, a contradiction.
So we assume that [N*(2)] = 6%. Since there exists u € N*(z) such that d;[N+(Z)](u) <
(IN*+(2)] — 1)/2], we have [N+(@\N*(2)| 2 8+ — |(N*(2)] - 1)/2] = [(6* —1)/2] +1>
2. Hence we have d*(ap) > |[N*(2)| + I[Nt (u)\(N*t(2) U {a1})| + {a1,2}| > 6T +3, a
contradiction. This proves that e has a 4-outpath. '

Let P = apa;---a, be a p-outpath of e (4 < p < n — 2). Suppose that e has no
(p + 1)-outpath.

Let A={z|z eV, V,nV(P)=0, 2 5 a9, 1 <i < n}, B={ylyeVi, VinV(P) =
0, ap =y, 1<i<n}.

It is obvious that A U B # §, since otherwise we must have |V(P)| > n and then
p > n — 1, which contradicts that p < n — 2. And for each vertex z in AU B and for
each vertex y in V(P), either  — y or y — z. Moreover, for each z € V(P), since
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d(z) = d*(z) +d~(z) > (n—1)s and d*(z) > d~(z) — 1, we have §+ > K"_‘ilﬁ And so
N*(z)\V(P) # 0, since otherwise we have p = |[V(P)| — 1 > d*(z) + [{z}| -1 > §+ >
[(n—=1)s/2] > n—1, a contradiction.

Suppose A # 0. If there exists x € A such that a, — =z, then apa, -+ apz is a (p + 1)-
outpath of e. Hence A => a,, and then we have that A = V(P) since otherwise there must
exist s such that a, — x and £ — a,41, hence apa, - - - a,za,41 - - a, is a (p+1)-outpath of e,
a contradiction. Let a € A and u € Nt (ap_3)\V(P). If u — a, then apa; - - - ap—3uaa, 1a,
is a (p + 1)-outpath of e, a contradiction. If V(u) = V(a), then u is not in V(z) for every
z € V(P) and {ap-2,ap-1,ap} = u. When a = N*(u)\V(P), then a = NT(u). Thus
dt(a) > d*(u)+|{ap-3,ap-2,ap-1,a,}| > 6T +4, a contradiction to Lemma (a). When there
exists v € Nt (u)\V(P) # Bsuch that v — a, then apa; - - - a,_3uvaa, is a (p + 1)-outpath of
e, a contradiction too. So, a — u for all such u, implying that ¢ = N*(a,_3)\V(P). And
then @ = N*(ap_3). It follows that d*(a) > d*(ap—3) + |{ap-4,a,-3}|- By Lemma (a), we
have that d*(a) = 6% 42, and d*(a,_3) = 6. So a,_3 = {ao,a1," *,0p—5,0p—2,ap-1,0,}
if p > 5, and ap_3 = {a2,as,a4} if p = 4. By analogous computations we obtain that
Qp—_2 = {a07 A1y 8p—q,8p—1, ap}-

Let ¢ € N*(ap—1)\V(P). If £ — a, then aga;---a,—1za is a (p + 1)-outpath of e, a
contradiction. If V(z) = V(a), then z is not in V(z) for every z € V(P). If £ — a,—2, then
@0ay * * - Gp-30p—1TAp—20, is a (p+1)-outpath of e, a contradiction. So a,—3 ~ = and a, — .
Note that N*(z)\V(P) # @, hence if there exists y € N*(z)\V(P) such that y — a, then
@oay - - - Gp_3ap_1Tya is a (p+1)-outpath of e, a contradiction. So we have @ = N1 (z)\V(P),
and then a = N*t(z). Now d*(a) > d*(z) + |[{ap—2,ap-1,a,}|, a contradiction to Lemma
(a). Now we have a — z for all z € N*(a,_1)\V(P), that is, a = N*(ap_;)\V(P). And
then we have @ = N*(a,_1). Thus d*(a) > d*(ap-1)+|{ap-3,ap-2,a,-1}|, a contradiction
too.

Therefore A = @. Since AUB # 0, B # B. Let b be an arbitrary vertex in B,
note that V(b) C B. Suppose that a; — b for ¢ = 1 or 2. Then it is easy to check
that @, — b for all j > 2. If there exists z € N (b)\V(P) such that ag 4 z, then
aoay - -+ ap_1bzx is a (p + 1)-outpath of e, a contradiction. Hence ag = Nt (b)\V(P), and
then we have that d*(ao) > d*(b) + |V(b)| > d*(b) + 2. By Lemma (d), we have that
|B| > |V(b)] = |V(ag)] +2 > 4. Thus we have d*(ap) > d¥(b) + |V(b)] > 6+ +4, a
contradiction to Lemma (a). So we have b = {a1,a2}, i.e., B = {a1,a;}.

Case 1. p =4, then |B| > (n - 5)s > 6.

Case 1.1. There exists z € B such that a3 — z.

We have ay — z and ag = N*(z)\V(P). Hence d*(ag) > d¥(z) + [V(z)| — {az}| >
d*(z)+1. If d*(ag) > d*(x)+2, then by Lemma (a) and (d), we have |V (z)| = |V (ao)|+2 >
4, thus d*(ag) > d*(z) + 3, a contradiction. So d*(ag) = d¥(z) + 1, which implies that
6t < df(z) < 6t + 1. If d¥(z) = 6% + 1, then d*(ap) = 6T + 2. By Lemma (b),
[V(z)| = [V(ao)| +1 > 3 and then d¥(ag) > d*(z) + |V (z)| ~ |{a2}]| > dt(z) + 2. This
contradicts d*(ap) = d*(z) + 1. Hence we have d*(x) = 6. If a9 — a3 or ag — as, then
dt(ag) > d*(z)+|V(z)| > d*(z)+2, a contradiction. So we have ag /4 a3 and ag 4 a3. Note
that if a; — a, (¢ > 3), then ap ~— a,—;. Otherwise apaya, - - -a4zaz - - - a,_; is a 5-outpath of
e. Hence a, /4 az and a1 /4 a4, otherwise we must have ap — az or ag — as, a contradiction.
Now clearly V(z) N (NT(a1)\V(P)) = @ since B = a;. Hence z = N*t(a;)\V(P), since
otherwise let y € N*(a1)\V(P) be chosen such that y — = and observe that aga,yzasas is
a 5-outpath of e since ag # a3. So d*(z) > |[N*(a1)\V(P)| + {a1,a2}| > 6t — 1+ 2, which
contradicts d*(z) = §+.

Case 1.2. B = a3.

Without loss of generality, we assume B = V; UV, U--- UV, with |V,_;| > |Vj|, where
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!
Il > 3. If for each y € B, d;[B](y) < 1, then |A(T[B])| < 3 |Vil. On the other hand,
i=1

-1 !
[A(T[B)| = Y [|VillVil =23 [\l > 3 |Vi| +1, a contradiction. Hence there exists
1<i<j<i t=x1 =1

z € B such that d;[B](m) > 2. Note that z = N*(a;)\V(P) and (N*(a1)\V(P))Nn B =4.
If £ — a4, then d¥(z) > d*(a1) + d;[B](w) + [{a1}| > d*(a1) + 3, a contradiction. If
a4 — x, then a; — a4, otherwise d¥(z) > d*(a;) + 3, a contradiction. Hence ap — a3 and
IN*(a3)\V(P)| > 6% — 2. Suppose there exists a € N*(a3)\V(P) such that ¢y # a; then
apaiaszaza is a 5-outpath of e, a contradiction. Hence ag = N¥(a3)\V(P), which implies
that d*(ag) > |[N*(a3)\V(P)| + |B| + 1 > 6% + 5, a contradiction.

Case 2. p > 5 and there is b € B with b — a,.

It is easy to check that b = {a1,a2, *-,a,}. Note that V(b) = ai, so b is not in V(2)
for every z € N*(a;)\V(P). Hence we have that b = NT(a;)\V(P). Otherwise there
exists £ € N*(a;)\V(P) such that z — b, then apaizbas---a, is a (p + 1)-outpath of e, a
contradiction. An analogous argument to that above will deduce that b = N1 (a2)\V(P).

Case 2.1. (N*(a)\V(P)) N (N*t(a)\V(P)) # 0.

Let u € (N*(ai)\V(P)) N (N*(a2)\V(P)). Then obviously u # a3. Note that
Nt@w)\V(P) # 0. If b = N+(u)\V(P), then d*(b) > d*(u) + [{u,a1,a2,a3}| — [{ao}| =
d*(u) + 3, a contradiction; if there exists z € (N1 (u)\V(P)) such that V(b) = V(z), then
it is easy to see that {as,a4,---,a,} = x and hence there exists y € N*(z)\V(P) such that
y — b, otherwise d*(b) > d*(z) + |{u,as,a4,---,a,}| > d*(z) + 4, a contradiction. But
agaiuzybas - - - ap is a (p+ 1)-outpath of e, a contradiction. So there exists v € Nt (u)\V(P)
such that v — b, then aga,uvbays - - - a,, is a (p + 1)-outpath of e, a contradiction.

Case 2.2. (N*(a1)\V(P)) N (N*(a)\V(P)) =0.

Note that Nt(a2)\V(P) # 0. If IN*(a2)\V(P)| = 1, then |V(P)| > [N*(az)| — 1 +
l{a1,a2}] > 6% +1 > n, a contradiction. So we have |N¥(az)\V(P)| > 2 and d*(b) >
d*(a1) + {a1}| + |[N*(a2)\V(P)| > 6% + 3, a contradiction.

Case 3. p>5anda, —+bforany b€ B.

Case 3.1. b — a3.

If there exists u € N*(a;)\V(P) with u — b, then agajubas - - - a, is a (p + 1)-outpath
of e, a contradiction. So we have b = N*+(a;)\V(P). For each a; € N*t(a;) N V(P), we
must have ap — a,_1, otherwise agaja;---aybaz -+ a;—y will be a (p + 1)-outpath of e, a
contradiction. This means that (N (ap) N V(P)| > |[N*(a;) N V(P)|.

Case 3.1.1. a,_; —b.

If there exists u € N*(a;)\V(P) such that ap # u, then aga, ---ap_1bu is a (p + 1)-
outpath of e, a contradiction. Hence we have ap = N7T(a;)\V(P) and then d*(ap) >
d*(a;1)+|B|. 1t follows that B = V(b) and |V (b)| = 2. Now it is easy to see that T[V(P)] is a
tournament since otherwise we obtain that |V (P)| > n, and then p > n—1, which contradicts
that p < n — 2. Note that ap = (NT(a1)\V(P)) U (N*(b)\V(P)), thus N*(b)\V(P) =
Nt (a))\V(P) = N*(ao)\(V(P) U B), otherwise we will get d*(ag) > 6+ + 3. Hence there
exists @ € N~ (ag)\V(P) such that V(a) = V(a;) since s > 2. So we have a — a,, otherwise
aoay - -+ apa is a (p + 1)-outpath of e, a contradiction. This implies a = {az,a3,---,ap_1}.
Since a,—; — b,a — b. Note that a is not in V(2) for every z € N*(a1)\V(P), and
therefore we have a = N*1(a;)\V(P), otherwise there exists ¢ € N*(a,)\V(P) such that
z — a, then apa;zaas - - - a, is a (p+ 1)-outpath of e, a contradiction. Since Nt (b)\V(P) =
N*(a))\V(P), we have a = NT(b)\V(P). Hence d*(a) > d¥(b) + {{ao,b,ap—1,0p}| —
[{a1}] = d*(b) + 3, a contradiction.

Case 3.1.2. b—ap_;.

It is easy to see that b = {a1,a2, " ,ap—1}, and b= NT(a, \V(P) (i = 1,2).
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Suppose (N*(a:)\V(P)) N (N*(az)\V(P)) = 0. Note that |[N*(az)\V(P)| > 2, oth-
erwise [V(P)| > |N*(az2)] — 1 + [{a1,a2}| > n, a contradiction. Hence d*(b) > d*(a;) +
IN*(a2)\V(P)|+|{a1}| - {ap}| > d*(a1)+2. This implies that |[N*(a2)\V(P)| = 2, and by
Lemma (d) we have |V (a1)| = |V(b)|+2 > 4. Observe that az & V(a;) and d*(az2)+d ™ (az) >
2(n —2) + |V(a1)|; by almost regularity of T, we have d*(az) > [(2(n —2) +4)/2] > n. So
|[V(P)| > d*(az) — 2 + [{a1,a2}| > n, a contradiction.

Thus (N*(a1)\V(P))N(N*(a2)\V(P)) # 0. Now, let a € (N (a1)\V(P))N(N+(az)\
V(P)).

()Jase 3.1.2.1. There exists ' € N*(a)\V(P) with V(¥') = V(b).

Then as — b, otherwise agaiab’as---a, will be a (p + 1)-outpath of e, a contra-
diction. And so {a3,a4,---,a,} = b. If b = NT(U)\V(P), then d*(b) > d*(¥') +
{as, a4, ,ap—1}| > d*(¥') +2. Thus by Lemma (d) |V (¥')| > |V (b)| +2, which contradicts
V(b) = V(b'). Hence there exists ¢ € N*(¥'}\V(P) such that z — b. If agp # a,-1, then
agaab'cbay ---a,_; is a (p + 1)-outpath of e, a contradiction. Hence we have ag — a,_;.
On the other hand, since a,_; — b/, it is easy to check that ag = N*(V)\V(P). So
dt(ag) > dH (V') + V()| + [{ap-1}] — |{a2}| = dT(¥') + |[V(¥')|. Because of s > 2 and
Lemma (d), |V(¥')| = |V(ao)| + 2. Hence d*(ag) > d*(b') + 4, a contradiction.

Case 3.1.2.2. b= N*(a)\V(P).

Since a # a3 and b — q, d*(b) 2 d*(a) + {a1, a3, a3,a}| — [{a0, ap}| = d*(a) + 2. By
Lemma (a) we have d*(b) = §*+ +2 and a = {ag,a,}. Since a — ag, we must have az /4 a4,
a1 /4 as, a1 7 a4 and a; # as, since otherwise we will obtain (p + 1)-outpaths of e ending
in a. Now since b = N*(a1)\V(P), d*(b) > d*(a1) +|{a1,a3,as,as5}| — |{ap}| = d*(a1) +3,
a contradiction.

Case 3.1.2.3. There exists z € N*(a)\V(P) such that z — b.

In this case aga;azbays - ap is a (p + 1)-outpath of e, a contradiction.

Case 3.2. a3 — b, and then {as,a4,---,a,} = b.

Since ag = Nt(B\V(P), dt(ao) > dT(b) + |V(b)| — [{az}| > d*(b) + 1. Supposing
ao — ap—1, then d*(ag) > d+(d) + [V(b)| — [{a2}| + {ap-1}| = dT(b) + |V(b)|. Due to
[V(b)] > 2 and Lemma (d), |[V(b)| = |V(ao)| + 2 > 4. So we have d*(ap) > d*(b) + 4,
a contradiction. Hence we can always assume that a9 / ap—;. Now since B = a;, b =
N*(a;)\V(P) and then ap = NT(a1)\V(P). If there is a vertex a, with a; — a; and
ag 7 G,-1, then agaia;---aybaz---a,_; is a (p + 1)-outpath of e, a contradiction. This
means that [N*(ap) N V(P)| > |[N*(a;) N V(P)|. Hence d*(ap) > d*(a;) + |V(b)]. And
then by |V (b)| > 2 and Lemma (b), we get that for each z € V(T), d~(z) = §+ + 1. Since
d*(ao) 2 d* () + 1, [V(b)| 2 |[V(ao)l+1 > 3. So d*(ag) > d*(ar) + [V ()| 2 d¥(a1) +3, a
contradiction.

This completes the proof of the theorem.
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