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ON VERTEX-PANCYCLIC GRAPHS WITH —————
THE DISTANCE TWO CONDITION *
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Abstract For a graph G with order n, let d(u)+ d(v) > n for each pair of vertices
u, v a distance two apart in G. We show that each vertex of G lieson a cycle of every length
from 4 to n inclusive except if G ~ K "/ 2nr2" '

Upper bound is given for the number of vertices in this type of graphs which do not lie
on 3—cycles. . '

1. INTRODUCTION

In this paper, we consider only simple graphs. Throughout we use the terminology and
notation of [2]. Hence we use N(v) for the neighborhood of a vertex v,:d(v) = |[N(v)| and
d(u,v) for the distance between u and v. In addition we will let N(v) = NwU{v}.

A graph is said to be pancyclic if it contains a cyéle of length 1 for all 1 such that 3<1<
n, where n is the number of vertices in the graph. In this paper, we consider the concept of
pancyclicity from the point of view of a vertex. So we say that a vertex is pancyclic if that
'vertex lies on a cycle of every length from 3 to n inclusive. We will be particularly interested
in vertices which are not quite pancyclic. Hence we say that a vertex is 3 ™—pancyclic if it lies
on a cycle of every length from 4 to n inclusive and it does not lie on any 3—cycle in G. We
say that G is vertex pancyclic if every vertex is pancyclic and vertex 3 —pancyclic if every
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vertex is 3 —pancyclic or pancyclic.
Tt is well-known Ore’s condition on a graph G, i.e. if u,yeV and uv¢E, then d(u)
+d(v) = n; The other condition'”, called Fan’s condition, on a 2—connected graph G is

that if for all u,v with d(u,v) = 2, max(d(u),d(v)) = g . We combine Ore’s and Fan’s con-

dition to give the distance two condition, for all u,veV with duy)=2, du)+d()zn
Pancyclic graphs was first considered by Bondy in [1]. And then the result was ex-
tended by Zhang et al in [4] to vertex—pancyclic graphs.
Theorem A. Let G be a graph of order n with Ore’s condition. Then G is vertex
3"-pancyclicunless G~ K . . -
In this paper we show that if G satisfies the distance two condition, then G is vertex
3 —pancyclic. Further we find the largest number of 3"—pancyclic vertices in graphs satis-
fying this condition.

2. MAIN RESULTS

In this section we prove two results' concerning the distance two condition. :

Theorem 1. Let G be a graph of order n. If for each u,ve V for which d(u,v) =2, we
have d(u)+ d(v) > n, then G is vertex 3—pancyclicunless G~ X ..

Proof. Clearly, G is 2—connected. By the result of [3], G is hamiltonian. If G is not
3 —pancyclic. Suppose that for such largest m, 5<m<n, there is no {m—-1)—cycle
through xeV. Let C_=xv v,*v__, bean m—cycle, and let x=v, =v_. In the fol-

lowing, suppose that G™K 2ns2- Wehave:

(1) There exists /, i€{0,1,.ss,m — 2} such that d, b)+d, (v,,,)Sm—1, wherem

26 (Subscripts taken mod m).
In fact, if there exists je{0,1,2,>*,m — 2} such that v v l,v‘“leeE, thus there is

an (m—1)-cycle v, LA e RS UL T in G. Hence we only need to consider the

following case: d_ (v J+d, (v, ,)=m and there does not exist j such that

VV,Y

143741 €E» 1#m— 1. This implies that one and only one of v, 7,27} be
longs to E. Especially, since v v

; HzéE, i#m-1 We have viv,+3eE for each j. So for

each veC o we can make choice of jsuch that Vi =¥ sz;éx orv, ., #X V.,

=v. Note that if LA ,€E, then when x ;évi“(x #V,, Tesp. .), at most one of {vi Y

vlﬂvk“} (of {v,“ *,vl“vk“} resp.) belongs to E. Hence for each v e C nod c. (v)

? Thus since d(v ) +d(v, ,)=m, it deduces that m=even and N(v)= N(v ¢+z)

={V, 1Y a3 s} Therefore G[V(CM)]sz/u“. -
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Let 4, =’{v|veV\V(Cm),vv‘eE}. Tt is easy to show that for each ved ,vv, ,,vv,_,
¢ E, otherwise there is an (m—1)—cycle vm(=x)vlvz -y vv‘“v‘N 195" Vo ifi+ 2,1
+3%moryvy (=x)v ": R0 2 SO Ul ifi—2, i—1#m. Hence we have:
14 (1‘41 1 Qb ‘4 (\l4l+l

Now, without loss of generahty, let |4 I i4, +1|' Since d(v ie 2)=2, by the dis-

tance two condition, d(v,)+ d(v )?n On the. other hand d(v)+d(

i+2 l+2)

1 | :
<(§+|A:|)+(§ +""'""IA1+1|)=." i4,,,1+14,|<n Hence we have three as-

serts as follows:
) |4l=I4, 1 especially |4 |=14,];
B) A, =4,, ie 4, =A and 4 =4, and 4 U4, =wv\v(C, )

7) N, M ={v, vy, }if ved,
Nc_ )= {vz,vv-",Vm} if ved,

Finally, 4 , must be an independent set. It not, there are u,ve4 , with uveE. thus there
is an (m—1)-cycle: v uvv,v v *=v v . This is a contradiction. An analagous argument
shows that A4 , must be an independent set. Thus it deduces that G ~ K Janr2 B contra-
diction. Hence (1) is true.

(2) m=5. In fact, if m2 7 or M=6 with i<~ 2, then by (1) there always exists i
€{0,1,2,>>-,m — 2} such that dc_ )+ dc- v, ,)sm—1, idc v,,,)+d, v,,)<m

and xé¢{v

and x¢{v, o
veV\V(C ), then at most one of {vv‘,vv,“} and of {vv, ,,vv,  } belong to E
respectively. Otherwise there is an (m—1)—cycle containing x in G.  Hence we have 2n
<dl )+d(v‘+2)+d(v‘“)+ d(v‘”)<2(n—m)+ m—1)+m=2n—1<2n, a contra-
diction. If m= 6 with i=2. Note that 2<d(v,) <3 foralliand dc‘ (v,)+ dc‘ (v)sm

}ord, (v‘)+dc_(v,+2)<m—1, de 0, ))+d, (v,_l)Sm

..
+1? :+4

v‘H}. Without loss of generality, we assume that the former. if each

—1=25. Hence, without loss of generality, we assume that d c (vz) = 2. Thus we have
. [ ] .
d, v,)+d, (v,)<5=m—1. So in this case, we can make choice of i=03%2. Hence (2)
[ [

is true. ,
(3) m==5. i.e. there always exists a 4—cycle containing x.
Case 1. There is a 3—cycle xuvx.
Since G is 2—connected, without loss of generality, there is a vertex we ¥ with ywekE.
If d(x,w)=1, then there is a 4—cycle xuvwx. If d(x,w)=2, then, by the distance two
condition, |N(x)(YN(w)| 2. Let ye{N(x)(\N(w)}\{v}, thus there is a 4—cycle xywvx.
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Case 2. There is no 3—cycle containing x. In other words, N(X) is an independent set.
Let u,veN(x), thus, by the distance two condition, d(u)+d(w)=n. So |N(u) ()N (v)|
2 2. Let ye {(N@W)[\N(¥)}\{x}, then thereis a 4~cycle xuyvx.

Therefore, (3) is true.

Combining (2) and (3), the proof of Theorem is completed.

Consider the class of graphs G™K "/ 2ns2 satisfying the distance two condition. Let
M be the maximum number of 3™—pancyclic vertices in a graph with the above property.

Theorem 2. If n26, then

max{2,[%(—2+m)]} if n is odd
M=

3—2 if n is even

Proof Consider the graph G with V(G )= 4a\) UB, D, where G 4] = K:,
i=1

G,[B]=K

r+1

foralliand G [D]=K. , ,. Further N(v,)=B, foreach v,€4 and

each vertex of | JB , is joined to every vertex in D. We note that d(v )=r+1 for all

=1

ved, dw )=r2+2r‘—1'for all w e\ /B, d(z)=2r2+3r—3 for all zeD and n
i i i t )

jm]
= lV(Go)l = 2 +4r—2 Itis easily checked that G , satisfies the dstance two cpndition

and the vertices in A are 3" —pancyclic. Now
r=[-;-(-2+\/8+2n)], SO M}[%(—2+VS+2n)] if n is even.

When 7 is odd, we consider G’y which is dedcued by substituting X R
K.,

4y 0 G, with

»_y Thus n=|V(G )= 2r’ +4r—1. An analagous argument shows that M

;[%(——2+\/6+2n)], if nis 0dd.

Now, let GQK.“’“/:
be the set of 3 —pacyclic vertices in G. Note that G is hamiltonian. Hence there is a 3—cycle

satisfy the distance two condition. Let R ={v ,i=12,r}

containing u in G if d(u) > 2. So we have 2 <d(v)<3, i=1.2,r. The remainder of

2
the proof proceeds in two steps.

n
2

(1) R is an independent set in G.
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Case 1. There are two vertices, say V,s¥,, in R such that B=N(vl)ﬂN(v2);6¢ .
Let A=N(v )\B, C=N(v,)\B and D = V\{JV(vI)UJV(vz)}. By the distance two

condition, d(v,) + d(v,) > n. Thus we have dv,)=d(, )= '2—' and n=even. If 4 #0,

then d(a)<|Cl+ |D|+ 1 =-;- —1 for all aed and d(b)<|D|+2'<§ for all beB.

Thus we have d(a) + d(b) < n, a contradiction. Hence 4 = @ . An analagous argument
shows that C =@ . And then by the distance two condition, d(b D+ d(bz) 2n forall b,

#b,eB. Thus BVD <= G. Since GQK./z../z’ K, ., teSG, where the ends of

edge e belong to one of bipartition of X respectively. Hence r < % -2 M.

n/2n/2

Case2. N(v)(\N(v))=@ forall v, #v eR. Let u eN(v)), i=12r. If uu,
eE, without loss Qf generality, we assume that d(v ) < d(v,). Since d(u )< n—d(v)—r
+1, i=12;r. Thus d(v )+ d(u,) <d(v )+ (n— d(vl) —r+1)<n On the other
hand, by the distance two condition, d(v )+ d(u )> n, a contradiction. Hence

N(v )ﬂN(u Y=¢ forall i#je{1,2,.-r}. Smce Gis 2—connected there is a vertex zeD

= V\UN(v ). Let s= Zd(v ) and d=|D|. Thus

r+s+d=n<d(z)+d(v‘)<[sl+(d—-1)]+d(v,)’

forall v, eR. So d(v)2r+1 and s2r(r +1). Further, for u,,u’leN(v,),
r+s+d=n$d(u‘)+d(u")<2d+2.

So d>r+s—2>rz+2r—2. n=r+s+d>2rz+4r—2 if n is even and n>2r2+4r

—1if n is odd. This impliesr{[%(—2+\/6+2n)] if n is odd and

s[%(—2+\/8+2n)] if nis even.

(2) There are two vertices v,»¥,€R with v v eE. Clearly, N(vl)ﬂN(v2)= @ and
N(vl), N(vz) are independent sets in G. Without loss of generality, we assume that
INW I IN(v,)I. Let D.= N\{N(v )UN(,)}. For  each ueNw M\{v,}, d(u,v)=2,

so n<du)+d(v ))<1+|D|+ IN(V,)\{V,}I +INw N<1+ DI+ IN(V,)\{V2}| + IN( )
< n. Thus we have three asserts as follows:
@) INO N H=INo M\ }
B W Ny DVOVING N\, 1D <6
An analagous argument shows that:
7 (NN, } VDG,
So there is no 3"—pancyclic vertex in G except V.V, le.r=2.
Combining (1), (2) and G +»G,’s the proof of Theorem is completed.#¥
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