ON VERTEX-PANCYCLIC GRAPHS WITH THE DISTANCE TWO CONDITION *

Zhang Kemin

and

Song Zengmin

(Nanjing University)

(Southeast University)

距离为二条件的顶点泛圈图

张克民 (南京大学)

宋增民

(东南大学)

摘 要

本文证明了顶点数为 n 的图 G,若对 G 中任意距离为 2 的点对 u, v,总满足d (u) + d(v) $\geq n$ 条件,且 $G \supseteq K_{n/2,n/2}$,则 G 中任意顶点 w, 恒存有包含 w 的长度为 k 的圈,这里 $4 \leq k \leq n$.

本文还给出了上面所叙述的图类中,不在3-圈上的顶点数目的上界.

Abstract For a graph G with order n, let $d(u) + d(v) \ge n$ for each pair of vertices u, v a distance two apart in G. We show that each vertex of G lies on a cycle of every length from 4 to n inclusive except if $G \simeq K_{n/2,n/2}$.

Upper bound is given for the number of vertices in this type of graphs which do not lie on 3-cycles.

1. INTRODUCTION

In this paper, we consider only simple graphs. Throughout we use the terminology and notation of [2]. Hence we use N(v) for the neighborhood of a vertex v, d(v) = |N(v)| and d(u,v) for the distance between u and v. In addition we will let $\overline{N}(v) = N(v) \bigcup \{v\}$.

A graph is said to be pancyclic if it contains a cycle of length 1 for all 1 such that $3 \le l \le n$, where n is the number of vertices in the graph. In this paper, we consider the concept of pancyclicity from the point of view of a vertex. So we say that a vertex is pancyclic if that vertex lies on a cycle of every length from 3 to n inclusive. We will be particularly interested in vertices which are not quite pancyclic. Hence we say that a vertex is 3—pancyclic if it lies on a cycle of every length from 4 to n inclusive and it does not lie on any 3—cycle in G. We say that G is vertex pancyclic if every vertex is pancyclic and vertex 3—pancyclic if every

^{* 1990}年3月5日收到.

vertex is 3-pancyclic or pancyclic.

It is well-known Ore's condition on a graph G, i.e. if $u,v \in V$ and $uv \notin E$, then $d(u) + d(v) \ge n$; The other condition^[3], called Fan's condition, on a 2-connected graph G is that if for all u,v with d(u,v) = 2, $\max(d(u),d(v)) \ge \frac{n}{2}$. We combine Ore's and Fan's condition to give the distance two condition, for all $u,v \in V$ with d(u,v) = 2, $d(u) + d(v) \ge n$.

Pancyclic graphs was first considered by Bondy in [1]. And then the result was extended by Zhang et al in [4] to vertex—pancyclic graphs.

Theorem A. Let G be a graph of order n with Ore's condition. Then G is vertex 3-pancyclic unless $G \simeq K_{n/2,n/2}$

In this paper we show that if G satisfies the distance two condition, then G is vertex 3-pancyclic. Further we find the largest number of 3-pancyclic vertices in graphs satisfying this condition.

2. MAIN RESULTS

In this section we prove two results concerning the distance two condition.

Theorem 1. Let G be a graph of order n. If for each $u,v \in V$ for which d(u,v) = 2, we have $d(u) + d(v) \ge n$, then G is vertex 3-pancyclic unless $G \simeq K_{n/2,n/2}$.

Proof. Clearly, G is 2-connected. By the result of [3], G is hamiltonian. If G is not 3-pancyclic. Suppose that for such largest m, $5 \le m \le n$, there is no (m-1)-cycle through $x \in V$. Let $C_m = xv_1v_2\cdots v_{m-1}$ be an m-cycle, and let $x \equiv v_0 \equiv v_m$. In the following, suppose that $G = K_{n/2,n/2}$. We have:

(1) There exists i, $i \in \{0,1,\dots,m-2\}$ such that $d_{C_m}(v_i) + d_{C_m}(v_{i+2}) \le m-1$, where $m \ge 6$ (Subscripts taken mod m).

In fact, if there exists $j \in \{0,1,2,\cdots,m-2\}$ such that $v_i v_j, v_{i+2} v_{j+1} \in E$, thus there is an (m-1)-cycle $v_i v_j, v_{j+1} \cdots v_{j+1} v_{j+2} \cdots v_i$ in G. Hence we only need to consider the following case: $d_{C_m}(v_i) + d_{C_m}(v_{i+2}) = m$ and there does not exist j such that $v_i v_j, v_{i+2} v_{j+1} \in E$, $i \neq m-1$. This implies that one and only one of $\{v_i v_j, v_{i+2} v_{j+1}\}$ belongs to E. Especially, since $v_i v_{i+2} \notin E$, $i \neq m-1$. We have $v_i v_{j+3} \in E$ for each j. So for each $v \in C_m$, we can make choice of j such that $v_{j+1} = v$, $v_{j+2} \neq x$ or $v_{j+1} \neq x$, $v_{j+2} = v$. Note that if $v_i v_{j+3} \in E$, then when $x \neq v_{j+2} (x \neq v_{j+1} \text{ resp.})$, at most one of $\{v_{i+1} v_k, v_{j+1} v_{k+1}\}$ (of $\{v_{i+2} v_k, v_{j+2} v_{k+1}\}$ resp.) belongs to E. Hence for each $v \in C_m$, $d_{C_m}(v) \in \frac{m}{2}$. Thus since $d(v_i) + d(v_{i+2}) = m$, it deduces that m = even and $N(v_i) = N(v_{i+2}) = \{v_{i+1}, v_{i+3}, \dots, v_{i+2k+1}, \dots\}$. Therefore $G[V(C_m)] \cong K_{m/2,m/2}$.

Let $A_i = \{v | v \in V \setminus V(C_m), vv_i \in E\}$. It is easy to show that for each $v \in A_i, vv_{i+1}, vv_{i-1} \notin E$, otherwise there is an (m-1)-cycle $v_m (=x)v_1v_2 \cdots v_i vv_{i+1}v_{i+4}v_{i+5} \cdots v_m$, if i+2, $i+3 \neq m$ or $v_m (=x)v_1v_2 \cdots v_{i-3}v_i vv_{i+1}v_{i+2} \cdots v_m$, if i-2, $i-1 \neq m$. Hence we have: $A_i \cap A_{i-1} = \emptyset$, $A_i \cap A_{i+1} = \emptyset$.

Now, without loss of generality, let $|A_i| \le |A_{i+1}|$. Since $d(v_i, v_{i+2}) = 2$, by the distance two condition, $d(v_i) + d(v_{i+2}) \ge n$. On the other hand $d(v_i) + d(v_{i+2}) \le \left(\frac{1}{2} + |A_i|\right) + \left(\frac{1}{2} + n - m - |A_{i+1}|\right) = n - |A_{i+1}| + |A_i| \le n$. Hence we have three asserts as follows:

- α) $|A_{i}| = |A_{i+1}|$, especially $|A_{1}| = |A_{2}|$;
- β) $A_i = A_{i+2}$. i.e. $A_{2i+1} = A_1$ and $A_{2i} = A_2$ and $A_1 \bigcup A_2 = V \setminus V(C_m)$;
- $\begin{array}{ll} \gamma) & N_{C_m}(\nu) = \{\nu_1, \nu_3, \cdots, \nu_{m-1}\} \text{ if } \nu \in A_1 \\ \\ N_{C_m}(\nu) = \{\nu_2, \nu_4, \cdots, V_m\} \text{ if } \nu \in A_2 \end{array}$

Finally, A_1 must be an independent set. It not, there are $u,v \in A_1$ with $uv \in E$. thus there is an (m-1)-cycle: $v_1 uv v_3 v_6 v_7 \cdots v_m v_1$. This is a contradiction. An analogous argument shows that A_2 must be an independent set. Thus it deduces that $G \simeq K_{\pi/2,\pi/2}$, a contradiction. Hence (1) is true.

- (2) m=5. In fact, if $m \ge 7$ or m=6 with $i\ne 2$, then by (1) there always exists $i \in \{0,1,2,\cdots,m-2\}$ such that $d_{C_m}(v_i)+d_{C_m}(v_{i+2})\le m-1$, $d_{C_m}(v_{i+3})+d_{C_m}(v_{i+5})\le m$ and $x\notin \{v_{i+1},\cdots,v_{i+4}\}$ or $d_{C_m}(v_i)+d_{C_m}(v_{i+2})\le m-1$, $d_{C_m}(v_{i-3})+d_{C_m}(v_{i-1})\le m$ and $x\notin \{v_{i-2},\cdots,v_{i+1}\}$. Without loss of generality, we assume that the former. if each $v\in V\setminus V(C_m)$, then at most one of $\{vv_i,vv_{i+3}\}$ and of $\{vv_{i+2},vv_{i+5}\}$ belong to E respectively. Otherwise there is an (m-1)-cycle containing x in G. Hence we have $2n\le d(v_i)+d(v_{i+2})+d(v_{i+3})+d(v_{i+3})\le 2(n-m)+(m-1)+m=2n-1<2n$, a contradiction. If m=6 with i=2. Note that $2\le d(v_i)\le 3$ for all i and $d_{C_k}(v_2)+d_{C_k}(v_4)\le m-1=5$. Hence, without loss of generality, we assume that $d_{C_k}(v_2)=2$. Thus we have $d_{C_k}(v_0)+d_{C_k}(v_2)\le 5=m-1$. So in this case, we can make choice of $i=0\ne 2$. Hence (2) is true.
 - (3) $m \neq 5$. i.e. there always exists a 4-cycle containing x.

Case 1. There is a 3-cycle xuvx.

Since G is 2-connected, without loss of generality, there is a vertex $w \in V$ with $vw \in E$. If d(x,w) = 1, then there is a 4-cycle xuvwx. If d(x,w) = 2, then, by the distance two condition, $|N(x) \cap N(w)| \ge 2$. Let $y \in \{N(x) \cap N(w)\} \setminus \{v\}$, thus there is a 4-cycle xywvx. Case 2. There is no 3-cycle containing x. In other words, N(X) is an independent set. Let $u, v \in N(x)$, thus, by the distance two condition, $d(u) + d(w) \ge n$. So $|N(u) \cap N(v)| \ge 2$. Let $y \in \{N(u) \cap N(v)\} \setminus \{x\}$, then there is a 4-cycle xuyvx.

Therefore, (3) is true.

Combining (2) and (3), the proof of Theorem is completed. #

Consider the class of graphs $G \nearrow K_{n/2,n/2}$ satisfying the distance two condition. Let M be the maximum number of 3—pancyclic vertices in a graph with the above property.

Theorem 2. If $n \ge 6$, then

$$M = \begin{cases} \max\left\{2, \left[\frac{1}{2}(-2 + \sqrt{6 + 2n})\right]\right\} & \text{if } n \text{ is odd} \\ \frac{n}{2} - 2 & \text{if } n \text{ is even} \end{cases}$$

Proof Consider the graph G_0 with $V(G_0) = A \bigcup_{i=1}^n B_i \bigcup D$, where $G_0[A] = K_r^c$, $G_0[B_i] = K_{r+1}^c$ for all i and $G_0[D] = K_{r^2+2r-2}$. Further $N(v_i) = B_i$ for each $v_i \in A$ and each vertex of $\bigcup_{i=1}^r B_i$ is joined to every vertex in D. We note that $d(v_i) = r+1$ for all $v_i \in A$, $d(w_i) = r^2 + 2r - 1$ for all $w_i \in \bigcup_{i=1}^r B_i$, $d(z) = 2r^2 + 3r - 3$ for all $z \in D$ and $n = |V(G_0)| = 2r^2 + 4r - 2$. It is easily checked that G_0 satisfies the detance two condition and the vertices in A are 3-pancyclic. Now

$$r = \left[\frac{1}{2}(-2 + \sqrt{8 + 2n})\right]$$
, so $M \ge \left[\frac{1}{2}(-2 + \sqrt{8 + 2n})\right]$ if *n* is even.

When *n* is odd, we consider G'_0 which is dedcued by substituting K_{r^2+2r-2} in G_0 with K_{r^2+2r-1} . Thus $n = |V(G_0')| = 2r^2 + 4r - 1$. An analogous argument shows that $M \ge \left[\frac{1}{2}(-2 + \sqrt{6+2n})\right]$, if *n* is odd.

Now, let $G \supset K_{n/2,n/2}$ satisfy the distance two condition. Let $R = \{v_i, i = 1, 2, \dots, r\}$ be the set of 3-pacyclic vertices in G. Note that G is hamiltonian. Hence there is a 3-cycle containing u in G if $d(u) > \frac{n}{2}$. So we have $2 \le d(v_i) \le \frac{n}{2}$, $i = 1, 2, \dots, r$. The remainder of the proof proceeds in two steps.

(1) R is an independent set in G.

Case 1. There are two vertices, say v_1, v_2 , in R such that $B = N(v_1) \cap N(v_2) \neq \emptyset$. Let $A = N(v_1) \setminus B$, $C = N(v_2) \setminus B$ and $D = V \setminus \{\overline{N(v_1)} \cup \overline{N(v_2)}\}$. By the distance two condition, $d(v_1) + d(v_2) \ge n$. Thus we have $d(v_1) = d(v_2) = \frac{n}{2}$ and n = even. If $A \ne \emptyset$,

then $d(a) \le |C| + |D| + 1 = \frac{n}{2} - 1$ for all $a \in A$ and $d(b) \le |D| + 2 < \frac{n}{2}$ for all $b \in B$.

Thus we have d(a)+d(b) < n, a contradiction. Hence $A = \emptyset$. An analogous argument shows that $C = \emptyset$. And then by the distance two condition, $d(b_1)+d(b_2) \ge n$ for all $b_1 \ne b_2 \in B$. Thus $B \lor D \subseteq G$. Since $G \hookrightarrow K_{n/2,n/2}$, $K_{n/2,n/2} + e \subseteq G$, where the ends of edge e belong to one of bipartition of $K_{n/2,n/2}$ respectively. Hence $r \le \frac{n}{2} - 2 \le M$.

Case 2. $N(v_i) \cap N(v_j) = \emptyset$ for all $v_i \neq v_j \in R$. Let $u_i \in N(v_i)$, $i = 1, 2, \dots, r$. If $u_i u_j \in E$, without loss of generality, we assume that $d(v_i) \leq d(v_j)$. Since $d(u_i) \leq n - d(v_i) - r + 1$, $i = 1, 2, \dots, r$. Thus $d(v_i) + d(u_j) \leq d(v_i) + (n - d(v_j) - r + 1) < n$. On the other hand, by the distance two condition, $d(v_i) + d(u_j) \geq n$, a contradiction. Hence $N(v_i) \cap N(u_j) = \emptyset$ for all $i \neq j \in \{1, 2, \dots, r\}$. Since G is 2-connected, there is a vertex $z \in D$ $= V \setminus \bigcup_{i=1}^r \overline{N(v_i)}$. Let $s = \sum_{i=1}^r d(v_i)$ and d = |D|. Thus

$$r + s + d = n \le d(z) + d(v_i) \le [s + (d-1)] + d(v_i)$$

for all $v_i \in R$. So $d(v_i) \ge r+1$ and $s \ge r(r+1)$. Further, for $u_i, u_i' \in N(v_i)$,

$$r + s + d = n \le d(u_i) + d(u'_i) \le 2d + 2.$$

So $d \ge r + s - 2 \ge r^2 + 2r - 2$, $n = r + s + d \ge 2r^2 + 4r - 2$ if n is even and $n \ge 2r^2 + 4r - 1$ if n is odd. This implies $r \le \left[\frac{1}{2}(-2 + \sqrt{6 + 2n})\right]$ if n is odd and $r \le \left[\frac{1}{2}(-2 + \sqrt{8 + 2n})\right]$ if n is even.

- (2) There are two vertices $v_1, v_2 \in R$ with $v_1 v_2 \in E$. Clearly, $N(v_1) \cap N(v_2) = \emptyset$ and $N(v_1)$, $N(v_2)$ are independent sets in G. Without loss of generality, we assume that $|N(v_1)| \le |N(v_2)|$. Let $D = V \setminus \{N(v_1) \bigcup N(v_2)\}$. For each $u \in N(v_2) \setminus \{v_1\}$, $d(u, v_1) = 2$, so $n \le d(u) + d(v_1) \le 1 + |D| + |N(v_1) \setminus \{v_2\}| + |N(v_1)| \le 1 + |D| + |N(v_1) \setminus \{v_2\}| + |N(v_2)| \le n$. Thus we have three asserts as follows:
 - $\alpha) |N(v_1)\setminus\{v_2\}| = |N(v_2)\setminus\{v_1\}|$
 - $\beta) \quad (N(\nu_2)\setminus\{\nu_1\}) \vee (D \vee [N(\nu_1)\setminus\{\nu_2\}]) \subseteq G.$

An analagous argument shows that:

 γ) $(N(v_1)\setminus\{v_2\})\vee D\subseteq G$.

So there is no 3—pancyclic vertex in G except v_1, v_2 , i.e. r = 2.

Combining (1), (2) and G_0 , G_0 , the proof of Theorem is completed.#

References

- [1] J.A. Bondy, Pancyclic graph I, JCT B(11) 1971, 80-84.
- [2] J.A. Bondy and U.S.R. Murty, Graph theory with applications, Macmillan, London, 1976.
- [3] Geng-hua Fan, New sufficient conditions for cycles in graphs, JCT B(37) 1984, 221-227.
- [4] Zhang Ke Min, D. A. Holton and Sheng Bau, On vertex-pancyclic graphs, to appear.