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TWO ORDER EXPONENT SET OF
STRONG CONNECTED DIGRAPHS’

Miao Zhenghke Zhang Kemin
(Dept. of math. , Nanjing University, Nanjing, 210093, P.R.C.)

Abstract Let D be a strong connected digraph on n vertices, and let A be the adjacency matrix
of D. Then A+ A’is primitive, and the primitive exponent of A+ A?is known as two order expo-
nent of D. In this paper, we show that the two order exponent set of strong connected digraphs on
n vertices is {1,2,***,n—1}. Further, we also describe the characterization of strong connected di-
graphs on n vertices with two order exponent n—1.
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1 Introduction

Let A be a (0,1)-matrix, J an universal matrix. A is called a primitive matrix if there
exists a positive integer £ such that A*=J. The least such # is called the primitive exponent of
A, denoted by ¥(A). Let D be a digraph. We call D primitive if there exists a positive integer
k such that for all ordered pairs of vertices i, ;€ V(D) (not necessarily distinct) , there is a di-
rected walk from 7 to j with length 2. The least such % is called the primitive exponent of di-
graph D, denoted by 7(D).

Let A=(a;) be an nXn(0,1)-matrix, and let D be a digraph with vertex set V={1,2,
+=+yn} and arc set E. If (i,j)€E iff a;=1, then D is called the associated digraph of A, de-
noted by D(A), and A is called the adjacency matrix of D, denoted by A(D). It is well
known that (A4*),=1 iff there is a directed walk with length k from i to j in D(A). So A=
A(D) is primitive iff D=D(A) is primitive, and Y(A4)=7(D). In the following, we use
Y(A) and 7(D) without distinction.

Let D be a primitive digraph on n vertices. For any i, j€ V (D), the (local) exponent
from i to j, denoted by 7(i,7), is the least integer % such that there exists a directed walk of

+ Reveived: Aug. 9, 1997.



+ 10~ R RFFRBFEEFEN 1998 % 5 A -

length m from 7 to j for all m>=k. Let L(D) denote the set of the distinct length of the cycle of
digraph D. Let RCL(D) and the great common divisor of the number in Ris 1. For any ¢,
E€V(D), we define the general distance from i to j relative R, denoted by dR(i,jj , to be the
length of the shortest directed walk from 7 to j which touchs every number in R (If there exists
a common vertex on P and some r-cycle, then we call P touching r).

Let {rys7gs>"s7,} be a set of distinct posiiive integer with the great common divisor 1.
We define the Frobenius number F(r),ry, ,f“) to be the least integer & such that every inte-
ger m>>k can be expressed in the form m=c,r,+c,;r; 4+ +eris where ¢y ,¢; 5% 1¢, are nonneg-
ative integers. A result due to Schur'" shows that the Frobenius number is well defined. And
the following Proposition holds.

Propositionm Let D be a primitive digraph, R=={r;,r;,** 7.} CL(D), and g. c.d. (r,
royeoe 1) =1. Then for any ¢, jEV (D), 7, D)dr (> 3+ F (rysrgs et o).

Other definitions and notations can be found in [3] and [4].

Let D be a strong connected digraph. In [3], A(D)+A*(D) is a primitive matrix. Its
exponent is called the two order exponent of D, denoted by ¥(2,D). Let ES(2,n) be the two
order exponent set of all strong connected digraph on n vertices. In this paper, the following
results are obtained.

Theorem 1 ES(2,n)={1,2,",n—1}.

Theorem 2 let D be a strong connected digraph on n
vertices with two order exponent n— 1. Then D is isomorphic

to the strong subdigraph of D, in Figure 1.
2 The Determination of ES(2,n)

. Lemma 1 LetD be a strong connected dlgvaph on n
vertices with dlameter d. Then
72, D)<d<n—
Proof Let A be the adjacency matrix of D. Because D

vi§ a strong connected digraph with diameter d, there exists a Figure 1D,
directed walk from i to j for any i, 7€V (D) which length is
less than or equal to d. Since (A*),;=1 iff there exists a directed walk from i to j, then E+ A
+ A+« +A?=J. By D is strong connected s Als no zero-row. So is A¢. Hence
(A+ A = AYE + A+ = + A = A4 = J.

This shows that 7(A+A’)<d<n I, e, Y(2,D)<d<n—1. )

Lemma 2 Suppose that C is cycle of length k>1 Then Y(Z,C‘)« —1

Proof Let A be the adjacency matrix of C,. Then
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By directly calculation
]{ 0 B 1< <k —1
P , Lt — 1.
{E o) ST

Hence (A+AD 1= A" (E+A+-+4"=J, and .,
A+ AP =AY E+ A+ 4+ 47

1 1 1 1 0 1 1
1 1 1 1 1 0 1
1 1 1 1 1 1 o
R R SR S B 1¢J (x)
1 0 1 = 1 1 1 1 }
1 1 0 1 :
A 11 1
11 1 0 1 1 1

So 7(2,C)=k—1.
Lemma 3 (1,2, ,n—1}CES(2,n).
Proof It is obvious that 1€ ES(2,n) since ¥(2,K,)=1. When (€ {2,3,++,n—1}, we
check the digraph D shown in Figure 2.
It is easy to see that
(0 Lo = 0 0
o 0o 1 = 0 o0

SO

ver

A(D) = o o ol

R e

0
0
0
e 0 .
1 0 0 = ¢ 0 == 0
For any i, j &V (D), if i<k or j<k, by Lemma
2, there exists a directed walk of length % from i to j in
the assocated digraph of A(D)+A*(D). ¥ >k and j _
>k, it is easy to check that there exists a directed walk of length  from 7 to ; in the associated
digraph of A(D)+ A*(D). So 7(2,D)<<k. On the other hand, there is no directed walk of
length £—1 from 1 to k*“lvin the associated digraph of A(D)+A*(D). Hence 7(2,D)>
k—1. Thus ¥(2,D) =%, i.e. k€EES(2,n).

Figure 2 D
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By Lemmas 1 and 3, the proof of Theorem 1 is completed.
3 The Description of Extreme Digraph

Lemma 4 Let D be a strong connected digraph on n vertices. If 7(2,D)=n—1, then D
is Hamiltonian.

Proof Assume that D is not Hamiltonian. Since D is strong connected, each vertex of D
is on some cycle. For any i, €V (D),

(1) i and j are on the same r-cycle. By Lemma 2, in the associated digraph of A(D)+
AY(D), 7 (G, j)<r —1<<n— 2. So there exists a
directed walk of length n—2 from ¢ to j.

(2) i and j are not on a same cycle. Let r =
min{k|i is on some k-cycle} and s = min{k|;j is on
some k-cycle}. If r<{n—2 or s<{n—2, without loss of
generality, say r<(n— 2. Then, in the associated di-
graph of A(D)+A*(D), 7, <r—1+[(n—r)/2]
Kntr—1)/2<(2n—3)/2<n—1. So there exists a . 5
directed wallk of length n—2 from 7 to j. If r=s=n—
1, then D has a subdigraph H which is shown in Fig-
ure 3.

So there exists a directed walk of length n — 2
from i to j in the associated digraph of Figure 3 H
A(D)+AYD). 2 !

To sum up,
Y(2,D)<n—2. This contradicts to ¥(2,D)=n—1.
Hence D is Hamiltonian.

Lemma § Let D consist of an n-cycle C, and an
arc, L(D)={k,n}. If 2<k<n, then ¥(2,D)<<n—2.

Proof Without loss of generality, let the arc be
(k,1) and C,= (123++n1). Then the associated di-
graph of A(D)+ A*(D) is in Figure 4. Let S={(1,n
—2),(2,m—1),(3,n), (4,1) s (n—1,n—4), (nsn
—3)} be a subset of V(D) XV (D). For any i,jEV k2 - K
(D),

(1) G,7)&S. By C, being a subdigraph of D and
( #) in the proof of Lemma 2, there exists a directed walk of length n—2 from i to j.

(2) (i,j)E€S. It is obvious that there are some cycles with length [£/2],[£/2]+1,,%

Figure 4
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in the associated digraph of A (D) + A* (D), and
vertices 1, 2, *-, £ are on these cycles. Since £>2,
then there exists a directed walk of length [(n—3)/2]
from i to j which touches each number of [2/2],[%/2]
+1,+,k. By the Proposition, and F([2/2],[%/2]+
1y, YC[R/2] we have ¥ (i, D<K[(n—3)/2]+[&/
2], I 2<k<n—1,7, )HS<(n—2) /24 2+ 1)/2<(n
~2+n—24+1)/2<n—1. So there exists a directed
walk of length n—2 from i to j. f A=n—1 and n is
odd, 7, PK[(n—3)/2]+[(n—1)/2]=(n—3)/2
4+ (rn—1)/2=n—2. So there exists a directed walk of

length n—2 from i to j. If k=n—1 and »n is even, in

Figure 4, there exists directed walks: 1-—>3->+»=—>n—1 Figure 5 -

R T T B B . B e o/ e
T T T B I T S B I o I
=3=>n—1->2—>4> 2> fr4> ey —6,n— 2> 1>3> > — 1> >3 > >n—5, n
— 124> >p—2>p>2>4—>e>n— 4y n> 24> >n—2->]->3>—>p—3, and
all of their lengths are n— 2.

To sum (1) and (2), there exists a directed walk of length n—2 from ¢ to j. Hence
(2, D)<n—2.

Lemma 6 Let D be shown in Figure 5. If 2<{k<{n, Then 7(D)<{n—2.

Proof Let S={(1,n—2),(2,n—1),(3,n),(4,
Dsey(n—1,n—4),(n,n—3)} be a subset of V(D)
XV(D). For any i,;EV (D), (1) (,/)&S. By C,.C
D and ( * ) in the proof of Lemma 2, there exists a di-
rected walk of length n—2 from  to j. (2) (i,)E€S.
By 2<Ck<(n, there exists a directed walk of length n—
3 from ¢ to j which touches loop. So there exists a di-
rected walk of length n—2 from ¢ to j. Hence 7(2,D)
sn—2.

Proof of Theorem 2 Since D'CD,, 7(2,D,) <Y
(2,D')<\n—1. In the associated digraph of A(Dy)+
A*(D,> (in Figure 6), there is no directed walk of
length n—2 from 3 to n. In fact, the length of the longest directed walk which is not touching

Figure 6

loop from 3 to n is n—3. But the length of the shortest directed walk which is touching loop
from 3tonis n—1. So 7(2,D)=n—1. Thus ¥(2,D')=n—1.
On the other hand, since ¥(2,D)=n—1, by Lemmas 4, 5 and 6, D consists of C, or
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adding at most an arc and two loops but the arc and the two loops is on two adjacency vertex.

So D is isomorphic to the strong subdigraph of D, in Figure 1.
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