TWO ORDER EXPONENT SET OF STRONG CONNECTED DIGRAPHS

Miao Zhengke

Zhang Kemin

(Dept. of math., Nanjing University, Nanjing, 210093, P. R. C.)

Abstract Let D be a strong connected digraph on n vertices, and let A be the adjacency matrix of D. Then $A+A^2$ is primitive, and the primitive exponent of $A+A^2$ is known as two order exponent of D. In this paper, we show that the two order exponent set of strong connected digraphs on n vertices is $\{1,2,\cdots,n-1\}$. Further, we also describe the characterization of strong connected digraphs on n vertices with two order exponent n-1.

Key words primitive matrix, primitive exponent, matrix, two order exponent.

AMS(1991) subject classifications 05C50.

1 Introduction

Let A be a (0,1)-matrix, J an universal matrix. A is called a primitive matrix if there exists a positive integer k such that $A^k = J$. The least such k is called the primitive exponent of A, denoted by $\gamma(A)$. Let D be a digraph. We call D primitive if there exists a positive integer k such that for all ordered pairs of vertices $i, j \in V(D)$ (not necessarily distinct), there is a directed walk from i to j with length k. The least such k is called the primitive exponent of digraph D, denoted by $\gamma(D)$.

Let $A = (a_{ij})$ be an $n \times n(0,1)$ -matrix, and let D be a digraph with vertex set $V = \{1,2,\dots,n\}$ and arc set E. If $(i,j) \in E$ iff $a_{ij} = 1$, then D is called the associated digraph of A, denoted by D(A), and A is called the adjacency matrix of D, denoted by A(D). It is well known that $(A^k)_{ij} = 1$ iff there is a directed walk with length k from i to j in D(A). So A = A(D) is primitive iff D = D(A) is primitive, and $\gamma(A) = \gamma(D)$. In the following, we use $\gamma(A)$ and $\gamma(D)$ without distinction.

Let D be a primitive digraph on n vertices. For any $i, j \in V(D)$, the (local) exponent from i to j, denoted by $\gamma(i, j)$, is the least integer k such that there exists a directed walk of

Reveived: Aug. 9, 1997.

length m from i to j for all $m \ge k$. Let L(D) denote the set of the distinct length of the cycle of digraph D. Let $R \subset L(D)$ and the great common divisor of the number in R is 1. For any $i, j \in V(D)$, we define the general distance from i to j relative R, denoted by $d_R(i,j)$, to be the length of the shortest directed walk from i to j which touchs every number in R (If there exists a common vertex on P and some r-cycle, then we call P touching r).

Let $\{r_1, r_2, \dots, r_r\}$ be a set of distinct positive integer with the great common divisor 1. We define the Frobenius number $F(r_1, r_2, \dots, r_r)$ to be the least integer k such that every integer $m \ge k$ can be expressed in the form $m = c_1 r_1 + c_2 r_2 + \dots + c_r r_r$, where c_1, c_2, \dots, c_r , are nonnegative integers. A result due to Schur^[1] shows that the Frobenius number is well defined. And the following Proposition holds.

Proposition^[2] Let D be a primitive digraph, $R = \{r_1, r_2, \dots, r_s\} \subset L(D)$, and $g. c. d. (r_1, r_2, \dots, r_s) = 1$. Then for any $i, j \in V(D)$, $\gamma(i, j) \leq d_R(i, j) + F(r_1, r_2, \dots, r_s)$.

Other definitions and notations can be found in [3] and [4].

Let D be a strong connected digraph. In [3], $A(D) + A^2(D)$ is a primitive matrix. Its exponent is called the two order exponent of D, denoted by $\gamma(2,D)$. Let ES(2,n) be the two order exponent set of all strong connected digraph on n vertices. In this paper, the following results are obtained.

Theorem 1 $ES(2,n) = \{1,2,\dots,n-1\}.$

Theorem 2 Let D be a strong connected digraph on n vertices with two order exponent n-1. Then D is isomorphic to the strong subdigraph of D_0 in Figure 1.

2 The Determination of ES(2,n)

Lemma 1 Let D be a strong connected digraph on n vertices with diameter d. Then

 $\gamma(2,D) \leqslant d \leqslant n-1.$

Proof Let A be the adjacency matrix of D. Because D is a strong connected digraph with diameter d, there exists a directed walk from i to j for any $i, j \in V(D)$ which length is

Figure 1 Do

less than or equal to d. Since $(A^i)_{ij}=1$ iff there exists a directed walk from i to j, then $E+A+A^2+\cdots+A^d=J$. By D is strong connected, A is no zero-row. So is A^d . Hence

$$(A + A^2)^d$$
) = $A^d(E + A + \cdots + A^d) = A^dJ = J$.

This shows that $\gamma(A+A^2) \leq d \leq n-1$, i. e. $\gamma(2,D) \leq d \leq n-1$.

Lemma 2 Suppose that C_k is cycle of length $k \ge 1$. Then $\gamma(2, C_k) = k-1$.

Proof Let A be the adjacency matrix of C_k . Then

By directly calculation

$$A^{t} = \begin{bmatrix} 0 & E_{k-t} \\ E_{t} & 0 \end{bmatrix}, \qquad 1 \leqslant t \leqslant k-1.$$

Hence $(A+A^2)^{k-1}=A^{k-1}(E+A+\cdots+A^{k-1})=J$, and

$$(A + A^{2})^{1-2} = A^{1-2}(E + A + \cdots + A^{1-2})$$

$$= \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & \cdots & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & \cdots & 1 & \vdots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 1 & 1 & 1 & 1 \\ 1 & 1 & \cdots & 1 & 0 & 1 & 1 & 1 \end{pmatrix} \neq J \qquad (*)$$

So $\gamma(2,C_k)=k-1$.

Lemma 3 $\{1,2,\cdots,n-1\}\subset ES(2,n)$.

Proof It is obvious that $1 \in ES(2,n)$ since $\gamma(2,K_n)=1$. When $k \in \{2,3,\dots,n-1\}$, we check the digraph D shown in Figure 2.

It is easy to see that

$$A(D) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 1 & 1 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

For any $i,j \in V(D)$, if $i \le k$ or $j \le k$, by Lemma 2, there exists a directed walk of length k from i to j in the assocated digraph of $A(D) + A^2(D)$. If i > k and j

Figure 2 D

>k, it is easy to check that there exists a directed walk of length k from i to j in the associated digraph of $A(D)+A^2(D)$. So $\gamma(2,D) \leq k$. On the other hand, there is no directed walk of length k-1 from 1 to k-1 in the associated digraph of $A(D)+A^2(D)$. Hence $\gamma(2,D)>k-1$. Thus $\gamma(2,D)=k$, i. e. $k \in ES(2,n)$.

By Lemmas 1 and 3, the proof of Theorem 1 is completed.

The Description of Extreme Digraph 3

Lemma 4 Let D be a strong connected digraph on n vertices. If $\gamma(2,D) = n-1$, then D is Hamiltonian.

Assume that D is not Hamiltonian. Since D is strong connected, each vertex of DProof is on some cycle. For any $i, j \in V(D)$,

- (1) i and j are on the same r-cycle. By Lemma 2, in the associated digraph of A(D) + $A^{2}(D)$, $\gamma(i, j) \leq r - 1 \leq n - 2$. So there exists a directed walk of length n-2 from i to j.
- (2) i and j are not on a same cycle. Let r = $\min\{k | i \text{ is on some } k\text{-cycle}\}\ \text{and } s = \min\{k | j \text{ is on }$ some k-cycle. If $r \le n-2$ or $s \le n-2$, without loss of generality, say $r \leq n-2$. Then, in the associated digraph of $A(D) + A^2(D)$, $\gamma(i,j) \leq r-1 + \lfloor (n-r)/2 \rfloor$ $\leq (n+r-1)/2 \leq (2n-3)/2 < n-1$. So there exists a directed wallk of length n-2 from i to j. If r=s=n-1, then D has a subdigraph H which is shown in Figure 3.

So there exists a directed walk of length n-2from i to j in the associated digraph of $A(D)+A^2(D)$.

To sum up,

 $\gamma(2,D) \leq n-2$. This contradicts to $\gamma(2,D) = n-1$. Hence D is Hamiltonian.

Lemma 5 Let D consist of an n-cycle C, and an arc, $L(D) = \{k,n\}$. If 2 < k < n, then $\gamma(2,D) \le n-2$.

Proof Without loss of generality, let the arc be (k,1) and $C_* = (123 \cdots n1)$. Then the associated digraph of $A(D)+A^2(D)$ is in Figure 4. Let $S=\{(1,n)\}$ $(2, n-1), (3, n), (4, 1), \dots, (n-1, n-4), (n, n-1)$ -3) be a subset of $V(D) \times V(D)$. For any $i, j \in V$ (D),

(1) $(i,j) \notin S$. By C_n being a subdigraph of D and

Figure 3 H

Figure 4

(*) in the proof of Lemma 2, there exists a directed walk of length n-2 from i to j.

(2) $(i,j) \in S$. It is obvious that there are some cycles with length $\lfloor k/2 \rfloor$, $\lfloor k/2 \rfloor + 1, \dots, k$

in the associated digraph of $A(D) + A^2(D)$, and vertices $1, 2, \dots, k$ are on these cycles. Since k > 2, then there exists a directed walk of length $\lfloor (n-3)/2 \rfloor$ from i to j which touches each number of $\lfloor k/2 \rfloor$, $\lfloor k/2 \rfloor + 1, \dots, k$. By the Proposition, and $F(\lfloor k/2 \rfloor, \lfloor k/2 \rfloor + 1, \dots, k) \le \lfloor k/2 \rfloor$ we have $Y(i,j) \le \lfloor (n-3)/2 \rfloor + \lfloor k/2 \rfloor$. If 2 < k < n-1, $Y(i,j) \le (n-2)/2 + (k+1)/2 \le (n-2+n-2+1)/2 < n-1$. So there exists a directed walk of length n-2 from i to j. If k=n-1 and n is odd, $Y(i,j) \le \lfloor (n-3)/2 \rfloor + \lfloor (n-1)/2 \rfloor = (n-3)/2 + (n-1)/2 = n-2$. So there exists a directed walk of length n-2 from i to j. If k=n-1 and n is even, in Figure 4, there exists directed walks; $1 \rightarrow 3 \rightarrow \cdots \rightarrow n-1$

Figure 5 ·

To sum (1) and (2), there exists a directed walk of length n-2 from i to j. Hence $\gamma(2,D) \leq n-2$.

Lemma 6 Let D be shown in Figure 5. If 2 < k < n, Then $\gamma(D) \le n-2$.

Proof Let $S = \{(1, n-2), (2, n-1), (3, n), (4, 1), \dots, (n-1, n-4), (n, n-3)\}$ be a subset of $V(D) \times V(D)$. For any $i, j \in V(D), (1)$ $(i, j) \notin S$. By $C_n \subset D$ and (*) in the proof of Lemma 2, there exists a directed walk of length n-2 from i to j. (2) $(i, j) \in S$. By 2 < k < n, there exists a directed walk of length n-3 from i to j which touches loop. So there exists a directed walk of length n-2 from i to j. Hence $Y(2,D) \le n-2$.

Proof of Theorem 2 Since $D' \subset D_0$, $\gamma(2,D_0) \leqslant \gamma(2,D') \leqslant n-1$. In the associated digraph of $A(D_0) + A^2(D_0)$ (in Figure 6), there is no directed walk of

Figure 6

length n-2 from 3 to n. In fact, the length of the longest directed walk which is not touching loop from 3 to n is n-3. But the length of the shortest directed walk which is touching loop from 3 to n is n-1. So $\gamma(2,D_0) \ge n-1$. Thus $\gamma(2,D') = n-1$.

On the other hand, since $\gamma(2,D) = n-1$, by Lemmas 4, 5 and 6, D consists of C_n or

adding at most an arc and two loops but the arc and the two loops is on two adjacency vertex. So D is isomorphic to the strong subdigraph of D_0 in Figure 1.

References

- 1 Kemeny J G, and Snell J L, Finite Markov Chain, Von Nostrand, princeton, 1960
- Shao Jiayu, On the conjecture about the exponent set of primitive matrices, Linear Algebra and Applications, 1985, 64:91~123
- 3 Kim Ki Hang, Boolean Matrix Theory and Applications, Marcel Dekker, New York, 1982
- 4 Bondy J A, and Murty, U S R, Graph Theory with Applications, Macmillan, London, 1976

强连通有向图的二阶指数集

苗正科 张克民 (南京大学数学系, 210093, 南京)

摘要 设 D 是一个 n 阶强连通有向图, A 为 D 的邻接矩阵,则 $A+A^{\circ}$ 是一个本原矩阵,称其本原指数为 D 的二阶指数.本文证明了 n 阶强连通有向图的二阶指数集为 $\{1,2,\cdots,n-1\}$,并刻划了二阶指数等于 n-1 的 n 阶强连通有向图的特征.

关键词 本原矩阵,本原指数,矩阵,二阶指数.

分类号 O157.5,O151.21.