B R KPR
F15E F2 %H JOURNAL OF NANJING UNIVERSITY Vol. 15, No. 2
1998 4£ 11 H MATHEMATICAL BIQUARTERLY Nov, 1998

ON THE UNIQUE COUPLED
COLORING OF PLANE GRAPHS’
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Abstract In this paper we prove that such graphs as modulus 3-regular maximal plane graphs
and open maximal outerplane graphs are unique coupled colorable.
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1 Iniroduction

Throughout this paper we shall consider simple connected plane graphs with vertex set
V(G), edge set E(G) and face set F(G). Let p(G)={V(G)|. For u€V(G), let N, and F,
denote the set of vertices adjacent with » and the set of faces incident to u respectively. Simi-
larly, for f€ F(G), we denote by V, and F;, respectively, the set of vertices incident to f
and the set of faces adjacent with f. A face f whose boundary, denoted by 6(f), contains
Vertices u, stz s *** s, Is Written as f=u u,***u,.

A plane graph G is %-coupled colorable if the elements of V(G) U F(G) can be colored
with % colors such that any two distinct adjacent or incident elements receive different colors.
The coupled chromatic number X,,(G) of G is defined as the minimum integer % for which G is
k-coupled colorable. Obviouly, x,,(G) =2 iff E(G)=&; X,,(G) =3 iff G is a nonempty
forest; X,,(G)Z=4 iff G contains at least one cycle different from a loop.

In 1968, G. Ringel conjectured [3] that ¥,,(G)<(6 for any plane graph G. Recently, O.
V. Borodin [2] proved this conjecture to be true. Moreover, an interesting result was due to
D. Archdeacon [1]:1f G is a bipartite plane graphs or an Eulerian plane graph, then X,(G)<C
5. The purpose of the present paper is to study the unique coupled coloring of plane graphs.

Let ¢ denote a k-coupled coloring of G with a color set C. We denote by 6(x) the color as-
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signed to the element x €V (G) UF(G) under 0. Two k-coupled colorings ¢, and o, of G are
said to be equivalent if they partition V(G) UUF(G) into k same parts. I any two k-coupled
coloring of G are equivalent, then G is said to be unique 2-coupled colorable. By the definition ,
every nonempty tree T is unique 3-coupled colorable, because V (T') is unique 2-vertex col-
orable and the only one face of T' must be assigned to a color different from the colors which
preéent on V(T). For a cycle C,(n=>3), if =0 (mod 2), then X,,(G)=4 and C, is unique 4-
coupled colorable. Otherwise, ¥,,(GY=5, and C, is not unique 5-coupled colorable.

A maximal plane graph G is said to be modulus 3-regular if d¢(x)=0(mod 3) for each
vertex #€ V(G). For an outerplane graph G, we call its unbounded face the outer face and de-
note it by £,..(G), and other faces inner faces. An outerplane graph G is said to be maximal if
each of inner faces of G is a triangle. An inner face f of G is called closed if f is not adjacent to

£..(G). If each inner face of G is not closed, then we say that G is open.

2 Main Results

Lemma 1 Let G* be the dual of a plane graph G. Then %,,(G")=¥,,(G), and G~ is
unique k-coupled colorable if and only if G is unique k-coupled colorable.

Proof By the definition of G* , the lemma is obvious.

Theorem 2 Every modulus 3-regular maximal plane graph is unique 4-coupled colorable.

Proof Let G be a modulus 3-regular maximal plane graph. We first prove that ¥,,(G) =
4. SInce each face f of G is a triangle, then, for any X,,-coupled coloring of G, at least four
different colors are required to color the elements of VU {f}, which implies that x,,(G)=4.
Now let us construct a 4-coupled coloring ¢ of G with a color set C={1,2,3,4} as follows:

Step 1 Choose a vertex € V(G) with N, = {x;,24,*** »x.}+» where m=0(mod 3). We
color u with 1, color alternately z,,x5, s 2, with 2,3 and 4, and color alternately uz,x;,
UT,Tys° " s UL, Tm s UZmZy With 4,2 and-3. Afterward, we say that the coloring for the vertex
u has been finished.

Step 2 If the colorings{or all vertices in V(G) have been finished, then a 4-coupled col-
oring of G has been already formed. Otherwise, we take a v€V(G) satistying that

(1) the coloring for v has not been finished; and

(2) there are at least three vertices in N, which are consecutively adjacent in order and has
been alternately colored with three different colors in C, say ¢;s¢zs¢s.

Step 3 Color v with the color ¢, & C— {cy+c;5c3}. The other uncolored vertices in N, are
alternately colored with ¢;,c; and ¢; in the same order. The faces in F, are alternately colored
with ¢;s¢, and ¢, without violating the coloring for. N, U {z}. Go to Step 2.

It is easy to see that the above procedure is feasible and will stop within finite steps. Thus
we get a 4-coupled coloring of G. Therefore x,,(G) =4.

Next we prove that G is unique 4-coupled colorable. Let o be any 4-coupled coloring of G
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with a color set C={1,2,3,4}. Without loss of generality, we may first color a face, say f,,
of G and its boundary vertex set F,,={z,,2;,23} by 6(f;) =4,0(zx)=7,i=1,2,3. Suppose
that F, = {f1:f2, 13} such that 2,2, €6(f)) 2,2, €b(f,) and 232, € b(f3). Further let y, €
Vi, \{z2:} 1 %2 €V, {2525} and y3€V,3\(:z,,xl}. Thus, based on the coloring of v, U

{fs}» we must color f, with the unique color 3, similarl}, fawith 1, f, with 2, and all y;,y,,
vs with 4. Recursively, we can color one by one the remaining vertices and faces of G and the
color selected in every step is unique. This implies that any two 4-coupled colorings of G must
partition V(G) UF(G) into four same color classes. Thus G is unique 4-coupled colorable.

Corollary 3 Let G be a maximal plane graph. Then ¥,,(G)=4 if and only if G is modu-
lus 3—regu]ar. ' '

Proof The sufficiency follows directly from Theorem 2. Now let us prove the necessity.
Let G be a maximal plane graph that is not modulus 3-regular. Then there is a vertex « €
V{(G) such that dc(w)30 (mod 3). Consider a wheel W (), a subgraph of G, with the cen-
ter vertex u and the border vertices v,,7v,,++,v,in clockwise order, where n=dg(u)>=>4. Let s
be any ,,-coupled coloring of G with a color set C. Set C°={o(v,|i=1,2,+,n}. Clearly, |
01 >2, We consider tw

Case 1. If {C°|Z4, then it follows from o(u) & C° that x,,(G)=|C°U {o(u)v} |2=5, a
contradiction.

Case 2. If |C®|<3, then since d¢(u)=20 (mod 3) there must exist a color a€ C° and an

WO Ccases;

integer k(1<CA<(n) such that o(v,) =0(v,,,)=a, (mod n). Hence we have
X (G) = [{ow) ,0(u),0(v,y,) yo(uvs,,,) yo(uv,, v )} = 5,
which yields a contradiction yet.

Corollary 4 Let G be a 2-connected 3-regular plane graph. If |V,|=0 (mod 3) for
each f€ F(G), then'},,(G)=4 and G is unique 4-coupled colorable.

Proof Note that G is the dual of a maximal modulus 3—regular plane graph. By Lemma 1
and Theorem 2, the corollary follows.

' Lemma 5([4]) If Gis an outerplane graph without cut vertices, then G contains at least
two vertices of degree 2.

Lemma 6 If G is a maximal outerplane graph, then Xuf(G) =5, and there is a ‘5—coupled
coloring of G satisfying the following property P

P:Some color is only used to color £,,.

Proof By induction on p. If p=3, then G=K,, ti}\ls the theorem holds trivially, As-
sume the theorem is true for p—1(p=>4). Let G be a maximal outerplane graph of order .
By Lemma 5, there is € V(G) such that de(u)=2. Let z and y be two vertices in G adja-
cent to u. Since G is maximal, zy€ E(G). Consider the graph H=G—u. Clearly H also is a
maximal outerplane graph, and |V(H)|=p—1. By the induction assﬁmption , Hhas a
5-coupled coloring A with a color set C. Let f be the inner face of H with zy€ 5(f) and f#
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£...CE). On the basis of 4, we form a 5-coupled coloring o of G as follows.

o ([ (G)) = A(Sf,,(H)),

oluxy) € C — {A(x),A(3),A() y0(fu (G},

o(u) € C — {A(x),A(y) ,0(uzy) ,0(f, (G}
The other uncolored elements of V(G) UF(G) are colored with the same colors as in A. Thus
Y. (G5B,

On the other hand, since G contains at least one inner face f, that is not closed, five dif-
ferent colors are required to color properly the elements in V, U {fo, Sae}e So X, (G)=5.
Therefore we have ¥,,(G) =5.

Theorem 7 Let G be a maximal outerplane graph. Then G is unique 5-coupled colorable
if and only if G is open.

Proof Let G be a maximal outerplane graph. By Lemma 6, X,,(G)=5. If G is not
open, that is to say that G contains a closed inner face F» we first can give, by Lemma 6, a 5-
coupled coloring o, of G which satisfies property P. Then we form another 5-coupled coloring
0, of G as follows; 0,(F)=0,(f,.) =0,(f,.) s0:(x) =0,(x) for each &€ (V(G) UFGO\TF,
f.}. Clearly o, and o, are not equivalent, which implies that G is not unique 5-coupled
coloarable, |

Conversely, assume that G is open. By the definition, each inner face of G is adjacent to
f.... This implies that for any 5-coupled coloring of G, there must exist a color which is only
used to color f,,. Further, as analogous to the proof of Theorem 2, we can show that V(G) U
F(G)\{f...} is unique 4-coupled colorable. Hence G is unique 5-coupled colorable.

Remark Theorem 7 is not true for non-mximal outerplane graphs. For example, we
consider a f-graph G (obtained by joining an edge between two nonadjacent vertices in a cycle
of length more than 5). It is easily seen that G is an open outerplane graph and X,,(G)=5.
However, G is not unique 5-coupled colorable because G is not maximal.

Corollary 8 Every fan F,(p>=3) is unique 5-coupled colorable.

Proof Since F, is a maximal open outerplane graph, by Theorem 7, the corollary fol-
lows.

Theorem 9 Let W,(p>>4) be a wheel of order p. Then W, is unique X,,-coupled col-
orable if and only if p=1(mod 3).

Proof Let u be the center vertex of W,, and write the vertices of V(W ,)\{u} as 1,2,

«,x,_, in some order. If p==1(mod 3), we can form a 4-coupled coloring o with a color set C
={1,2,3.4} asfollows: o(u) =0(x12y* " x,)) =431y Tps*** s T, ATE alternately colored with
1,2 and 3; uxiX; s X pgX2X3s """ s ULy 3Ty UL, | T BTE alternately colored with 3, 1 and 2. On
the other hand, ¥,,(W,)>>4 is trivial. Thus X,,(W,) =4. Further, it is easily seen that any
two 4-coupled colorings of W, are equivalent. Hence W, is unique 4-coupled colorable.

If p3£1 (mod 3), it is easy to prove X,,(W,)=5. Moreover, in this case, we can con-
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struct two 5-coupled colorings of W, which are not equivalent. Therefore W, is not unique 5-

coupled colorable.
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