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Abstract

The edge-face chromatic number X, (G} of a plane graph G is the smallest
number of colors assigned to the edges and faces of G so that any two
adjacent or incident elements have different colors. Borodin(1994) proved
that A(G) < x,,(G) < A(G)+1 for each plane graph G with A(G) > 10
and the bounds are sharp. The main result of this paper is to give a
sufficient and necessary condition for x,,(G) = A(G) + 1 if A(G) >
|G| — 2.

1 INTRODUCTION

Throughout this paper, all graphs are finite simple plane graphs. Let G be a plane
graph, whose vertex set, edge set, face set, vertex number, edge number, maximum
degree and minimum degree of vertices are denoted by V(G), E(G), F(G), p(G),
¢(G), A(G) and §(G) respectively. Let G[S] denote the induced subgraph of G
on S C V(G), and N (u) the neighboor set of a vertex u in G. Moreover set
N&(u) = V(G) = (Ng(u) U {u}). A vertex (or face) of degree k is said to be a
k-vertex (or k-face) of G. A n-face f whose boundary, denoted by b(f), contains
the vertices uy, ug, -+, un in some order is written as f = wug---u,. Let Vi(G)
(k=0,1,---,A = A(G)) denote the set of k-vertices of G. If Cy is a cycle of length
k in a connected plane graph G, then let Vi, (Ci) and Vi (Ck) denote the sets of
vertices in G contained in the interior and exterior of Cy respectively. We say that
Cy is a k-separating cycle of G if Vi (Cx) # 0@ and Vere(Ck) # 0. In particular, Cjy is
called a separating triangle. A graph G is called an he-graph if A(G) = p(G) -k,
k=1,2,---.

A plane graph G is k-edge-face colorable if the elements of E(G) U F(G) can be
colored with k colors so that any two distinct adjacent or incident elements receive
different colors. The edge-face chromatic number x,,(G) is defined as the minimum
number k for which G is k-edge-face colorable.
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Clearly, x.,(G) > A(G). On the other hand, Melnikov [4] conjectured that
x.,(G) £ A(G) +3. Without using the Four-Color Theorem, this conjecture was
proved for A < 3 (3, 5] and for A = 4 [6]. Borodin [2] showed that x,,(G) < A(G)+1
for A(G) > 10 and the bound is sharp. Recently, using the Four-Color Theorem and
Vizing’s Theorem, Waller [7] proved the conjecture to be true for all plane graphs.
Thus the main problem in this area is to determine the precise bounds of x,,(G) for
3 < A(G) < 9 or to give a complete classification of plane graphs according to their
edge-face chromatic numbers. In this paper, we present a necessary and sufficient
condition for x,(G) = A(G) + 1 if A(G) 2 |[V(G)| -2 and p(G) 2 7.

In what follows, a k-edge-face coloring of a plane graph G is abbreviated to a
k-EF coloring. Let o(z) denote the color assigned to the element z € E(G)U F(G)
under a given coloring o, and for u € V(G), let Cy(u) denote the set of colors which
are colored on the edges incident with u under 0. For § C UE(G)U F(G), we write
S — « to express that all the elements of S are simultaneously colored with the color
a. And S[m] denotes that at most m colors can not be used when coloring all the
elements of S with the same color. In particular, y[m] = S[m] if S = {y}. Other
terms and notations not defined in this paper can be found in [1]

2 PRELIMINARY

Lemma 2.1 IfG is an hg-graph with p(G) 2 3k +3 (k 2 1), then [Va(G)] £ 2.

Proof By contradiction. Suppose that [Va(G)| = 3. Then there are u;, u2, u3 €
Va(G) such that dg(us) = p(G) — k, i =1,2,3. Thus

INE(u) = p(G) = 1 — dg(ui) =k — 1.

Then we have
lNé(ul)l + |N2(u2)| + |Né(u3)| =3k - 3.

However, by p(G) > 3k + 3, we deduce

V(G) - ((L_JINS(U:‘)) U {u1, uz, us})|

> [V(G)] = (U Ne(w)) U {ur, uz,us}

i=1
>p(G)— (3k—3)—323k+3-3k=3.

This implies that u;, uz and uz are simultaneously adjacent to at least three vertices,
say vy, v, and v, of G. It follows that

K3,3 g G[{uh Ug, U3z, V1, V2, U3}])

which contradicts the planarity of G.O
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Corollary 2.2 Let G be an hi-graph of order p. Then
(1) V(@) < 2 if k=1 and p(G) 2 6.
(2) |Vp—2(G)| £ 2 if k=2 and p(G) 2 9.

Lemma 2.3 Let G be an hy-graph with p(G) > 3 which contains two A-vertices un
and wy. Then

(1) 2 < dg(u) < 4 for each u € V(G)\ {w1, wq}.

(2) 3 < dy(f) < 4 for each f € F(G).

Proof Obvious.

For i > 1, an h;-graph is said to be an h!-graph if there are a vertex u € Va(G)
and a face f € F(G) such that all the edges incident to u lie on the boundary of f.
Let = be a vertex of a connected graph G, and let the components of G — z have
vertex sets Vi, Va, -+, Vi (n > 1). Then the induced subgraphs G; = GlViu {z}],
i=1,2,---,m, are called the z-components of G.

Lemma 2.4 Let G be an hy-graph with p(G) > 2 and let w be a A-verter of
G. Then G is an h}-graph iff (1) each w-component of G is cither K3 or Ky, and
(2) G does not contain a separating triangle.

Lemma 2.5 Let G be an ho-graph with p(G) > 5 and a unique A-vertez w and let
N&(w) = {z}. Then G is an h3-graph iff (1) G contains no separating cycle through
z and w, and (2) G — x is an h]-greph.

It is not difficult to prove the above two lemmas. In fact, an hi-graph is an
outerplane graph and an h3-graph is a l-outerplane graph (i.e. after removing at
most one vertex it becomes an outerplane graph).

Lemma 2.6 Let G be a ho-graph with p(G) > 8 and a unique A-vertez w. Let

N¢(w) = {z} with dg(z) > 2. Then at least one of the following cases is true for G:
(1) There is a I-vertex u adjacent to w.

(2) There is a 2-verez u on a 3-face uwy.

(3) There is a 3-vertez u with N (u) = {w, v1,v2} such that uwvy, uwy, € F(G).

Proof Let G be an ho-graph satisfying the conditions of the lemma. Suppose
that the vertices of N (w) are put in the order ui, ug," " -, Um, where m = dg(w) =
A(G) = p— 2. By wz ¢ E(G), we have N, (z) € Ng{w). Since G has a unique
A-vertex, it follows that N,(z) # N, (w) and hence Ng(w)\ N,(z) # 0. Then
N,(z) partitions N;(w) \ Ng(z) into n nonempty maximal subsets Sy, Sz, -+, Sn,
where 1 < n < dg(w) — dg(z). Since Sy # @ and S C N (w) \ N, (z), we let that
81 = {Ujs1, Ujsz, "+, Ujse}, Where t = |S;| > 1 and the suffixes are taken modulo
m. From the maximality of S;, it follows u;, uj41 € Ng (z). This implies that the
interior of the 4-cycle Tujwu;j4er12 does not contain the vertices in N, (z) and the
edges incident to z. If there is no separating triangle inside Tujwu; 12, then (1)
holds when some ux € S) has degree one, (2) holds when some u, € S has degree
two and (3) occurs when all the vertices of Si have degree three. Otherwise let
C = wu,+su;j 4w be a separating triangle inside Tu;wu;4¢412 With as few vertices in
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Vint(C) as possible, where u;.s, w41 € {45, %41, -, ujpeq1}, 2 < I—s < t. Observing
the internal vertices ©;4s41, Ujss42, 5 Ujpi—1 of C, we can similarly get (1), (2) or
(3). The lemma is proved.O

Lemma 2.7 Let G be an hy-graph with p(G) > 2 and let w be a A-vertez of G.
Then at least one of the following cases is true for G:

(1) 6(G) = 1.

(2) There is a 2-vertex u on a 3-face uwy.

(3) There is a 3-vertez u with N (u) = {w, v1,v2} such that vwvy, vwy, € F(G).

The proof is similar to that of Lemma 2.6. In order to prove the following theorem,
we introduce two notations. Let G be an h;-graph with a unique A-vertex w. We
denote by E(G) the set of inner edges in G incident to w and let m,,(G) = |E%(G)|.
An edge is called an inner edge if it does not lie on the boundary of the unbounded
face of G. Obviously, E%(G) C Ei,(G), and G is not an hj-graph iff m,(G) > 1.

Lemma 2.8 Let G be an hy-graph with p(G) > 7 and w a A-vertez of G. If G is
not an h}-graph, then at least one of the following cases is true for G.
(1) There is a 1-vertez u adjacent to w such that Hy = G — u is not an h}-graph.
(2) There is a 2-vertez u on a 3-face uwy such that Hy = G —u is not an h}-graph.
(3) There is o 3-verter u with N, (u) = {w,v,v;} and vwv, uwv, € F(G) such
that Hy is not an h}-graph, where Hy = G —u if viv2 € E(G) and Hy = G —u+v,0,
otherwise.

Proof Let G be an h;-graph with p(G) > 7 and not an hj-graph. By Corollary
2.2, 1 < |VA(G)| £ 2. We consider two cases below:

Case 1 |VA(G)| = 2. Suppose that V5(G) = {w;,ws}. Then wyw, € E(G)
and vw,,uwy € E(G) for each u € V(G) \ {w1,we}. Let vy, vy, - -+, vx denote the
vertices in V(G) \ {w1, w2} which are arranged on one side of the edge w,w, such
that the 3-cycle wjw,v;w, is contained in all 3-cycles wiwovswy, j+1 < s < k,
j=12,--- k-1, and symmetrically vy, yo, - - -, ¥ on the other side of w,w, such
that the 3-cycle wywey,w, is contained in all 3-cycles wywoywy, i+1 < 1 < m,
1=1,2,---,m—1. Thus k+m = p(G) — 2 > 5 and k,m > 0. Assume that k > m.
Hence k > [3(p(G) — 2)] > 3. Since 2 < dg(v1) < 3, we can form Hy = G — v, if
dg(v)) =2 and H3 = G — v if d;(v1) = 3. Then H; (j = 2,3) is an h;-graph with
two A-vertices w; and w; and vow; € Ej(H;) (i = 1,2). Hence H, or Hj is not an
h3-graph.

Case 2 |[Va(G)| = 1. Let V5(G) = {w}. Since G is not an h}-graph, m,(G) > 1.
There are two subcases:

2.1 my,(G) > 2. By Lemma 2.7, we consider three possibilities:

(i) There is a 1-vertex u such that uw € E(G). We form H; =G — u.

(i1) There is a 2-vertex u on a 3-face uwy. We form H, = G — u.

(iii) There is a 3-vertex u with N, (u) = {w, v, v2} such that uwv,, vwv, € F(G).
In this case, we put Hy = G—u if vjv; € E(G) and Hy = G—u+viv2 if vivz ¢ E(G).

Obviously H; (i = 1,2,3) is an hy-graph with p(H;) > 6 and w € Va(H;). By
Corollary 2.2, 1 < |Va(H;)| £ 2. First suppose that |Va(H;)| = 1. Note that
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Er(H)) C EX(G) and my,(H;) > mu(G) —1 > 1. It follows that H; is not an
h}-graph. Next let |Vao(H;)| = 2. Referring to the proof of Case 1, we deduce that
for each z € Va(H;), EZ (H;).# §. Thus H; is not an hj-graph.

2.2 my,(G) = 1. Let e* = wr € EY(G) and let Gy, Gy, -, G be the w-
components of G. We claim that £ > 2. In fact, if £ = 1, then w is not a cut
vertex of G and so G is 2-connected. Thus at most two edges incident to w are
not inner edges of G. It follows that m,(G) > d,(w) -3 =p(G)-1-3 >3, a
contradiction. Note that each G; is an h)-graph with w as a A-vertex. In particular,
when |V(G;)| > 3, G; is 2-connected. If there is some G; such that |V(G;)| > 5,
then by E%(G;) € EX(G), it follows that my{(G) > my(G;) > [V(G,)] -3 > 2, also
a contradiction. Thus |V(G;)| < 4 for all <. In addition, there exists at most one
w-component of G having four vertices. In fact, if there are two such w-components,
say G; and Gj, then my(G) > my(Gi)+my(Gj) > 141 = 2, a contradiction. Hence
we may suppose that 2 < |V(Gy)| < 4,2 < [V(Gy)} £3,1=2,3,---,k. Now the
discussion can be divided into two cases.

2.2.1 |V(G,)| = 4. Since G, is a 2-connected h;-graph with w as a A-vertex,
my(G1) > |[V(G1)] — 3 =2 1. On the other hand, m,(G1) < my(G) is obvious.
Therefore m,,(G;) = m,,(G) = 1. This implies that e* € E¥(G,) and so z € V(G)).
We claim that V(G;) can not be contained in any separating cycle of G. Suppose
that the assertion is false, then for every v € V(G,) \ {w}, vw € E%(G). So
my(G) 2> |V(G1) \ {w}| > 3, a contradiction. Now, by k > 2, we may choose a
w-component of G, say G¢(2 < t < k), which is not contained any separating cycle
of G. Applying Lemma 2.7 for G,, we can form either Hy or Hp with ¢* € E(H;),
i =1 or 2. Thus H; is not an hj-graph, the lemma is shown in this case.

2.2.2 |V(G1)] € 3. Now each w-component of G is either K3 or K;. Thus 1 <
dg(u) < 2 foreach u € V(G)\{w}. Ifd;(z) =2, let y € N (z)\ {w}. Then both wy
and wz must simultaneously be inner edges of G, thus m,(G) > 2, a contradiction.
Hence we must have d,(z) = 1. It follows that there is s € {1,2,---,k} such that
G, = G[{e*}]. Since e* € EZ(G), G5 must be contained in some 3-cycle C of G.
Clearly, C = Gj, (1 < jo £ k). We claim that Gj; can not be contained in other
w-components of G, since otherwise we can similarly deduce that m,(G) > 3. By
p(G) > 7, we may select a w-component G; (t # s,jo) which is not contained in
any separating cycle of G. Then the problem can be reduced to 2.2.1. The proof is
completed.O

Lemma 2.9 Let G be an hy-graph with p(G) > 8 that is not an h}-graph. If G
contains a unique A-verter w and N (w) = {x} with d;(z) > 2, then at least one of
the following cases is true for G:
(1) There is a 1-vertex u adjacent to w such that Hy = G — u is not an h3-graph.
(2) There is a 2-vertez u on a 3-face vwy such that Hy = G—u is not an h3-graph.
(3) There is a 3-vertez u with N, (u) = {w, v1,v2} and vwv, uwv, € F(G) such
that Hj is not an hi-graph, where Hy = G —u if viv; € E(G) and Hy = G —u+vv;
otherwise.

By Lemmas 2.5 and 2.6, and using a method similar to that of the proof of Lemma
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2.8, we can establish this lemma.

Lemma 2.10 Let G be an hy-graph with p(G) > 9 and two adjacent A-vertices wy
and w,. Then at least one of the following cases holds for G:

(1) There is a 2-vertez u € Ng(wi) N Ng(wz) such that uww; € F(G).

(2) There is a 3-cycle ywiwe such that its interior (or exterior) contains only a
vertez u and three edges uy,uw; and uw; and dg (y) <6.

(3) There are three vertices ui, us, us € Ny (w1) N N (wq) such that d,(u)) <5,
dg(ug) < 4, dg(uz) <5 and the interior (or exterior) of the 4-cycle uywiuzwaty
contains only uy and the edges incident to u;.

Proof By the definition of hy-graph, we suppose that N&(w;) = {zi},i=1,2.
Consider the graph H = G — z1 — z3. If 71 # =z, then p(H) = p(G) — 2 and
A(H) = A(G)-1=p(G)-2-1=p(H) -1 Ifz; = z,, then p(H) = p(G)—1and
A(H) = A(G) = p(G) — 2 = p(H) — 1. This means that H always is an hy-graph
with p(H) > 7. Obviously w; and w, are two A-vertices of H. Let vy, vg, -+, vk
denote the vertices in V(H) \ {w;, w;} located on one side of the edge wyw, such
that the 3-cycle wiwqvjw; is contained in all 3-cycles wywouswi, j+1 < s <k,
j=1,2,---,k—1,and y1, 2, - **, Ym 0N the other side of wyw; such that the 3-cycle
wyway;wy is contained in all 3-cycles wiweyiws, 1 +1 < l1<m,i1=12,---,m—1.
Thus k +m+ 1 = A(H) = p(H) — 1 > 6 and k,m > 0. By virtue of Lemma
2.3, 2 < d,(u) < 4 for each u € V(H) \ {wy, wo}. Thus do(u) < d,{u)+2 <6,
and d(u) = 6 iff d,, (u) = 4 and uz),uz; € E(G). Furthermore, each face f of H
has degree either 3 or 4 and b(f) contains at most two vertices in V(H)\ {w, w2}
Noting that in G z; (i = 1,2) must lie inside some face f; of H, we deduce that
dy(z:) < 3, |Ve(G)| £ 2, and wv € E(G) and {f1, f2} = {uvwy, uvw,} if there do
exist two 6-vertices v and v in G.

Now suppose that (1) and (2) of the lemma are both false, we prove that (3) must
hold. Let m < k. We distinguish three cases.

Case 1 m = 0. Then k = A(H) — 1 > 5. Since both (1) and (2) do not hold,
it follows that one of z; or z lies inside the 3-cycle wywqvow; and the other inside
some face in H with v, as a boundary vertex. Taking uy = vz, uz = v3 and uz = vy,
we obtain (3).

Case 2 m = 1. In this case, k = A(H) — 2 > 4. With the same reason, one of z,
or z, must lie inside the 3-cycle wjwavwy and the other inside a face in H with y;
as a boundary vertex. Again taking u; = vs, 2 = v3 and ug = v4, we deduce (3).

Case 3 k > m > 2. Similarly, one of z; or z; must lie inside the 3-cycle
wywquow; and the other inside the 3-cycle wiwayws. Thus three consecutive ver-
tices in {v, V3, " *, Uks Ym, Ym—1," - *» Yo} satisfy the requirement of (3). The lemma
is proved.O
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3 MAIN RESULTS

Lemma 3.1 If G is either an hi-graph with p(G) > 5 or an hj-graph with p(G) > 6,
then x,,(G) = A(G) + 1.

Theorem 3.2 If G is an hy-graph with p(G) > 6, then A(G) < x,,(G) < A(G)+1;
and x,,(G) = A(G) + 1 iff G is an hi-graph.

Proof We use induction on p(G). By enumeration, we can prove the theorem
holds for p(G) = 6. Assume that it is true for all h;-graphs with fewer than p
vertices, and let G be an hy-graph of order p (> 8). If G is an h}-graph, it follows
from Lemma 3.1 that x,,(G) = A(G) + 1. If G is not an hj-graph, we shall prove
X.;(G) = A(G). Let w denote a A-vertex of G and then consider three cases by
Lemma 2.8.

Case 1 There is a 1-vertex u adjacent to w such that H = G — u is not an hj}-
graph. Then A(H) = A(G) — 1, and H is a h;-graph with p — 1 vertices. By the
induction assumption, x,,(H) = A(H). Thus we first give a (A(G) — 1)-EF coloring
A of H with a color set C. Then we assign a new color § ¢ C to the edge uw in G.
A A(G)-EF coloring o of G is constructed.

Case 2 There is a 2-vertex u on a 3-face uwy such that H = G — u is not
an hi-graph. A similar discussion yields a (A(G) — 1)-EF coloring A of H with a
color set C. Based on A, we color the edge uw in G with a new color 8 ¢ C. If
d.(y) < A(G) — 2, then the edge uy can be properly colored because it has at most
A(G) — 1 color restrictions. Otherwise, since A(G) = p(G) ~1 > 7, there must exist
a vertex v € N, (y) \ {w} such that A(vy) differs from A{f), where f, is the face
of H with yw as a boundary edge, which is subdivided into the union of uyw and
a face in G. In this case, we recolor the edge vy with § and color uy with A(vy).
Afterward we put vwyl5).

Case 3 There is a 3-vertex u with N (u) = {w,v;,v2} and vwv;, uwv, € F(G)
such that H is not an h}-graph, where H = G—uifviv; € E(G) and H = G-u+uv v,
otherwise. It follows from Corollary 2.2 that min{d,(vi),d;(v2)} < A(G) — 1, say
ds(v1) £ A(G) — 1. Similarly, H has a (A(G) — 1)-EF coloring A with a color set C.
We form a A(G)-EF coloring o of G by considering two subcases:

3.1 vyv; € E(G). Based on A, we color both uw and v;v; with a new color g ¢ C
and then put: uvy[A — 1], uvi[A — 1}, uwuy[4], uwwy[5], uv va[6].

3.2 vjuy € E(G). Let fy denote the face of G with uv, and uw, as two boundary
edges. If d;(v1) < A(G) — 2, based on A, we can color both the edge uw and the face
fo with a new color 3 ¢ C. Then we put: uwve[A — 1], uvy[A — 1], uwv,[5], uwvy[6)].
If d;(v1) = A(G) - 1, by A(G) > 7, we can find a vertex y € N, (v;) \ {u, w} such
that A(yv1) # A(fo), A(viv2). Now we put: {uw,yvy, fo} = 8 € C, uva — A(vv),
uvy = Ayvy), vwoy[4], vww,[5).0

Corollary 3.3 If G is a 2-connected hy-graph with p(G) > 6, then x,,(G) = A(G).

Corollary 3.4 IfG is an hy-graph with p(G) > 6 and contains two A-vertices, then
X.;(G) = A(G).

241



Theorem 3.5 If G is an hy-graph with p(G) > 7 and contains two adjacent A-
vertices, then x,,(G) = A(G). .

Proof Obviously we need only prove the bound x,,(G) < A(G). We proceed by
induction on p(G). For p(G) = 7,8, the theorcm follows from enumneration. Assumc
that it is true for each ho-graph with fewer than p vertices and two adjacent A-
vertices. Let G be a graph satisfying the conditions of the theorem and lV(G)| =
p>9. Thus A(G) =p—2 > 7. By Lemma 2.10, we have three possibilities.

Case 1 There is a 2-vertex u € N, (w)) NN, (we) such that vw w, € F(G). Form
the graph H = G — u. Let f denote the face of G with u as a boundary vertex and
f # uwyw; and let fo denote the face of H which is subdivided into the union of f
and uw,w, in G. Since H is an hy-graph with two adjacent A-vertices w, and w, and
A(H) = A(G) — 1, by the induction assumption, H has a (A(G) — 1)-EF coloring A
with a color set C. By A(G) —1 > 6, there must exist a vertex z € N (wi) \ {u, w2}
such that A(zw;) # A(fo). Based on A, we construct a A(G)-EF coloring o of G as
follows: {uwy,zwi} — B ¢ C, uwy — Azwi), f — A(fo), uwiwe[3).

Case 2 There is a 3-cycle yw;w, such that its interior (or exterior) contains only
a vertex u and three edges uy,uw; and uw; and dg(y) < 6. Let H = G — v and
form a (A(G) — 1)-EF coloring A of H with a color set C. Based on A, we further
put: {ywy, uwz} = B ¢ C, uw, — Aywr), uy[6), uyw:[4], uyws(5], vwiwa[6].

Case 3 There are three vertices uy, ug, u3 € Ng(w;)NN, (w2) such that d; (u;) < 5,
dg(ug) < 4, dg(us) < 5 and the interior (or exterior) of the 4-cycle ujwiuzwau;
contains only up and the edges incident to u;. Again let H = G — u and, by the
induction assumption, H has a (A(G) — 1)-EF coloring A with a color set C. Based
on A, we can form a A(G)-EF coloring o of G as follows: first color uzw; and wiug
with a new color 8 ¢ C and then color upw; with A(wyus). Further there exist some
subcases.

If uyug, ugus € E(G), we put: uug(6], waua(6], urupwi (4], uruawa[5], upuzws(5),
U2U3U)1[6].

If uiuy ¢ E(G) and uyuz € E(G) (for the converse case, we can give a similar
proof), we put: upu3(5], uiwiugwy = Mwiuzwawr), uguawy [5), usuzwo([6).

If uyug, upus ¢ E(G), we put: ujwivgws — A(wiuzwauy), W u3waU2{6]. Now we
have proved the theorem.O

Let C = 2,73 - - - Tp—2%1 be a cycle of length p — 2(> 3). Add a new vertex u to
the interior of C' and another v to the exterior respectively, and then join both u and
v to each z; (i = 1,2,--+,p — 2). Denote the resulting graph by Wp.

It is easily seen that Wp is an hy-graph with two nonadjacent A-vertices. Moreover
every hp-graph G containing two nonadjacent A-vertices can be induced from Wp by
removing some edges in E(C), where p = [V(G)|.

Theorem 3.6 If G is an hy-graph with p(G) > 7 and contains two nonadjacent
A-vertices, then x,,(G) = A(G).

Proof Given p = |V(G)| > 7, we first form a (p — 2)-EF coloring A of W,. Let
0,1,---,p — 3 denote p — 2 colors and suppose that the following suffixes are taken
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modulo p—2. Fori=1,2,---,p—2, we put: vz; = i—1, uz; = i—2, TiTip) = 1+1,
UT;Tig1 = &, UTiTiy1 — &+ 2. _

It is easily checked that X is a (p — 2)-EF coloring of W, with the property that
for each s = 1,2,---,p — 2, the color A(vz;zyy,) differs from each of AMuzizig),
Muz;_12:), MuZiz1Tiy2), Muz;) and AMuLip1). _

Next, according to the above discussion, we have G € W, with A(G) =p(G)-2 =
p — 2. Thus, based on )\, a A(G)-EF coloring o of G is formed as follows: for each
edge € = zizip1 € E(W,) \ E(G), we put o(vziuziyy) = Mvz;ziy1). The other
edges and faces of G are colored with the same colors as in A. So we prove that
x,;(G) < A(G). But x,,(G) 2 A(G) is trivial. Therefore x,,(G) = A(G). This
completes the proof.0

Theorem 3.7 If G is an hy-graph with p(G) > 7, then A(G) < x,,(G) < A(G) +1,
and x_,(G) = A(G) + 1 iff G is an hj-graph.

Proof By induction on p(G). If p(G) = 7,8, the theorem follows by enumeration.
Suppose that it is valid for p — 1 and let G be an hp-graph with V(G) =p 209
If G is an hj-graph, it follows from Lemma 3.1 that x (G) = A(G) + 1. Now
suppose that G is not a hj-graph, we show that x, (G) = A(G). By Corollary
2.2, G contains at most two A-vertices. However, when G contains two adjacent
or nonadjacent A-vertices, the assertion has been verified in Theorems 3.5 or 3.6.
Thus we need only consider the case in which G contains a unique A-vertex w.
Let Né(w) = {z}, then dg(z) < A(G) — 1. I d,(z) < 1, we define the graph
H =G —z. Clearly A(H) = A(G) = p(G) =2 =p(H) =12 7,50 H is an hy-graph.
Since G is not an hj-graph, H is not a hj-graph. By Theorem 3.2, we prove easily
x.;(G)=x,,(H) = A(H) = A(G). So we may assume that d;(z) > 2. In this case,
by means of Lemma 2.9 and applying a similar discussion as in Theorem 3.2, we can
complete the proof of theorem.O

Corollary 3.8 If G is a 2-connected h,-graph with p(G) > 7, then x,,(G) = A(G).
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