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THE LIST CHROMATIC NUMBERS
OF SOME PLANAR GRAPHS

Li Enyue Zhang Kemin

Abstract. In this paper, the choosability of outerplanar graphs, 1-tree and strong 1-outerplanar
graphs have been described completely. A precise upper bound of the list chromatic number of
l-outerplanar graphs is given, and that every 1-outerplanar graph with girth at least 4 is 3-

choosable is proved.

§1 Introduction

Throughout this paper, we only consider the finite undirected simple graphs. The
terms and notations can be found in [1]. Given a graph G=(V,E) in which each vertex v
is assigned a list L(v) of possible colors. If there is a vertex coloring ¢ such that ¢(v) €
L) for all v€V(G), we call G L-colorable and also say ¢is an L-coloring of G. Given an
integer £, G is called £-choosable if it is L-colorable for every assignment L with |L(v)|=
k for all v€V. Finally the list chromatic number ¥,(G) of G is the smallest £ such that G is
k-choosable. Clearly, eVery k-choosable graph G is k-colorable and so ¥(G)<{x,(G) holds.

The study of list coloring problems was initiated by Vizing'” in 1976 and, indepen-
dently but later, by Erdos, Rubin and Taylor®™ in 1979. During the last years, some new
results were found about the choosability of planar graphs. Alon and Tarsi'! proved that
every bipartite graph is 3-choosable. In 1993 Thomassent®! proved that every planar graph
is 5-choosable whereas Voigt'® presented an example of a planar graph which is not 4-
choosable. And in 1995 Thomassen'" showed that every planar graph with girth at least 5
is 3-choosable. In this paper, we characterize the choosability of some planar graphs.

Let G be a planar garph. If there exists a face f such that each vertex of G on the
boundary of f, then G is called an outerplanar graph. The edges on the boundary of f are
said to be outer edges and other edges inner edges, let €, denote the number of the inner
edges. If there is a vertex vOEV(G)_such that G—uv, is'a forest, then G is called 1-tree. If
there is a v, € V (G) such that G—u,is an outerplanar graph, then G is called 1-outerplanar
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graph. If G is neither a 1-tree nor an outerplanar graph, and for each v€V(G),G—v is an
outerplanar graph, then G is called a strong 1-outerplanar graph. Let W,, be a wheel with
order m+1. Let g be a list coloring of G and for SCV(G), we denote by Co(S) a set of
colors used on the vertices of Ng(S) under ¢

§ 2 Main Results

Let &2, be a collection of simple graphs satisfying the following properties .
(1) For every GE £2,,8(G)<k;
(2) If GE€ £, then for every HEG,H € P,
Theorem 1. If GE€ P, (k=1),then 1, (G)<k-+1.
Proof. It is clear by induction on v(G).
In order to get the main results, we need several facts and lemmas as follows:

(1) If G consists of » components G,,G;,... ,G,, then x,(G)=r2a-<)<{x,(G;) ’.
A mz

(2) %.(G)=1iff G is a null graph. -

-(3) If HEG, then x,(H)< 0, (G).

Without loss of generality, we always consider that G is a simple connected planar
graph with at least two vertices.
Lemma 1. Let C be an even cycle, then ¥,(C)=2.
Proof. It is easy to prove this.
Lemma 2. Let T be a tree and € V(T). Then there exists a 2-list coloring of T' such
that the color of x can be assigned in advance. _ A
Proof. Let us construct an effective method for giving a 2-list coloring @ of 7. The pro-
cedure is described as follows ;
Step 1. Let o(&)E€ L(x) and set U=:{x}.
Step 2. For every yENri(U)'\U, let y; €U be a vertex adjacent to y. We put e(y) €
L\{g(y)}. '
Step 3. Set U=:NrU)UU. If VITHO\U=(J, stop. Otherwise, go to step 2.

Since T is finite, the above procedure must stop within finite steps. Thus a 2-list col-
oring g of T is formed.
Lemma 3. If G is an outerplanar graph, then 6(G)<(2; and when 8(G)=2,G contains
"at least two vertices of degree 2. ' ‘
Theorem 2.  Let G be an outerplanar graph. Then

2, if G is a bipartite graph with at most one cycle;
X(G) = .
. 3, Otherwise.

Proof. Note that x,(G)==2 is trivial. By Lemma 3, GE £,. Thus, using Theorem 1, we
have %, (G)<(3.

Now suppose that G is a bipartite graph with at most one cycle. If G contains no cy-
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cle, G is a tree and then, by Lemma 2, X,(G)=2. Let G contain a cycle C, thus G—E(C)
is a forest. Since G is connected, every component of G—E(C) contains exactly one vertex
in V(C). Now a 2-list coloring of G can be formed as follows: since C is even, by Lemma
1 we first give a 2-list coloring of C; based on this and by Lemma 2, we further color ev-
ery tree of G—E(C) attached at some vertex of V(C). Thus X, (G)=2.

Conversely, suppose ¥, (G)=2. Thus it is obvious that G is a bipartite graph. Sup-
pose that G contains at least two cycles, say Cy=uou;. . « umtto and C;=vo01. . . VaTo. Since G
is bipartite outerplanar, both C; and C, are even and one of the following cases must occur:

Case 1. |[VICONV(IC|=1.

Let uy=1, and set L) =L(v;)={1,3},L(v))=L(u;)= {2,3} and L(z)={1,2} for
all 2EV(C,UC)\{uystzsv1svz}. I @luo) =1, then ¢(u) =3,0u;) =2,¢(us) =1,...,
@ (1) =2. It follows that Co(un) —=L(u,)={1,2}. Thus u, can’t be colored properly. If
@(u,) =2, we can similarly obtain C,(v.) =L(v,)=1{1,2}, which implies that v, can’t be
colored properly. Therefore ¥, (G)=x.(C,UC;)=3.

Case 2. |VCONVC|=2. '

Let uo=100s%n=0,. Assigning the same color-lists as in Case 1 to the vertices in C; |J
C, and using a simliar argument, we have ¥,(G)=x.(C,UC;)=3.

Case 3. |[V(ICDONV(Cy=0.

Since G is connected , there exists a path P in G connecting C; and Cs,. Without loss of
generality , let P=uwu,z,2;. . . 2400 , k=0 and z;5. .. »2: &V (C,UCL).

3.1. If #=1 (mod 2), we set L(u;)=L(v)={1,3},L(u)=L(v)={2,3} and
L(z)=1{1,2)} for each z€V(C;UC,UP)\{u;suzsv1,v2}. Since |[V(P)|=k+2 is odd, we

must use same color (i.e.’s 1 or 2) to ueand v,. Thus we may identify the vertices u, and

v, remove all internal vertices of P, and now this subcase is reduced to Case 1.

3.2. I £=0 (mod 2), we set L(z,)=L(v)=1{1,3},L(u)=L(vy)= {2,3} and
L(x)=1{1,2} for each z€V(C,UC,UP)\{uysuz,v; ,u;}. Let pbe any 2-list coloring of C,
UC,UP. If ¢(u,)=1, using the similar argument of Case 1, we have that u,, can’t be col-
ored properly. If @(u,) =2, then ¢(v,)=1 since |V(P)|=k+2 is even. It follows that v,
can’t be colored properly. Hence %, (G)=x,(C,UC.UP)=3.

Now, we always have X, (G)>>3. This contradicts the assumption ¥;(G)=2. Thus G

contains at most one cycle.

Let G denote a graph such that “GZ'C, UC, with |V(C,)NV(C,)|=n—1, where C;(t
=1,2) are even cycles of length n(Z=>4). Let G, be a graph containing G as an induced sub-
graph such that G—E(G) is a forest. |
Lemma 4. X:(G,)=2. _

Proof. It is enough to prove %, (G) =2 by Lemma 2. Let Ci=1thse «+ thar gt s Cr =

Urthye «  UniUathy and P=u1tt5. . . ua_y s Where u,7v,. It is enough to consider the following
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three cases to form a 2-list coloring of G.

Case 1. L(u.)=L(v.).

By Lemma 1, there is a 2-list coloring ¢ of C,. Since Ng(«,) = Ng(v,) and L(u,)=
L(v,), then we put ¢(v,) =¢(u,). Hence there is a 2-list coloring of G.

Case 2. Lu)NLG@w)=L.

Suppose that L(u,)=1{1,2} and L(v,)={3,4}. Let @ denote a set of all (proper) 2-
list colorings of P. Then ®=( by Lemma 2. Moreover, we set &;= {¢€ | {pCu),
()} ={i,j}, where i€ L(u,) and j&€ L(u,-1), or i€ L(u,—;) and 7€ L(u,)}. Now
this case can be reduced to prove the following statement:

There is a €@ with {@(u,) s@(u,—1) } #L () and {@(u) »@(u,—1)} 7L (v,). (%)

In fact, if (*) holds, then L(u,)\Cy(u,) 7% and L(v.)\Cp(v,)#D. Thus, we can
put @(u,) € L) \Colttn) »@(0.) € L(w,)\Cyp(v,) » and then a 2-list coloring of G is formed.

Suppose that ( * ) is not true. Thus &=, U P, % 5. There are two possibilities

2.1. &,7% and ®,,7%C). Without loss of generality, we assume that L(u;) = {1,
3} and L(u,_)=1{2,4}. Let p€ &y, and ¢ € Py, Thus we have p(u)=1,9(u,—1) =2,¢ )
=3, and ¢(u,-,)=4. Now we claim that ¢(x,-,)=4. In fact, if (u,—,)7#4, we can define
a new 2-list coloring ¢ of P as follows: @ (u,1) =4,¢ (u) =¢(u)si=1,2,...n—2.
Clearly, ¢ € ®,,, which contradicts the fact @, = (. Similarly, we can deduce that
¢(u,_,)=2. This implies that 2,4€ L(u,-,). Noting that {L(u,-,) | =2, we have L(u,—;)
= {2,4}. Furthermore, we must have ¢(u,—;) =2. Otherwise we can construst a 2-list col-
oring @ of P as follows: @ (u,—) =4,@(u,—2) =2, W) =e(u)si=1,2,...,n—3. Thus
@€ @y, a contradiction. Using analogous argument, we get ¢(u,3) =4. Thus L(u,—3)=
{2,4}. Along this way, we obtain that L(z)=... =L(u,-,)= {2,4}. Now let’s put ¢"
W) =1,0" (@) =2,i=2,4,...,n—2,¢" () =4,j=3,5,...,n—1. Itis easily checked
that ¢ is a 2-list coloring of P and then ¢" € @,,, a contradiction.

2.2. ®,=, or By, =), say Pr,=(). We claim that L(u;) =L (u. 1) ={3,4}.
" Otherwise there exists a color a(& {3,4}) belonging to L(«,) or L(#,-,). By Lemma 2,
we can obtain a 2-list coloring @of P such that ¢(u;) or ¢(u, ;) equals a. So ¢& @, , a con-
tradiction. Therefore ( * ) is proved.

Case 3. |L(u.)NL(v,)|=1.

In this case, we suppose that L(x,)={1,2} and L(v,)={1,3}. We can also prove the
claim ( % ). Suppose that ( * ) is not true. Thus =&, UP;;7# . There are two possi-
bilities :

3.1. &,7# and @,,#. First, we claim that 1€ L(«;) (\L(x,—,). Otherwise we
can suppose L(u,)={a,B} and L(u,—,)={a,b} where 1& {@,a,b}. By Lemma 2, we can
obtain a 2-list coloring ¢ of P such that ¢(x;) =« and ¢(u,_1) € {a,b}. So &P, U5 a
contradiction. Hence we assume that L(x,)={1,2} and L(u,-;)=1{1,3}. Analogous to

Case 2.1, there is a 2-list coloring ¢* of P such that ¢" €®,,, a contradiction.
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3.2. O,=, or ®;;=(F, say D;,=(). Using an analogous argument as Case 2. 2,
we can also gain a contradiction. Hence ( * ) is proved.

Up to now, we have proved X, (G)<(2. But X,(G)=2 is trivial. Therefore ¥, (G)=2.
The lemmal is proved.
Theorem 3. Let G be a 1-tree. Then

2, if G is a bipartite graph with (i) at most one cycle C or
X(G) = (ii) G belongs to {G,} as above;
3, otherwise,

Proof. Note that X,(G)=2 is trivial. Since any subgraph of a 1-tree is also a 1-tree, GE
&,. This we have ¥,(G)<(3 by Theorem 1.

Since (i) implies that G is bipartite outerplanar, using Theorem 2, X, (G)=2. For
(i), % (G)=2 by Lemma 4.

Conversely, suppose %:(G)=2. Thus it is obvious that G is bipartite by contradic-
tion. Since G is a 1-tree, one of the following cases must occur:

Case 1. G contains two cycles C; and C, such that there are v, ,v, € VIC)D\V(Cy) yu, 5
u, EV(CH\V (C,) with vivs 412, € E(G). Since G is 1-tree, V(C,) NV (C,)F#LS. Let C;=
V1Use o » UnWiWie1~ » » W11y and C; = uittse o v UmWiWi—1. . . wiut; Where =0, Set L () =
L(v,)={1,3}, L(uy)=L(v,)={2,3} and L(x)={1,2} for all €V (C,UC)\{u;,uz,v;,
v,}. Note that C,,C, are even. If ¢(w;) =1, then ¢(u;) =3,9(uy) =2, @(uz)=1,...
¢(w;)=2. It follows that C,(w,;)=L(w,)=1{1,2}. Thus w, can’t be colored properly. If
o(w;) =2, then ¢(v;)=3,¢(v;) =1,9(v;)=2,... ,¢{w;)=1. Also it follows that C,(w,)
=L(w,)={1,2} and w, can’t be colored properly. Therefore x,(G)=x.(C,UC;)=3.

Case 2. G contains three cycles C,,C, and C; such that |[V(C)) | = |V (Cy) | =
[V(Cy) | =n(n=4) and C,NC,NC;sis a path P=v,v,...v,; of the length n—2. Let {x:}
=VECHO\V{P)»i=1,2,3. Set L(x1)={1,3},L(x)={2.4},L(x3)={1,4},L(v;)={1,
2} s LCv,)=1{2,3}, and L(x)={3,4} for all z€V(C,UC,UC)I\{xysx2,23,v15v;}. Since G
is bipartite, C;, (i=1,2,3) are even. We have |V(P)|=1(mod 2). It is easily checked
that any 2-list coloring ¢ of P must satisfy {¢(v,),¢(v,—1)}=1{1,3} or {2,4} or {1,4}. So
there is an i € {1,2,3} such that L(x,)=C,(x;). It follows that 3, (G)=x,(C,UC,UC;) =
3, which contradicts the assumption X;(G)=2. Thus the theorem is proved.
Lemma 5. If G is a 1-outerplanar graph, then §(G)<(3.
Theorem 4. If G is a 1-outerplanar graph, then 2<{x,(G)<(4.
Proof. ,(G)==2 is trivial. Since any subgraph of 1-outerplanar graph is a 1-outerplanar
graph, GE &, by Lemma 5. Thus using Theorem 1, we have X, (G)<4.
Corollary 4.1. If G is a 1-outerplanar graph, but neither outerplanar nor 1-tree, then 3
SHGH<4
Proof. Suppose X,(G)=2, then G is a bipartite graph. We claim G satisfies the condition

(i) or (ii) of Theorem 3. Otherwise G contains two cycle C; and C; and the following cases



No.1 Lt Enyue, et al. LIST CHROMATIC NUMBERS 113

must occur since G is 1-outerplanar.

Case 1. V(C)ONVI(C,)=). Analogous to Case 3 of Theorem 2, we can deduce -
%(G)=3.

Case 2. V(C)NV(C,)#(J. Analogous to Case 1 and Case 2 of Theorem 3, also we
can deduce ¥,(G)=3.

Thus G satisfies the condition (i) or (ii) of Theorem 3, which implies that G is an
outerplanar graph or a 1-tree, a contradiction.
Lemma 6. ™ G is an outerplanar graph iff G doesn’t contain the subdivision of K, or K,,s.
Lemma 7. If G is a strong 1-outerplanar graph with §(G)=3, then «(G)=3.
Proof. First we prove k(G)=>2. Suppose that there is x €V (G) such that G—x has com-

ponents G'1,G' 55... G . Let H ,\=G[V(G DU {x}],H'ZZG[V(_L_"JZG'i) U{x}]. Since G

is strong 1-outerplanar, H', and H', are outerplanar graphs. Thus H, U H,=G is outer-
planar, a contradiction. So x(G)=>2. Now suppose that there are u,v€ V(G) such that G
—{u,v} has components G,,G;s...,G,. Let H=G{V(G)U{u,v}],i=1,2. Since G is
strong l-outerplanar, H, and H, are outerplanar. Thus 6(H;)<(2(=1,2) by Lemma 3.
Since 6(G)=3, du ()2 or du (v)<2, and dy, (2)2=3 for all zEV(G)\{u,v}((=1,2).
Suppose uv€ E(G), it is impossible since the outerplanar graph H, only contains two adja-
cent vertices of degree<(2. So we have uv& E(G) and one of the following cases must oc-
cur;

Case 1. «(H,)=2. It is clear that there are two internally vertex-disjoint (u,v)-
paths P,,P,C H, with v(P;)=3.

Case 2. «(H,)=1. First, we claim that neither « nor v is a cut-vertex of H,. Oth-
erwise suppose H;—u is disconnected, which follows that G—u also is disconnected. This
is a contradiction with «(G)>=2. Then, we claim K, exactly contains two blocks B; and B,
with « €V (B,) and vE€V (B;). If not, there is a block B of H, with V(B) N {u,v}=) by
the above claim. There is a cut-vertex y of H, such that G—y is disconnected where y€&
V(B), a contradiction. Let V(B,)NV(B,)=z. We can assume Og, (2)=2by 8¢(2)=3. If
uz€ E(H,), the outerplanar graph B; with v(B,;)>23 contains only two adjacent vertices of
degree <2, which is impossible. Hence there are two internally vertex-disjoint (u,z)-
paths P,,P, =B, & H, with v(P;)=3(=1,2).

Similarly, we can also prove there are two internally vertex-disjoint paths P;,P,&H,
with v(P;)2>23(j=3,4). It follows that G—w contains a subdivision of K, ; with w€&
V{(P)O\{u,v}, which contradicts Lemma 6. Therefore the lemma is proved.

Theorem 5. Let G be a strong 1-outerplanar graph with 6(G)=3. Then G is isomorphic
to a wheel or a triangular prism.
Proof. Since 6(G)=3,v(G)>=>4. Take any vE€V (G) such that ds(v)=A(G). By Lem-

ma 7, G—v is a 2-connected outerplanar graph. Thus G—wv contains a Hamilton cycle C=
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V10;. . . Uy (m=v(G—v) 223) as a boundary of the exterior face. If m =3, then vy, €
E(G),i=1,2,3 because ds(v)=3. So G is a 3-wheel. Otherwise m>4, we have one of
the following cases:

Case 1. AWG)=m.

If C contains an inner edge v,v; (j>>i), there is a v, €V (C) with i<{k<{j such that
G—wv, contains a subdivision of K,. This contradicts the definition of G by Lemma 6. Thus
G doesn’t contain any inner edge. In this case G is isomorphic to a m-wheel.

Case 2. 3<AGY<m—1.

Since 6(G)=3 and A(G)<<m—1, C must contain an inner edge vv;(j>>i). Let C,=
V0it1. .« U100 and C;=vv40. « « Upe . - viovv;. We consider several subcases below.

2.1. AGY=s.

In fact, we have max{|V(CO NN |, |[VCHO NN |} =T é% 123, say

|V(CD)NNe(v) | =3. Thus, for any v, € V(C,)\{v:>v;} G—v, contains a subdivision of
K,, a contradiction.

2.2. AWG)=3.

Since 6(G)=3, G is a 3-regular planar graph and thus ¥(G)=0(mod 2). By the above
discussion we may assume v(G)=>=6. If u/(G)=6, we have obviously N¢(v) =V (C)\{v:,
v(G)—1-3

2
Thus G contains the other inner edge v,v, such that s,¢& {i,j} by A(G)=3. Let {v,,v.}<

V(C,), where t>s. G contains a cycle C;=v,v,1,. .. v,vv, with V(C,) NV (C;)=J. By
Lemma 7, there are three vertex-disjoint paths from v to C;. Since G—uv is outerplanar,
there is v; € Ng(v) such that v, € V(C;)\{v,,v,}. Similarly, there is v, € VIC)H\{v:»v;}.
Suppose that v, = Ng(v)\{vesv,} § V(C,) UV (Cy), then G—u, contains a subdivision of
K 3;,a contradiction. So v, €V (C,) UV (C;). We can assume v, €V (C;). Then G—uv, con-
tains a subdivision of K, ;, a contradiction too. ‘

2.3. AGY=4.

First it is easily seen that | Ng(v) NV (C)) |2 and | N (v) NV (C,) | <2 since any
subdivision of K,ZG. Thus there must exist v,v,€ (Ng(v) NV (C))I)\{vi»v;} and v,,v,E
(No(w) NV CI\{v,;,v;}. So G—{v:} contains a subdivision of K,, a contradiction.

Up to now, the theorem is proved.

v; }. So G becomes isomorphic to a triangular prism. If ¥v(G)>=8, .= =2.

Lemma 8. If G is a triangular prism, then ¥,(G)=3.
Proof. Let C,=u uusu, and C,=v,v,v;v, are two 3-cycles of G with wv, € E(G),i=1,2,
3. One of the following cases must occur;

Case 1. L(u;) NL(w)#.

A 3-list coloring @ of G can be formed as follows: ¢(u,) =¢(v,) € L(u;) N L(v,) ¢ vs)
€ L) \{pw:)},0us) € L) \{p(vs), 9(u)}, 9(0)) € L) \{pu) , ¢(vs) } s 9luy) €
Lu)\{@Cuy) »¢(uy) }.
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Case 2. L (u;)(L(v,)=(J. In this case we have two possibilities.

2.1. LG@)\L(w)#J. .

A 3-list coloring ¢ of G can be formed as follows: ¢(u,) € L(u)\L(v,) y@(u,) € L{u,)
\{@Cu) s eQus) € L(uad)\ {9, @Quz) } 5 9(v2) € L) \{@(uy) }» ¢(v3) € L{vs)\{@(vy),
@) } (o) €L )\ {g(vy) y(v3) }.

2.2. L(u)=L(vy), thus L(v,)\L{(v,)FZ.

A 3-list coloring ¢ of G can be formed as follows: ¢(v,) € L(v,)\L(v,) ,¢(v3) € L{v;)\
{p(vy) } s @us) € L ua) \{9Cvs) }»0Cus) €-L(u)\{@(v:), 0Cus) } s 0(uy) € L () \{p(2),
@Cus) } 90 € Lo)\{@uy) 59 v;) }.

Up to now, we have proved ¥,(G)<(3. But X,(G)=¥(C,)=3 is trivial, therefore we
‘have x,(G)=3. ‘
Lemma 9. For a wheel W,,(m=>3), we have

3, if m =0 (mod 2);

4, otherwise.
Proof. If m=1 (mod 2), x,(W,)=x(W,)=4 by Theorem 4. Otherwise, let w be the
center of W,,,W,,—w be a cycle C=uwu,u;. . .u,u,. For any u,v€V(W,),L(u)=L(v), then
a 3-list coloring ¢ of G can be formed as follows: ¢(v) =c(v) for v&€V(G) where c is a 3-
coloring of W,,. Otherwise, there are u,v€ V (W,) such that L(u)7#L(v) and uv € E(G).
We can assume that L(w)#L(u,). A 3-list coloring ¢ of W, can be formed as follows:
(w) € L(w) \L(u1) y9(u;) € L) \{@p(w) },9(u:) € L) \{@Cuiz1) () }yi=1,... ym.
Since N¢(u1)={us un w} and ¢(w) & L(u;), we have L(u)\Colu))F#S. So let o(u;) €
L{u)\C,(u;). Therefore the lemma is proved.

XI(W".) =

Theorem 6. Let G be a strong 1-outerplanar graph, then
4, if G is W,, with m odd;
0G) = .
3, otherwise,
Proof. Since G is a strong l-outerplanar graph, 3<CY,(G)<C4 by Corollary 4. 1. Thus by
Theorems 2 and 5, Lemmas 5, 8 and 9, the theorem is easily proved.
Lemma 10. ™ If G is an outerplanar graph with §(G)=2, then at least one of the follow-
ing cases is true;
(1) There are two adjacent vertices of degree 2.
(2) There is a vertex v of degree 2 on a 3-cycle.
Theorem 7. Let G be a 1-outerplanar graph with g(G)>>4, where g(G) denotes the girth
of G. Then ¥, (G)<3.
Proof. We first prove that 6 (G)<{{. In fact, if §(G)>=3, then by Lemma 5, we have
6(G)=3. By virtue of the definition o l-outerplanar graph, there is a vertex x €V (G)
such that G—x is an outerplanar graph. Obviously, §(G—x)>=6(G) —1=2, thus by Lem-
ma 3, 6(G)=2. Since g(G—x)=g(G) =4, it follows easily that Case 1 of Lemma 10

holds only. This means that G—z contains two adjacent vertices « and v of degree 2. If
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uz,vr€ E(G), we have g(G)=3, which is impossible. Hence at most one of ux and vz
belongs to E(G). Therefore 8(G)=2, a contradiction. Next, that any subgraph H of G is
still a 1-outerplanar graph with g(H)>=>g(G) >4 deduces GE &,. By Theorem 1, we have
X (G)<3.
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