## THE LIST CHROMATIC NUMBERS OF SOME PLANAR GRAPHS

Lü Enyue Zhang Kemin

Abstract. In this paper, the choosability of outerplanar graphs, 1-tree and strong 1-outerplanar graphs have been described completely. A precise upper bound of the list chromatic number of 1-outerplanar graphs is given, and that every 1-outerplanar graph with girth at least 4 is 3-choosable is proved.

## § 1 Introduction

Throughout this paper, we only consider the finite undirected simple graphs. The terms and notations can be found in [1]. Given a graph G = (V, E) in which each vertex v is assigned a list L(v) of possible colors. If there is a vertex coloring  $\varphi$  such that  $\varphi(v) \in L(v)$  for all  $v \in V(G)$ , we call G L-colorable and also say  $\varphi$  is an L-coloring of G. Given an integer k, G is called k-choosable if it is L-colorable for every assignment L with |L(v)| = k for all  $v \in V$ . Finally the list chromatic number  $\chi_l(G)$  of G is the smallest k such that G is k-choosable. Clearly, every k-choosable graph G is k-colorable and so  $\chi(G) \leq \chi_l(G)$  holds.

The study of list coloring problems was initiated by Vizing<sup>[2]</sup> in 1976 and, independently but later, by Erdös, Rubin and Taylor<sup>[3]</sup> in 1979. During the last years, some new results were found about the choosability of planar graphs. Alon and Tarsi<sup>[4]</sup> proved that every bipartite graph is 3-choosable. In 1993 Thomassen<sup>[5]</sup> proved that every planar graph is 5-choosable whereas Voigt<sup>[6]</sup> presented an example of a planar graph which is not 4-choosable. And in 1995 Thomassen<sup>[7]</sup> showed that every planar graph with girth at least 5 is 3-choosable. In this paper, we characterize the choosability of some planar graphs.

Let G be a planar garph. If there exists a face f such that each vertex of G on the boundary of f, then G is called an outerplanar graph. The edges on the boundary of f are said to be outer edges and other edges inner edges, let  $\varepsilon_{in}$  denote the number of the inner edges. If there is a vertex  $v_0 \in V(G)$  such that  $G - v_0$  is a forest, then G is called 1-tree. If there is a  $v_0 \in V(G)$  such that  $G - v_0$  is an outerplanar graph, then G is called 1-outerplanar

Received:1998-02-23. Revised:1998-04-27.

<sup>1991</sup> MR Subject Classification: 05C15.

Keywords: Planar graph, coloring, list chromatic number.

The project supported by NSFC and NSFJS.

graph. If G is neither a 1-tree nor an outerplanar graph, and for each  $v \in V(G)$ , G-v is an outerplanar graph, then G is called a strong 1-outerplanar graph. Let  $W_m$  be a wheel with order m+1. Let  $\varphi$  be a list coloring of G and for  $S \subseteq V(G)$ , we denote by  $C_{\varphi}(S)$  a set of colors used on the vertices of  $N_G(S)$  under  $\varphi$ .

## § 2 Main Results

Let  $\mathscr{D}_k$  be a collection of simple graphs satisfying the following properties:

- (1) For every  $G \in \mathcal{P}_k$ ,  $\delta(G) \leq k$ ;
- (2) If  $G \in \mathcal{P}_k$ , then for every  $H \subseteq G, H \in \mathcal{P}_k$ .

**Theorem 1.** If  $G \in \mathcal{P}_k(k \ge 1)$ , then  $\chi_l(G) \le k+1$ .

**Proof.** It is clear by induction on v(G).

In order to get the main results, we need several facts and lemmas as follows:

- (1) If G consists of n components  $G_1, G_2, \ldots, G_n$ , then  $\chi_l(G) = \max_{1 \leq i \leq n} {\{\chi_l(G_i)\}}$ .
- (2)  $\chi_{\iota}(G) = 1$  iff G is a null graph.
- (3) If  $H \subseteq G$ , then  $\chi_i(H) \leqslant \chi_i(G)$ .

Without loss of generality, we always consider that G is a simple connected planar graph with at least two vertices.

**Lemma 1.** Let C be an even cycle, then  $\chi_l(C) = 2$ .

Proof. It is easy to prove this.

**Lemma 2.** Let T be a tree and  $x \in V(T)$ . Then there exists a 2-list coloring of T such that the color of x can be assigned in advance.

**Proof.** Let us construct an effective method for giving a 2-list coloring  $\varphi$  of T. The procedure is described as follows:

Step 1. Let  $\varphi(x) \in L(x)$  and set  $U = \{x\}$ .

**Step 2.** For every  $y \in N_T(U) \setminus U$ , let  $y_1 \in U$  be a vertex adjacent to y. We put  $\varphi(y) \in L(y) \setminus \{\varphi(y_1)\}$ .

Step 3. Set  $U = :N_T(U) \cup U$ . If  $V(T) \setminus U = \emptyset$ , stop. Otherwise, go to step 2.

Since T is finite, the above procedure must stop within finite steps. Thus a 2-list coloring  $\varphi$  of T is formed.

**Lemma 3.** [8] If G is an outerplanar graph, then  $\delta(G) \leq 2$ ; and when  $\delta(G) = 2$ , G contains at least two vertices of degree 2.

**Theorem 2.** Let G be an outerplanar graph. Then

$$\chi_i(G) = \begin{cases}
2, & \text{if } G \text{ is a bipartite graph with at most one cycle;} \\
3, & \text{Otherwise.} 
\end{cases}$$

**Proof.** Note that  $\chi_{\iota}(G) \geqslant 2$  is trivial. By Lemma 3,  $G \in \mathcal{P}_2$ . Thus, using Theorem 1, we have  $\chi_{\iota}(G) \leqslant 3$ .

Now suppose that G is a bipartite graph with at most one cycle. If G contains no cy-

cle, G is a tree and then, by Lemma 2,  $\chi_l(G) = 2$ . Let G contain a cycle C, thus G - E(C) is a forest. Since G is connected, every component of G - E(C) contains exactly one vertex in V(C). Now a 2-list coloring of G can be formed as follows: since G is even, by Lemma 1 we first give a 2-list coloring of G; based on this and by Lemma 2, we further color every tree of G - E(C) attached at some vertex of V(C). Thus  $\chi_l(G) = 2$ .

Conversely, suppose  $\chi_l(G) = 2$ . Thus it is obvious that G is a bipartite graph. Suppose that G contains at least two cycles, say  $C_1 = u_0 u_1 \dots u_m u_0$  and  $C_2 = v_0 v_1 \dots v_n v_0$ . Since G is bipartite outerplanar, both  $C_1$  and  $C_2$  are even and one of the following cases must occur:

Case 1.  $|V(C_1) \cap V(C_2)| = 1$ .

Let  $u_0 = v_0$  and set  $L(u_1) = L(v_2) = \{1,3\}$ ,  $L(v_1) = L(u_2) = \{2,3\}$  and  $L(x) = \{1,2\}$  for all  $x \in V(C_1 \cup C_2) \setminus \{u_1, u_2, v_1, v_2\}$ . If  $\varphi(u_0) = 1$ , then  $\varphi(u_1) = 3$ ,  $\varphi(u_2) = 2$ ,  $\varphi(u_3) = 1$ ,...,  $\varphi(u_{m-1}) = 2$ . It follows that  $C_{\varphi}(u_m) = L(u_m) = \{1,2\}$ . Thus  $u_m$  can't be colored properly. If  $\varphi(u_0) = 2$ , we can similarly obtain  $C_{\varphi}(v_n) = L(v_n) = \{1,2\}$ , which implies that  $v_n$  can't be colored properly. Therefore  $\chi_l(G) \geqslant \chi_l(C_1 \cup C_2) \geqslant 3$ .

Case 2.  $|V(C_1) \cap V(C_2)| = 2$ .

Let  $u_0 = v_0$ ,  $u_m = v_n$ . Assigning the same color-lists as in Case 1 to the vertices in  $C_1 \cup C_2$  and using a simliar argument, we have  $\chi_l(G) \geqslant \chi_l(C_1 \cup C_2) \geqslant 3$ .

Case 3.  $|V(C_1) \cap V(C_2)| = 0$ .

Since G is connected, there exists a path P in G connecting  $C_1$  and  $C_2$ . Without loss of generality, let  $P = u_0 x_1 x_2 \dots x_k v_0$ ,  $k \ge 0$  and  $x_1, \dots, x_k \in V(C_1 \cup C_2)$ .

- 3. 1. If  $k\equiv 1\pmod{2}$ , we set  $L(u_1)=L(v_2)=\{1,3\}$ ,  $L(u_2)=L(v_1)=\{2,3\}$  and  $L(x)=\{1,2\}$  for each  $x\in V(C_1\cup C_2\cup P)\setminus\{u_1,u_2,v_1,v_2\}$ . Since |V(P)|=k+2 is odd, we must use same color (i.e., 1 or 2) to  $u_0$  and  $v_0$ . Thus we may identify the vertices  $u_0$  and  $v_0$ , remove all internal vertices of P, and now this subcase is reduced to Case 1.
- 3. 2. If  $k\equiv 0 \pmod 2$ , we set  $L(u_1)=L(v_1)=\{1,3\}$ ,  $L(u_2)=L(v_2)=\{2,3\}$  and  $L(x)=\{1,2\}$  for each  $x\in V(C_1\cup C_2\cup P)\setminus \{u_1,u_2,v_1,v_2\}$ . Let  $\varphi$  be any 2-list coloring of  $C_1\cup C_2\cup P$ . If  $\varphi(u_0)=1$ , using the similar argument of Case 1, we have that  $u_m$  can't be colored properly. If  $\varphi(u_0)=2$ , then  $\varphi(v_0)=1$  since |V(P)|=k+2 is even. It follows that  $v_m$  can't be colored properly. Hence  $\chi_l(G)\geqslant \chi_l(C_1\cup C_2\cup P)\geqslant 3$ .

Now, we always have  $\chi_l(G) \geqslant 3$ . This contradicts the assumption  $\chi_l(G) = 2$ . Thus G contains at most one cycle.

Let  $\overline{G}$  denote a graph such that  $\overline{G}=C_1\cup C_2$  with  $|V(C_1)\cap V(C_2)|=n-1$ , where  $C_i(i=1,2)$  are even cycles of length  $n(\geqslant 4)$ . Let  $G_0$  be a graph containing  $\overline{G}$  as an induced subgraph such that  $G-E(\overline{G})$  is a forest.

Lemma 4.  $\chi_l(G_0) = 2$ .

**Proof.** It is enough to prove  $\chi_l(\overline{G}) = 2$  by Lemma 2. Let  $C_1 = u_1 u_2 \dots u_{n-1} u_n u_1$ ,  $C_2 = u_1 u_2 \dots u_{n-1} v_n u_1$  and  $P = u_1 u_2 \dots u_{n-1}$ , where  $u_n \neq v_n$ . It is enough to consider the following

three cases to form a 2-list coloring of  $\overline{G}$ .

Case 1.  $L(u_n) = L(v_n)$ .

By Lemma 1, there is a 2-list coloring  $\varphi$  of  $C_1$ . Since  $N_{\overline{C}}(u_n) = N_{\overline{C}}(v_n)$  and  $L(u_n) = L(v_n)$ , then we put  $\varphi(v_n) = \varphi(u_n)$ . Hence there is a 2-list coloring of  $\overline{G}$ .

Case 2.  $L(u_n) \cap L(v_n) = \emptyset$ .

Suppose that  $L(u_n) = \{1,2\}$  and  $L(v_n) = \{3,4\}$ . Let  $\Phi$  denote a set of all (proper) 2-list colorings of P. Then  $\Phi = \emptyset$  by Lemma 2. Moreover, we set  $\Phi_{ij} = \{\varphi \in \Phi \mid \{\varphi(u_1), \varphi(u_{n-1})\} = \{i,j\}$ , where  $i \in L(u_1)$  and  $j \in L(u_{n-1})$ , or  $i \in L(u_{n-1})$  and  $j \in L(u_1)\}$ . Now this case can be reduced to prove the following statement:

There is a  $\varphi \in \Phi$  with  $\{\varphi(u_1), \varphi(u_{n-1})\} \neq L(u_n)$  and  $\{\varphi(u_1), \varphi(u_{n-1})\} \neq L(v_n)$ . (\*) In fact, if (\*) holds, then  $L(u_n) \setminus C_{\varphi}(u_n) \neq \emptyset$  and  $L(v_n) \setminus C_{\varphi}(v_n) \neq \emptyset$ . Thus, we can put  $\varphi(u_n) \in L(u_n) \setminus C_{\varphi}(u_n)$ ,  $\varphi(v_n) \in L(v_n) \setminus C_{\varphi}(v_n)$ , and then a 2-list coloring of  $\overline{G}$  is formed.

Suppose that (\*) is not true. Thus  $\Phi = \Phi_{12} \cup \Phi_{34} \neq \emptyset$ . There are two possibilities:

- 2. 1.  $\Phi_{12}\neq\emptyset$  and  $\Phi_{34}\neq\emptyset$ . Without loss of generality, we assume that  $L(u_1)=\{1,3\}$  and  $L(u_{n-1})=\{2,4\}$ . Let  $\varphi\in\Phi_{12}$  and  $\psi\in\Phi_{34}$ . Thus we have  $\varphi(u_1)=1, \varphi(u_{n-1})=2, \psi(u_1)=3$ , and  $\psi(u_{n-1})=4$ . Now we claim that  $\varphi(u_{n-2})=4$ . In fact, if  $\varphi(u_{n-2})\neq 4$ , we can define a new 2-list coloring  $\varphi_1$  of P as follows:  $\varphi_1(u_{n-1})=4, \varphi_1(u_i)=\varphi(u_i), i=1,2,\ldots,n-2$ . Clearly,  $\varphi_1\in\Phi_{14}$ , which contradicts the fact  $\Phi_{14}=\emptyset$ . Similarly, we can deduce that  $\psi(u_{n-2})=2$ . This implies that  $2,4\in L(u_{n-2})$ . Noting that  $|L(u_{n-2})|=2$ , we have  $L(u_{n-2})=\{2,4\}$ . Furthermore, we must have  $\varphi(u_{n-3})=2$ . Otherwise we can construst a 2-list coloring  $\varphi_2$  of P as follows:  $\varphi_2(u_{n-1})=4, \varphi_2(u_{n-2})=2, \varphi_2(u_i)=\varphi(u_i), i=1,2,\ldots,n-3$ . Thus  $\varphi_2\in\Phi_{14}$ , a contradiction. Using analogous argument, we get  $\psi(u_{n-3})=4$ . Thus  $L(u_{n-3})=\{2,4\}$ . Along this way, we obtain that  $L(u_2)=\ldots=L(u_{n-1})=\{2,4\}$ . Now let's put  $\varphi^*$   $(u_1)=1, \varphi^*$   $(u_i)=2, i=2,4,\ldots,n-2, \varphi^*$   $(u_j)=4, j=3,5,\ldots,n-1$ . It is easily checked that  $\varphi^*$  is a 2-list coloring of P and then  $\varphi^*\in\Phi_{14}$ , a contradiction.
- 2. 2.  $\Phi_{12} = \emptyset$ , or  $\Phi_{34} = \emptyset$ , say  $\Phi_{12} = \emptyset$ . We claim that  $L(u_1) = L(u_{n-1}) = \{3,4\}$ . Otherwise there exists a color  $a \in \{3,4\}$  belonging to  $L(u_1)$  or  $L(u_{n-1})$ . By Lemma 2, we can obtain a 2-list coloring  $\varphi$  of P such that  $\varphi(u_1)$  or  $\varphi(u_{n-1})$  equals a. So  $\varphi \in \Phi_{34}$ , a contradiction. Therefore (\*) is proved.

Case 3.  $|L(u_n) \cap L(v_n)| = 1$ .

In this case, we suppose that  $L(u_n) = \{1,2\}$  and  $L(v_n) = \{1,3\}$ . We can also prove the claim (\*). Suppose that (\*) is not true. Thus  $\Phi = \Phi_{12} \cup \Phi_{13} \neq \emptyset$ . There are two possibilities:

3.1.  $\Phi_{12} \neq \emptyset$  and  $\Phi_{13} \neq \emptyset$ . First, we claim that  $1 \in L(u_1) \cap L(u_{n-1})$ . Otherwise we can suppose  $L(u_1) = \{\alpha, \beta\}$  and  $L(u_{n-1}) = \{a, b\}$  where  $1 \notin \{\alpha, a, b\}$ . By Lemma 2, we can obtain a 2-list coloring  $\varphi$  of P such that  $\varphi(u_1) = \alpha$  and  $\varphi(u_{n-1}) \in \{a, b\}$ . So  $\varphi \notin \Phi_{12} \cup \Phi_{13}$ , a contradiction. Hence we assume that  $L(u_1) = \{1, 2\}$  and  $L(u_{n-1}) = \{1, 3\}$ . Analogous to Case 2.1, there is a 2-list coloring  $\varphi^*$  of P such that  $\varphi^* \in \Phi_{11}$ , a contradiction.

3. 2.  $\Phi_{12} = \emptyset$ , or  $\Phi_{13} = \emptyset$ , say  $\Phi_{12} = \emptyset$ . Using an analogous argument as Case 2. 2, we can also gain a contradiction. Hence (\*) is proved.

Up to now, we have proved  $\chi_l(\overline{G}) \leq 2$ . But  $\chi_l(\overline{G}) \geq 2$  is trivial. Therefore  $\chi_l(\overline{G}) = 2$ . The lemma is proved.

**Theorem 3.** Let G be a 1-tree. Then

$$\chi_l(G) = \begin{cases} 2, & \text{if } G \text{ is a bipartite graph with (i) at most one cycle } C \text{ or} \\ & \text{(ii) } G \text{ belongs to } \{G_0\} \text{ as above;} \\ 3, & \text{otherwise.} \end{cases}$$

**Proof.** Note that  $\chi_l(G) \geqslant 2$  is trivial. Since any subgraph of a 1-tree is also a 1-tree,  $G \in \mathscr{P}_2$ . Thus we have  $\chi_l(G) \leqslant 3$  by Theorem 1.

Since (i) implies that G is bipartite outerplanar, using Theorem 2,  $\chi_l(G) = 2$ . For (ii),  $\chi_l(G) = 2$  by Lemma 4.

Conversely, suppose  $\chi_i(G) = 2$ . Thus it is obvious that G is bipartite by contradiction. Since G is a 1-tree, one of the following cases must occur:

Case 1. G contains two cycles  $C_1$  and  $C_2$  such that there are  $v_1, v_2 \in V(C_1) \setminus V(C_2), u_1, u_2 \in V(C_2) \setminus V(C_1)$  with  $v_1 v_2, u_1 u_2 \in E(G)$ . Since G is 1-tree,  $V(C_1) \cap V(C_2) \neq \emptyset$ . Let  $C_1 = v_1 v_2 \dots v_n w_k w_{k-1} \dots w_1 v_1$ , and  $C_2 = u_1 u_2 \dots u_m w_k w_{k-1} \dots w_1 u_1$  where  $k \ge 0$ . Set  $L(u_1) = L(v_2) = \{1,3\}$ ,  $L(u_2) = L(v_1) = \{2,3\}$  and  $L(x) = \{1,2\}$  for all  $x \in V(C_1 \cup C_2) \setminus \{u_1, u_2, v_1, v_2\}$ . Note that  $C_1, C_2$  are even. If  $\varphi(w_1) = 1$ , then  $\varphi(u_1) = 3, \varphi(u_2) = 2, \varphi(u_3) = 1, \dots$ ,  $\varphi(w_3) = 2$ . It follows that  $C_{\varphi}(w_2) = L(w_2) = \{1,2\}$ . Thus  $w_2$  can't be colored properly. If  $\varphi(w_1) = 2$ , then  $\varphi(v_1) = 3, \varphi(v_2) = 1, \varphi(v_3) = 2, \dots, \varphi(w_3) = 1$ . Also it follows that  $C_{\varphi}(w_2) = L(w_2) = \{1,2\}$  and  $w_2$  can't be colored properly. Therefore  $\chi_l(G) \ge \chi_l(C_1 \cup C_2) \ge 3$ .

Case 2. G contains three cycles  $C_1$ ,  $C_2$  and  $C_3$  such that  $|V(C_1)| = |V(C_2)| = |V(C_3)| = n(n \geqslant 4)$  and  $C_1 \cap C_2 \cap C_3$  is a path  $P = v_1 v_2 \dots v_{n-1}$  of the length n-2. Let  $\{x_i\} = V(C_i) \setminus V(P)$ , i = 1, 2, 3. Set  $L(x_1) = \{1, 3\}$ ,  $L(x_2) = \{2, 4\}$ ,  $L(x_3) = \{1, 4\}$ ,  $L(v_1) = \{1, 2\}$ ,  $L(v_2) = \{2, 3\}$ , and  $L(x) = \{3, 4\}$  for all  $x \in V(C_1 \cup C_2 \cup C_3) \setminus \{x_1, x_2, x_3, v_1, v_2\}$ . Since G is bipartite,  $C_i$ , (i = 1, 2, 3) are even. We have  $|V(P)| \equiv 1 \pmod{2}$ . It is easily checked that any 2-list coloring  $\varphi$  of P must satisfy  $\{\varphi(v_1), \varphi(v_{n-1})\} = \{1, 3\}$  or  $\{2, 4\}$  or  $\{1, 4\}$ . So there is an  $i \in \{1, 2, 3\}$  such that  $L(x_i) = C_{\varphi}(x_i)$ . It follows that  $\chi_i(G) \geqslant \chi_i(C_1 \cup C_2 \cup C_3) \geqslant 3$ , which contradicts the assumption  $\chi_i(G) = 2$ . Thus the theorem is proved.

**Lemma 5.** [8] If G is a 1-outerplanar graph, then  $\delta(G) \leq 3$ .

**Theorem 4.** If G is a 1-outerplanar graph, then  $2 \leq \chi_l(G) \leq 4$ .

**Proof.**  $\chi_{l}(G) \geqslant 2$  is trivial. Since any subgraph of 1-outerplanar graph is a 1-outerplanar graph,  $G \in \mathscr{P}_{3}$  by Lemma 5. Thus using Theorem 1, we have  $\chi_{l}(G) \leqslant 4$ .

Corollary 4.1. If G is a 1-outerplanar graph, but neither outerplanar nor 1-tree, then  $3 \le \chi_l(G) \le 4$ 

**Proof.** Suppose  $\chi_l(G) = 2$ , then G is a bipartite graph. We claim G satisfies the condition (i) or (ii) of Theorem 3. Otherwise G contains two cycle  $C_1$  and  $C_2$  and the following cases

must occur since G is 1-outerplanar.

Case 1.  $V(C_1) \cap V(C_2) = \emptyset$ . Analogous to Case 3 of Theorem 2, we can deduce  $\chi_l(G) \geqslant 3$ .

Case 2.  $V(C_1) \cap V(C_2) \neq \emptyset$ . Analogous to Case 1 and Case 2 of Theorem 3, also we can deduce  $\chi_l(G) \geqslant 3$ .

Thus G satisfies the condition (i) or (ii) of Theorem 3, which implies that G is an outerplanar graph or a 1-tree, a contradiction.

**Lemma 6.** [9] G is an outerplanar graph iff G doesn't contain the subdivision of  $K_4$  or  $K_{2,3}$ . **Lemma 7.** If G is a strong 1-outerplanar graph with  $\delta(G)=3$ , then  $\kappa(G)=3$ .

**Proof.** First we prove  $\kappa(G) \geqslant 2$ . Suppose that there is  $x \in V(G)$  such that G - x has components  $G'_1, G'_2, \ldots, G'_m$ . Let  $H'_1 = G[V(G'_1) \cup \{x\}], H'_2 = G[V(\bigcup_{i=2}^m G'_i) \cup \{x\}]$ . Since G is strong 1-outerplanar,  $H'_1$  and  $H'_2$  are outerplanar graphs. Thus  $H_1 \cup H_2 = G$  is outerplanar, a contradiction. So  $\kappa(G) \geqslant 2$ . Now suppose that there are  $u, v \in V(G)$  such that  $G - \{u, v\}$  has components  $G_1, G_2, \ldots, G_n$ . Let  $H_i = G[V(G_i) \cup \{u, v\}], i = 1, 2$ . Since G is strong 1-outerplanar,  $H_1$  and  $H_2$  are outerplanar. Thus  $\delta(H_i) \leqslant 2(i = 1, 2)$  by Lemma 3. Since  $\delta(G) = 3$ ,  $d_{H_i}(u) \leqslant 2$  or  $d_{H_i}(v) \leqslant 2$ , and  $d_{H_i}(x) \geqslant 3$  for all  $x \in V(G) \setminus \{u, v\} (i = 1, 2)$ . Suppose  $uv \in E(G)$ , it is impossible since the outerplanar graph  $H_1$  only contains two adjacent vertices of degree  $\leqslant 2$ . So we have  $uv \notin E(G)$  and one of the following cases must occur:

Case 1.  $\kappa(H_1) \geqslant 2$ . It is clear that there are two internally vertex-disjoint (u,v)-paths  $P_1, P_2 \subseteq H_1$  with  $\nu(P_i) \geqslant 3$ .

Case 2.  $\kappa(H_1)=1$ . First, we claim that neither u nor v is a cut-vertex of  $H_1$ . Otherwise suppose  $H_1-u$  is disconnected, which follows that G-u also is disconnected. This is a contradiction with  $\kappa(G)\geqslant 2$ . Then, we claim  $H_1$  exactly contains two blocks  $B_1$  and  $B_2$  with  $u\in V(B_1)$  and  $v\in V(B_2)$ . If not, there is a block B of  $H_1$  with  $V(B)\cap \{u,v\}=\emptyset$  by the above claim. There is a cut-vertex y of  $H_1$  such that G-y is disconnected where  $y\in V(B)$ , a contradiction. Let  $V(B_1)\cap V(B_2)=z$ . We can assume  $\delta_{B_1}(z)\geqslant 2$  by  $\delta_G(z)\geqslant 3$ . If  $uz\in E(H_1)$ , the outerplanar graph  $B_1$  with  $\nu(B_1)\geqslant 3$  contains only two adjacent vertices of degree  $\leqslant 2$ , which is impossible. Hence there are two internally vertex-disjoint (u,z)-paths  $P_1, P_2\subseteq B_1\subseteq H_1$  with  $\nu(P_i)\geqslant 3$  (i=1,2).

Similarly, we can also prove there are two internally vertex-disjoint paths  $P_3, P_4 \subseteq H_2$  with  $\nu(P_j) \geqslant 3$  (j=3,4). It follows that G-w contains a subdivision of  $K_{2,3}$  with  $w \in V(P_4) \setminus \{u,v\}$ , which contradicts Lemma 6. Therefore the lemma is proved.

**Theorem 5.** Let G be a strong 1-outerplanar graph with  $\delta(G) = 3$ . Then G is isomorphic to a wheel or a triangular prism.

**Proof.** Since  $\delta(G) = 3, \nu(G) \geqslant 4$ . Take any  $v \in V(G)$  such that  $d_G(v) = \triangle(G)$ . By Lemma 7, G - v is a 2-connected outerplanar graph. Thus G - v contains a Hamilton cycle C = C

 $v_1v_2...v_mv_1$   $(m=\nu(G-v)\geqslant 3)$  as a boundary of the exterior face. If m=3, then  $vv_i\in E(G)$ , i=1,2,3 because  $d_G(v)=3$ . So G is a 3-wheel. Otherwise  $m\geqslant 4$ , we have one of the following cases:

Case 1.  $\triangle(G) = m$ .

If C contains an inner edge  $v_iv_j(j>i)$ , there is a  $v_k \in V(C)$  with i < k < j such that  $G-v_k$  contains a subdivision of  $K_4$ . This contradicts the definition of G by Lemma 6. Thus G doesn't contain any inner edge. In this case G is isomorphic to a m-wheel.

Case 2.  $3 \leq \triangle(G) \leq m-1$ .

Since  $\delta(G) = 3$  and  $\Delta(G) \leq m-1$ , C must contain an inner edge  $v_i v_j (j > i)$ . Let  $C_1 = v_i v_{i+1} \dots v_{j-1} v_j v_i$  and  $C_2 = v_j v_{j+1} \dots v_m \dots v_{i-1} v_i v_i$ . We consider several subcases below.

**2.1.**  $\triangle(G) \geqslant 5$ .

In fact, we have  $\max\{|V(C_1) \cap N_G(v)|, |V(C_2) \cap N_G(v)|\} \geqslant \lceil \frac{\Delta(G)}{2} \rceil \geqslant 3$ , say  $|V(C_1) \cap N_G(v)| \geqslant 3$ . Thus, for any  $v_0 \in V(C_2) \setminus \{v_i, v_j\}, G = v_0$  contains a subdivision of  $K_4$ , a contradiction.

**2. 2.**  $\triangle(G) = 3$ .

Since  $\delta(G)=3$ , G is a 3-regular planar graph and thus  $\nu(G)\equiv 0 \pmod{2}$ . By the above discussion we may assume  $\nu(G)\geqslant 6$ . If  $\nu(G)=6$ , we have obviously  $N_G(v)=V(C)\setminus \{v_i,v_j\}$ . So G becomes isomorphic to a triangular prism. If  $\nu(G)\geqslant 8$ ,  $\varepsilon_{in}\geqslant \frac{\nu(G)-1-3}{2}\geqslant 2$ . Thus G contains the other inner edge  $v_iv_i$  such that  $s,t\notin \{i,j\}$  by  $\Delta(G)=3$ . Let  $\{v_i,v_i\}\subseteq V(C_1)$ , where t>s. G contains a cycle  $C_3=v_sv_{s+1}\ldots v_{t-1}v_iv_s$  with  $V(C_2)\cap V(C_3)=\emptyset$ . By Lemma 7, there are three vertex-disjoint paths from v to  $C_3$ . Since G-v is outerplanar, there is  $v_k\in N_G(v)$  such that  $v_k\in V(C_3)\setminus \{v_s,v_t\}$ . Similarly, there is  $v_l\in V(C_2)\setminus \{v_i,v_j\}$ . Suppose that  $v_h=N_G(v)\setminus \{v_k,v_t\}\notin V(C_2)\cup V(C_3)$ , then  $G-v_i$  contains a subdivision of  $K_{2,3}$ , a contradiction. So  $v_h\in V(C_2)\cup V(C_3)$ . We can assume  $v_h\in V(C_2)$ . Then  $G-v_s$  contains a subdivision of  $K_{2,3}$ , a contradiction too.

**2.3.**  $\triangle(G) = 4$ .

First it is easily seen that  $|N_G(v) \cap V(C_1)| \leq 2$  and  $|N_G(v) \cap V(C_2)| \leq 2$  since any subdivision of  $K_4 \not\equiv G$ . Thus there must exist  $v_k, v_l \in (N_G(v) \cap V(C_1)) \setminus \{v_i, v_j\}$  and  $v_s, v_l \in (N_G(v) \cap V(C_2)) \setminus \{v_i, v_j\}$ . So  $G = \{v_k\}$  contains a subdivision of  $K_4$ , a contradiction.

Up to now, the theorem is proved.

**Lemma 8.** If G is a triangular prism, then  $\chi_i(G) = 3$ .

**Proof.** Let  $C_1 = u_1 u_2 u_3 u_1$  and  $C_2 = v_1 v_2 v_3 v_1$  are two 3-cycles of G with  $u_i v_i \in E(G)$ , i = 1, 2, 3. One of the following cases must occur:

Case 1.  $L(u_1) \cap L(v_2) \neq \emptyset$ .

A 3-list coloring  $\varphi$  of G can be formed as follows:  $\varphi(u_1) = \varphi(v_2) \in L(u_1) \cap L(v_2)$ ,  $\varphi(v_3) \in L(v_3) \setminus \{\varphi(v_2)\}$ ,  $\varphi(u_3) \in L(u_3) \setminus \{\varphi(v_3), \varphi(u_1)\}$ ,  $\varphi(v_1) \in L(v_1) \setminus \{\varphi(u_1), \varphi(v_3)\}$ ,  $\varphi(u_2) \in L(u_2) \setminus \{\varphi(u_1), \varphi(u_3)\}$ .

Case 2.  $L(u_1) \cap L(v_2) = \emptyset$ . In this case we have two possibilities.

2. 1.  $L(u_1)\backslash L(v_1)\neq\emptyset$ .

A 3-list coloring  $\varphi$  of G can be formed as follows:  $\varphi(u_1) \in L(u_1) \setminus L(v_1)$ ,  $\varphi(u_2) \in L(u_2) \setminus \{\varphi(u_1)\}$ ,  $\varphi(u_3) \in L(u_3) \setminus \{\varphi(u_1), \varphi(u_2)\}$ ,  $\varphi(v_2) \in L(v_2) \setminus \{\varphi(u_2)\}$ ,  $\varphi(v_3) \in L(v_3) \setminus \{\varphi(v_2), \varphi(v_3)\}$ .

**2. 2.**  $L(u_1) = L(v_1)$ , thus  $L(v_2) \setminus L(v_1) \neq \emptyset$ .

A 3-list coloring  $\varphi$  of G can be formed as follows:  $\varphi(v_2) \in L(v_2) \setminus L(v_1)$ ,  $\varphi(v_3) \in L(v_3) \setminus \{\varphi(v_2)\}$ ,  $\varphi(u_3) \in L(u_3) \setminus \{\varphi(v_3)\}$ ,  $\varphi(u_2) \in L(u_2) \setminus \{\varphi(v_2), \varphi(u_3)\}$ ,  $\varphi(u_1) \in L(u_1) \setminus \{\varphi(v_2), \varphi(u_3)\}$ ,  $\varphi(v_1) \in L(v_1) \setminus \{\varphi(u_1), \varphi(v_3)\}$ .

Up to now, we have proved  $\chi_l(G) \leq 3$ . But  $\chi_l(G) \geqslant \chi(C_1) = 3$  is trivial, therefore we have  $\chi_l(G) = 3$ .

**Lemma 9.** For a wheel  $W_m(m \ge 3)$ , we have

$$\chi_l(W_m) = \begin{cases} 3, & \text{if } m \equiv 0 \pmod{2}; \\ 4, & \text{otherwise.} \end{cases}$$

**Proof.** If  $m\equiv 1\pmod 2$ ,  $\chi_l(W_m)=\chi(W_m)=4$  by Theorem 4. Otherwise, let w be the center of  $W_m,W_m-w$  be a cycle  $C=u_1u_2\ldots u_mu_1$ . For any  $u,v\in V(W_m)$ , L(u)=L(v), then a 3-list coloring  $\varphi$  of G can be formed as follows:  $\varphi(v)=c(v)$  for  $v\in V(G)$  where c is a 3-coloring of  $W_m$ . Otherwise, there are  $u,v\in V(W_m)$  such that  $L(u)\neq L(v)$  and  $uv\in E(G)$ . We can assume that  $L(w)\neq L(u_1)$ . A 3-list coloring  $\varphi$  of  $W_m$  can be formed as follows:  $\varphi(w)\in L(w)\setminus L(u_1)$ ,  $\varphi(u_2)\in L(u_2)\setminus \{\varphi(w)\}$ ,  $\varphi(u_i)\in L(u_i)\setminus \{\varphi(u_{i-1}),\varphi(w)\}$ ,  $i=1,\ldots,m$ . Since  $N_G(u_1)=\{u_2,u_m,w\}$  and  $\varphi(w)\notin L(u_1)$ , we have  $L(u_1)\setminus C_{\varphi}(u_1)\neq\emptyset$ . So let  $\varphi(u_1)\in L(u_1)\setminus C_{\varphi}(u_1)$ . Therefore the lemma is proved.

**Theorem 6.** Let G be a strong 1-outerplanar graph, then

$$\chi_l(G) = \begin{cases} 4, & \text{if } G \text{ is } W_m \text{ with } m \text{ odd;} \\ 3, & \text{otherwise.} \end{cases}$$

**Proof.** Since G is a strong 1-outerplanar graph,  $3 \le \chi_{\ell}(G) \le 4$  by Corollary 4.1. Thus by Theorems 2 and 5, Lemmas 5, 8 and 9, the theorem is easily proved.

**Lemma 10.** [8] If G is an outerplanar graph with  $\delta(G) = 2$ , then at least one of the following cases is true:

- (1) There are two adjacent vertices of degree 2.
- (2) There is a vertex v of degree 2 on a 3-cycle.

**Theorem 7.** Let G be a 1-outerplanar graph with  $g(G) \ge 4$ , where g(G) denotes the girth of G. Then  $\chi_l(G) \le 3$ .

**Proof.** We first prove that  $\delta(G) \leq 2$ . In fact, if  $\delta(G) \geqslant 3$ , then by Lemma 5, we have  $\delta(G) = 3$ . By virtue of the definition of 1-outerplanar graph, there is a vertex  $x \in V(G)$  such that G - x is an outerplanar graph. Obviously,  $\delta(G - x) \geqslant \delta(G) - 1 = 2$ , thus by Lemma 3,  $\delta(G) = 2$ . Since  $g(G - x) \geqslant g(G) \geqslant 4$ , it follows easily that Case 1 of Lemma 10 holds only. This means that G - x contains two adjacent vertices u and v of degree 2. If

 $ux, vx \in E(G)$ , we have g(G) = 3, which is impossible. Hence at most one of ux and vx belongs to E(G). Therefore  $\delta(G) = 2$ , a contradiction. Next, that any subgraph H of G is still a 1-outerplanar graph with  $g(H) \geqslant g(G) \geqslant 4$  deduces  $G \in \mathcal{P}_2$ . By Theorem 1, we have  $\chi_l(G) \leqslant 3$ .

## References

- 1 Bondy, J.A., Murty, U.S.R., Graph Theory with Applications, The Macmillian Press Limit, new York, 1976.
- Vizing, V.G., Coloring the vertices of a graph in prescribed colors, Diskret Analiz, 1976,29:3~10.
  (in Russian)
- 3 Erdős, P., Rubin, A.L. and Taylor, H., Choosability in graphs, Congr. Numer., 1980,26:122~157.
- 4 Alon, N., Tarsi, M., Colorings and orientations of graphs, Combinatorica, 1992, 12(2):125~134.
- 5 Thomassen, C., Every planar graph is 5-choosable, J. Combin. Theory Ser. B, 1994,62(1):180~181.
- 6 Voigt, M., List colourings of planar graphs, Discrete Math., 1993,120:215~219.
- 7 Thomassen, C., 3-list coloring planar graphs of girth 5, J. Combin. Theory Ser. B, 1995,64(1):101 ~107.
- 8 Wang Weifan, Equitable colorings and total colorings of graphs. [Doctoral Thesis], Najing: Nanjing University, 1997.
- 9 Tian Feng and Ma Zhongfan, Graphs and Network Flows, Science Press, Beijing, 1987.

Dept. of Math., Nanjing Univ., Nanjing 210093.