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ABSTRACT. Let T = (V, A) be an oriented graph with n ver-
tices. T is completely strong path-connected if for each arc
(a,b) € Aand k (k =2,...,n —1), there is a path from b to
a of length k (denoted by Pk(a,b)) and a path from a to b of
length k (denotod by Pi(a,b)) in T. In this paper, we prove
that a connected local tournament 7" is completely strong path-
connected iff for cach arc (a,b) € A, there exist Pa(a,b) and
Py(a,b) in T, and T % Tp — Dj-type digraph and Ds.

1 Introduction

Let T = (V, A) be an oriented graph with n vertices. If an arc (z,y) € A,
then we say that = dominates y, denoted by z — y. I S; and Sy are disjoint
subsets of V such that there is a complete connection between them and all
arcs between them are directed toward S3, we say that S; dominates Sy,
denoted by S; — S;. We write x — S; (resp., So — z) instead of {z} — Sy
(resp., S — {z}). For z € V, we define O(z) = {y | y € V,(z,y) € A},
I(z)={y|y eV, (y,z) e A}.
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T is arc-k-cyclic if each arc (a,b) € A, there is a path from b to of
length k—1inT. T is arc-pancyclic (resp., arc-antipancyclic) if for each
arc (a,b) € A, there is a path from b to a (resp., from a to b) of length &
(k=2,3,...,n-1)in T, denoted by Pk(a, b), or briefly Py (resp., Pl(a,b),
P). An oriented graph T is completely strong path-connected if T is arc-
pancyclic and arc-antipancyclic. Other notations and terminologies not
defined in this paper can be found in [3].

Alocal tournament T is an oriented graph such that T[O(z)] and T[I (z)]
are tournaments for every vertex z in T. Local tournaments were first
introduced by J. Bang-Jensen (1], [2]. Clearly, tournaments is a special class
of local tournaments. In {1], [2], it was shown that every connected local
tournament has a Hamiltonian path, and every strong local tournament has
a Hamiltonian cycle. Many other results for tournaments are also shown
for local tournaments. In this paper, Zhang and Wu’s results in [5] and [6]
are extended. We get the following main result.

Theorem. Let T = (V, A) be a connected local tournament with n vertices
(n > 3). If for each arc (a,b) € A, there exist Py(a,b) and Pj(a,b) in T.
Then T is completely strong path-connected, except T' ~ To- or Dj-type
digraph or Dg. (see Figures 1, 2 and 3).

Figure 1. Dg

Figure 2. Ty-type digraph.
(Here TY, TY are tournaments)
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Figure 3. Dg-type digraph.
(Here T is a tournament)

Immediately we have,

Corollary. ([5], Theorem 1) A tournament T = (V, A) with n vertices
is completely strong path-connected if and only if for each arc (a,b) € A,
there exist Py(a,b), and Pj(a,b) in T, and T ¢ Ty-type digraph.

2 The Proof of the Theorem
In order to prove the Theorem, we need the following lemmas.

Lemma 1. Let T = (V, A) be a connected local tournament. For each
arc (a,b) € A, there exist Py(a,b) and Pj(a,b) in T, then there exists a
cycle in the induced subgraph T|O(z0)] (resp., T(I(zo)] for any zq € V.
Furthermore, |O(z0)| > 3, (resp., [I(zo)] > 3).

Lemma 2. Let T = (V, A) be a connected local tournament. For each arc
(a,b) € A, there exist Py(a,b) and P3(a,b) in T, then there always exists a
Pi(a,b) in T for each arc (a,b) € A (k=2,3,...,6).

By the definition of a local tournament, the proof of Lemma 1 and Lemma
2 is an analogous to the proof of Lemma 1 and Lemma 3 in [7].

Lemma 3. ({4] Theorem 1) Except for Ts-, Ta-type digraphs and Dg
(see Figures 1 and 5), every arc-3-cyclic connected local tournament is arc-
pancyclic.

The proof of the Theorem.

Let T = (V, A) be a connected local tournament of order n (n > 3) such
that for each arc (a,b) € A, there exist P(a,b) and Pj(a,b) in T. For Tj-
or Tz-type digraph, it is easy to find that there exists a vertex z such that
|O(z)] = 2. So T is not a Ts- or a Ts-type digraph by Lemma 1. Hence
by Lemma 3 T is an arc-panyclic local tournament except 7T is isomorphic
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to Dg. And by Lemma 2 there always exists a Pi(a,b) in T for k < 6.
Therefore it is enough to prove the following.

U

—’,—n

Y
]
Te-type digraph Ts-type digraph
(where Ty, T} are tournaments)
Figure 5.

The directions of the edges without arrow can be chosen arbitrary.

Proposition. Suppose T is not isomorphic to a Ty- or Dg-type digraph
or Dg. If for each arc (a,b) € A and k (7 < k < n — 1), there exists a
P{_,(a,b) in T. Then there exists a Py(a,b) in T

From now on, we shall assume that there is a P,_,(a,b) in T, and denote
it by (1,2,...,k), where a = 1 and b = k. The set of vertices {1,2,...,k}
of P,_,(a,b) is also denoted by P}_;. Let W =V — P[_,. Hence [W| > 1.
For any w € W we define

O'(w) = O(w) N Py, I'(w)=I(w)n P .
When O'(w) # @ and I'(w) # @ for w € W, set
a(w) = max{i | i € O'(w)}, bw)=min{i|ie I'(w)}.
If the condition of the proposition were false, we should assume that

There does not exist any Pi(a,b) in T. (*)

By the assumption above, we may obtain the following claims.

(1) O'(w) = {1,2,...,a(w)} and a(w) < k as O'(w) # B. Similarly,
I'(w) = {b(w),...,k} and b(w) > 1 as I'(w) # .

Suppose O(w) # 0. If there exists an i € O'(w) with i — 1 ¢ O'(w),
by the definition of a local tournament and {w,i — 1} C I(), then i — 1
and w are adjacent in T. Thus i — 1 — w by the definition of i. Hence
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there is a Pl(a,b) = (1,...,i — L,w,i,...,k) in T. This contradicts ().
So O'(w) = {1,2,...,a(w)}. And if a(w) = k, then w — P, ;. Note
that there exists a Py(w,1) = (1,z,w). Clearly z ¢ P_,. Hence z € W.
Thus T contains a P/(a,b) = (1,z,w,3,...,k). This contradicts (x). So
a(w) < k.

(2) For any w € W, O'(w) # @ if and only if I'(w) # 0.

If O'(w) # 0, there is a Py(w,1) = (1,z,w). Il z € W, then 1 € I'(z)
and b(z) = 1. This contradicts b(w) > 1 by (1). Ience z € I'(w) and
I'(w) # 9. Similarly, if I’(w) # 0, then O'(w) # 0.

(3) Let Wy = {w | w € W,0'(w) # 0} and Wy = W — W, then Wy = 0.
Furthermore, T[W] is a tournament and O'(w) # 0, I'(w) # @ for every
we W,

Since T is connected, W; # @. Suppose Wy # 0. Let w; € Wy and
wy € W, such that w; and w, are adjacent. Without loss of generality,we
assume wy — wy. Since k — w; by (1) and (2), wp and k are adjacent.
Then & — wy and O'(w2) # @ by (1) and (2). This is a contradiction.
Hence Wy = 0. ie. W = Wjy.

From (1) and (2), we have W C I(1) and O'(w) # 0, I'(w) # @ for every
w € W. Thus T[W] is a tournament by the definition of a local tournament.

(4) b(w) = b(w’) and a(w) = a(w’) for any w,w’ € W.

Suppose there are w,w’ € W such that b(w) # b(w'). Set b(wg) =
min{b(w) | w € W}. Let W5 = {w | w € W,b(w) > b(wo)} and Wy =
W — W3. Then Wa # 0, Wy # 0 and b(wo) = b(w) — w for any w € Wy.
Case 1. There exist ws € W3 and wy € Wy such that w3 — wy.

Since b(ws) = b(wp) < b(ws) and b(ws) — 1 — wy, wz and b(ws) — 1
arc adjacent by ws — w4 and the definition of a local tournament. From
(1) we have wy — b(wz) — 1. Thus a(ws) = b(ws) — 1. Similarly, since
b(wy) — 1 < b(ws) — 1 = a(ws) and w3 — wy, we have a(wq) = b(wy) — 1.

Now we need the following three Lemmas
Lemma 4. There are no u, v, n and m in P;_, such that v < n <
b(wg) — 1 < b(wz) <v <m and (w,v),(n,m) € A.

Proof: Otherwise, it will contradict (x). O

Now, (n,m), (u,v) € A are called cis-crosswise arcs with respect to the
P/, (bricfly cis-crosswise arcs) if n, m, u and v are on P{_; such that
u<n<v<m.

Lemma 5. (a) For each i € {3,4,...,b(ws) — 1}, we have (i,1) € A. (b)
For each j € {b(ws3), ...,k — 2}, we have (k,j) € A.

Proof: (a) Since {1,2,...,b(ws) =1 = a(ws)} € O(wy), T[{3,4, ..., b(ws)—
1,1}] is a tournament. If there is an i € {3,4,...,b(ws) — 1} such that
1 — 4, then wy — 49 — 1 by ip — 1 < a{ws). There is a Py(wz,ip — 1) =
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(io—1,u,w3). By the definition of b(w;), we have u ¢ W. Hence u € I'(ws).
Thus there is a P(a,b) = (1,ig,...,u —1,wy,2,...,i0 — L, u,. .., k). This
contradicts (*). So (a) is valid.

An analogous proof of (a), we have that (b) is true. O

Lemma 6. If (b(ws)—1,b(w3)) € A and (b(ws)—1, b(ws)) # (a,b) = (1, k),
then there is an arc (u,v) € A such that (u,v) and (b(ws) — 1,b(w3)) are
cis-crosswise arcs.

Proof: By Lemmas 1, 4 and 5, using an analogous proof of Lemma 3 in
(5], Lernma 6 follows. a

Now, let’s back to discuss case 1.

There are Py(ws, a(wq) = b(ws)—1) = (b(w4)—1,m, w3) and Py(ws,wq) =
(w4, ws,w3), where m ¢ W and ws ¢ P{_;, by the choice of ws and
b(ws) > b(wy). Hence we have that b(ws) <m < k and ws € W.

If b(ws) — b(wg) > 4, then a(ws) > b(ws) + 3. There is a Py(a,b) =
(1, ...,b(ws), ws, ws,ws, b(ws) +3,...,a(ws),..., k). This contradicts (x).
Hence b(ws) — b(wy) < 3.

Subcase 1.1. (b(wy) — 1,b(w3)) & A.

First, we have m > b{ws). Let Po(b(ws),ws) = (wq,y,b(w3)). fy €
W, then a(y) > b(ws). If a(y) > b(wyg) + 2, then there is a P[(a,b) =
,...,b5(ws), wa,y,b(wa) +2,...,a(y), ..., k). This contradicts (x). Henee
a(y) < b(wyq) + 1. Since afy) > b(ws) > b(ws) + 1, we have a(y) = b(ws) =
b(ws) + 1. By Lemma 1 ,there exists an z € O(1) — {2,k}. Obviously,
cgW. And z ¢ {3,...,b(ws) — 1} by Lemma 5. So x > b(ws).

(a) = = b{ws). Sinee z > 3 and a(wy) = b(wg) —1 > 2, there is a
Pl(a,b) = (1, = b(ws),...,m — L, wa,2,...,b(ws) — 1,m,..., k). This
contradicts ().

(b) = = b(w,) + 1. Note that m — 1 > b(wz) — 1 = b(ws) and a(y) =
b(ws) + 1 = a(wq) +2 > 3. Il a(wy) > 1, then there is a P{(a,b) = (1,z =
bws),...,m—1,w4,9,2,...,a(ws) = blws)—1,m, ..., k). This contradicts
(x). Hence a(ws) = 1. Thus we have I(k) C {1,b(ws) —1 =2,k — 1} by
Lemma 5 (b). And then 2 — k by Lemma 1. Hence there is a P(a,b) =
(1,z = b(ws), ...,k — 1, w3, b(ws) = 2, k). This contradicts (x) too.

(¢) = > blws) = b(ws) + 1. Since z < k and 1 — =, there is no jo €
{2,...,b(ws)—1} such that jo — k by Lemma 4. Then I(k) C {1,b(w4), k—
1} by Lemma 5 (b). Hence I(k) = {1,b{(w4),k — 1} by Lemma 1. That is,
b(ws) — k. If k = 7, there is a P[(a,b) = (1, z,ws,y, b(ws), w3, b(ws), k).
This contradicts (x). Hence k > 7. There are two distinct vertices 7,7 €
Pl —{1, a{ws), b(ws) = a(w4)+1, b(w3) = a(wq)+2,z,k}. Using two arcs
(1,z), (b(ws), k) and w3, wa, y, then there is always a Pi(a,b) in T. e.g.,
1 < i < a{wy) and b(ws3) < j < z, then there is a Pi(a,b) = (1,z,...,k —
1, wq,y, b(us),...,z — 2,ws,3,...,a(ws),b(ws), k). These contradict (x).
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Hencey € Wand 1 < y < a{wyq) = b{ws) — 1. Since (b(wq) —1,b(w3)) € 4,
we have y < b(w,) —1. Now, there are two arcs (y, b(ws)) and (b(ws) —1,m)
in T with y < b(wyg) — 1 < b(w3) < m. This contradicts (x) by Lemma 4.
Subcase 1.2 (b(wy) — 1, b(ws)) € A.

Since b(ws) — b(wg) < 3 and k > 7, we have (b(wy) — 1,b(w3)) # (a, b).
There exists an arc (u,v) such that (u,v) and (b(ws) — 1, b(w3)) are cis-
crosswise arcs by Lemma 6.

Suppose u < b(wg) — 1 < v < b{ws). For v = b(ws) or blws) + 1
or b{wy) + 2, there exists a P[(a,b) in T respectively. e.g., we assume
v = b(ws)+ 1. If b(w3) = b(wa) +3, then there is a Pi(a,b) = (1,...,u,v =
b(ws)+1, ws, ws, w3, u+1,...,b(ws) —1,b(ws), ..., k). i b(ws) = b(ws)+2,
then v = b(wz) — 1 = a(ws). Since wy — ws and wy — a(wy), ws and a(wy)
are adjacent. By the definition of b(w4) = b(wp), we have ws — a(ws).
Hence a(ws) > a(ws) > u and ws — u+ 1. Thus there is a Pi(a,b) =
(1,...,u,v = blws)+1,ws, ws, u+1, ..., b(ws)—1,b(wz) = b(wg)+2,.. ., k).
These contradict (x).

Using an analogous method, if b{ws) — 1 < u < b{w3) < v, then there is
also a P/(a,b) in T. This contradicts ().

Therefore no vertex of Wz dominates any vertex of Ws. We have that
W4 — Wi since T[W] is a tournament.

Case 2. W4 — W3.

We choose wy € Ws, wy € W, such that b(ws) = max{b(w) | w €
Wa}. Thus wg — ws. Since b(ws) > b(wy), there exists a Pj(ws, w3) =
(w4, we, w3) with wg € W. Now, we have the following claims.

(4.1) b(ws) < alws) < b(wy) + 1.

Let Py(wq,w3) = (ws,y, ws). Since Wy — Wi, we have y ¢ W and
y € P,_,. Thus b(wy) <y < a(ws). If a(ws) — 2 > b(wy), then there is a
Pl(a,b) = (1,2,...,a(w3) — 2, w4, w3, a(ws), ..., k). This contradicts (%).
Hence a(ws) < b(ws) + 1.

(4.2) (a(w4), b(ws)) € A.

Let Py(b(ws), wq) = (wy,u,b(ws)) and Pr(ws, a(ws)) = (a(ws), m,ws3).
By the choice of w3 and wy, we have u,m € W. Then u < a(ws) and
b(wz) < m. If u < a(ws) and b(ws) < m, then

(a) a(ws) > a(wg) + 2. Since b(ws) — 1 > b(wy), there is a Pi(a,b) =
(a,...,u,bws),...,m — Lwz,a(ws) +2,...,a(ws),...,b(ws) — 1, wg,u +
l,...,a(w4),m,...,k);

(b) b(wy) < b(ws) ~ 2. There is a P{(a,b) = (1,...,u,b{ws),...,m —
1,ws,a(ws) +1,...,b(wq),...,bws) - 2,ws,u+1,...,a(ws), m, ..., k);

(c) a(ws) < a(wq) + 1 and b(ws) > blws) — 1. Since a(ws) > b(ws) >
a(ws) + 1 and b(w,) < b(ws) — 1, we have a(ws) = b(wy) = a{wq) + 1 =
b(wz) — 1. Thus there is a P[(a,b) = (1,...,u,b(ws),...,m — 1, wy, w3, u+
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L...,b(w3) — 2 = a(ws),m,..., k).

These contradict (x). So u = a(w4) or m = b(wz). Thus (4. 2) is valid.

(43) a(wg) = b(’w3) — 1 and a(w4) = b(w4) —1.

If a(ws) < b(ws)~1, then i and w3 are nonadjacent for each 5 € {a(w3) +
L,...,b(w3) — 1}. Since {a(w3) +1,...,b(w3) — 1,k} C I(w,), k and j are
adjacent for each j € {a(ws) + 1,...,b(w3) — 1}. Since the definition of
local tournaments and k — ws, we have {a(ws3) + 1., b(wg) — 1} —
k. 1f b(ws) < k, then there is a P/(a,b) = (1,...,a(wq), blws), ... k —
L,ws,a(ws) +1,...,b(w3) — 1,k) by (4.2) and a(ws) 4+ 1 < b(w,) < a{ws).
This contradicts (*). So b(ws) = k. Since 1,k —1 € I(k),1 and k — 1 =
b(ws) — 1 are adjacent, and then 1 — b(w3) — 1 by wy — 1. Now, we
consider the following two subcases:

(a) a(ws) < blwz) —2=k - 2.

I a(ws) > 3, then there is a P{(a, b) = (1,b(w3) -1, wq, w3, 3, . . ., b(ws) —
2,k). This contradicts (). Hence a(w3) < 2. Since a(w3) > b(wyg) >
a(ws) > 1, we have a(ws) = 2. Then b(ws) — 3 > a(ws) by k > 7. Hence
b(ws)—3 — k and there is a P/(a,b) = (1,b(ws) 1 = k—1,wy, w3, a(ws) =
2,...,k — 3= b(ws) — 3,k). This also contradicts ().

(b) a(ws) =b(ws) -2 =%k — 2.

Since k > 7, we have a(ws) > 5 and b(ws) > a(ws) — 1 > b(wy) — 1 > 4
by (4.1). If b(ws) = a(ws) + 1, then a(wy) > 3. When a(wsz) = blwy) +
1, there is a P/(a,b) = (1,b(ws3) — 1 = k — 1, ws, we,ws3,2,...,k -4 =
a(wy),b(ws) = k) by (4.2). When a(ws) = b(w,), there is a Pl(a,b) =
(l,b(w3) -1 =k - 1,’([)4,11)3,2,...,]0 -3 = a(w4),b(w3) = k) These
contradict (x). So b(ws) > a(ws) + 2. Since a(wy) — b{(wz) = k and
a(wy) — a(wy) + 1,k and a(ws) + 1 are adjacent, and then a{wg) +1 -k
by k — w4 and wyg and a(w4) + 1 are nonadjacent. Similarly, we can get
that {a(ws)+1,...,b(ws)—1} — kand 1 — {a(ws)+1,.. ., b(wg) —1} since
{La(wy)+1,...,b(wg) =1} C O'(w3). If b(wy) —2 > a(ws) +1, then there
is a Py(a,b) = (1,b(wyg) — 1,...,a(w3) = k — 2,wq,w3,2,...,b(wy) — 2,k)
by (4.1) and b(wq) > 4. If b(wg) = a(w,) + 2, then there is a P[(a,b) =
(La(wa)+1,...,k—1,wq,2,...,a(ws),b(ws) = k) by (4.2) and a(w4) > 2.
These contradict (). So a(ws) = b(ws) ~ 1.

Similarly, we can prove that a(ws) = b(w4) — 1. (4.3) is valid.

Now, by (4.1), (4.2) and (4.3), we have that b(ws) — b(ws) < 2, a{ws) =
b(ws) ~ 1, a{w4) = b(ws) —1 and (b(ws) —1,b(ws)) € A. Using an analogous
proof of subcase 1.2, there is a P{(a,b) in T. This contradicts (x).

Up to now, we prove that b(w) = b(w’) for any w,w’ € W. Similarly, we
can prove that a(w) = a(w’) for any w,w’ € W. So (4) is valid.

We denote ag = a(w) and by = b(w) for any w € W. Then O'(w) =
{1,2,...,a0} and I'(w) = {by, ..., k} forany w € W, and then T[{1, ..., a0}]
and T{{bo,bo + 1,...,k}] both are tournaments. Clearly for any i € {ao +
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1,...,b0 — 1} and any w € W, i and w are nonadjacent.

Now, we shall use the following lemmas and symbols.

For 1 <t < ag and by <7<k let R(E) = {i](t,i) € A,by < i <k}
and L(j) = {i | (1,7) € A,1 <i < ag}. Since there exist Py(w, t), Py(j, w)
forany we Wand 1 <t < ag, bg <j <k, it is easy to check R(t) # 9,
L(j} # ®. Hence we can define,

b(t) = max{R(1)}, ¥1(t) = min{R(t)}, p1(j) = max{L(5)} and p(j) =
min{L{3)}.

Then by < ¥1(t) < ¥(t) < k, 1 < ¢(j) < @1(4) < ao, and (L, $(t)),
(t,%1(1), (p(3),9), (p1(4),5) € Aforany 1 <t < ag and by < j < k.
Lemma 7. If there are o < v < § in P{_, such that 1 < a < ag — 1,
a+l<y,bp+1<6and(a,y),(y—1,6) € A, then T contains a P(a,b)
inT.

Proof: Let «, v and § satisfy the condition of Lemma 7. Then there is a
Pl{a,b) = (1,...,a,7,...,6—1w,a+1,...,7—1,6,...,k). O

Lemma 8. ([2], Corollary 3.13) Let P, = (z;, ... yZm) and Py = (y1,...,41)
with m > 2 and t > 3 be paths in a connected local tournament T. If
there exist 4,7 with 1 < i < §j < m such that z; = Y1, T; = y, and
V(P) N (v(P2) = {y1,u}) = 0. Then T has an (z,,z,)-path P such that
V(P)=V(P)UV(P).

(8) bo =ap+1

Suppose by > ag + 1. If by = k, then () = k for each i € {1,2,...,a0}.
That is, {1,2,...,a0} — k. Let Pz(ag,a0 + 1) = (ag + 1,z, ap). Obviously,
z ¢ W. fze {1,2,...,a0 — 1}, then ao + 1 and w are adjacent by
w — z. This is a contradiction. So z ¢ {1,2,...,a9 — 1}. Similarly,
z & {ao+1,...,00—1}. Thusz = by = k. ie, k = z — ag. This
contradicts ag — k. Hence by < k — 1. Similarly, we have ag > 2.

Let Py(ag, a0 + 1) = (ag + 1,¢,a9). Using an analogous proof as above,
we have t ¢ WU {1,2,...,a0 — 1,a0+1,...,bp — 1}. That is, by < ¢ < k.
If t = by, then we have by — aqg, w(bo) < ag and Y(ag) > bo. w(bg) and
bo — 1 arc adjacent by (by) — by and by — 1 — by. Since by — 1 and w
are nonadjacent and w — @(by), we have @(by) — by — 1. Similarly, we
can obtain ¢(bo) — {ao+1,...,bp — 1}. Let a = w(by), v = ag + 1 and
6 = t(ag). Then there is a P/(a,b) in T by Lemma 7. This contradicts
(*). Hence ¢ > bg. Similarly, letting Py(by = 1,bo) = (bo, y,bo — 1), we have
1<y <aop.

If bo > aop + 2, then ¢ and ag + 2 are adjacent by ag + 1 — ¢ and
ap+1 —ag+2. If t - ap + 2, then it will deduce that ag + 2 and w are
adjacent by t — w, a contradiction. Hence ag + 2 — ¢. Similarly, we have
{ao+1,...,b0—1} = t. Let o = y(< ag), vy = by—1 and 6 = (> by). There
is a Py(a,d) in T by Lemma 7. This contradicts (x). Hence by = ag + 2.
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ag+ 1 and t — 1 are adjacent since ag +1 — t and t — 1 — t. Thus
ag+1—-t—1byt—1— wand wand ag+ 1 are nonadjacent. Similarly,
we have

ag+1—{b+1,...,t -1t} (3x)

Now, we consider the following four cases.
Case 1. ap > 2 and k > by + 2.

1f (bo) < ag, letting @ = @(bo), v = bp and § = ¢, then there is a P/(a,b)
in T by Lemma 7 and (bp — 1,¢) = (a0 + 1,¢) € A. This contradicts (x).
Hence ¢(by) = ag. That is, ap — bg. Since 1,a0 € O(w), 1 and agp are
adjacent. Suppose (1,a0) € A. If Y(ap — 1) > by, letting @ = 1, ¥ = a¢ and
8 = ¢¥(ag — 1), then there is a P(’a, b) in T by Lemma 7. This contradicts
(*). So ¢(ag — 1) = bg. i.e, ag —1 — ¥(ap — 1) = bp. Now, letting
a=ayp—1,v="b and § = ¢, there is a Pi{a,b) in T by (>*) and Lemma
7. This contradicts () too. Hence in the following we always assume that
(ap,1) € A.

(5.1) {1,2,...,a0—1} »ap+1landap+1— k.

1 — ag + 1 since ap + 1 and w are nonadjacent and 1,a0 + 1 € O(ap).
Furthermore, 2 — ag + 1 by 1 — 2. Similarly, we have that {1,2,...,a0 —
1} »ap+landag+1 —kbyl—ap+1land1— k.

(5.2) by — 1 and {b0+2,,k} — bg.

Since ag — 1 and ag — by, 1 and by are adjacent. If 1 — bg, then, letting
a=1,v=by and § = ¢, there is a P{(a,b) in T by (4x) and Lemma 7.
This contradicts (x). Hence by — 1.

If there exists a 7 € {bg + 2,...,k} such that by — j, then T contains a
P)é(a,b) = (1,...,a0—1,a0+1 Zbo—1,b0+1,...,j—l,w,ao,bo,j,...,k}
by (5.1) and (). This contradicts (x). Hence {bg +2,...,k} — bg.

(5.3) ap =3, bp =5 and (ag — 1,b) & A.

If ¥(ap — 1) = bo, then there is a P[(a,b) = (1,...,a0 — 1,9(ag — 1) =
bo,...,k—1,w,a9,a0+1,k) by (5.1) . This contradicts (x) . So ¥(ag—1) >
bo and ((10 — 1,b0) ¢ A.

By ag—1 — ¥(ao—1) > by, Lemma 7 and (%), we have ag — 2. If ag > 4,
then there is a P[(a,b) = (1,a0 +1,...,9¥(a0 — 1) — 1,w,a0,2,...,a0 —
1,¢¥(ag — 1),...,k) by (5.1). This contradicts (x). Hence ag < 3, and then
ao =3 by ap > 2. Thus bg = a9 +2=25.

B k=b+2=7

Suppose k > b + 2. When ¢(by + 1) € {1,2}, there is a P/(a,b) =
(1,...,0(bo+ 1), bg+1,...,k — L,bo,w,o(bg + 1) + 1,...,a0 + 1,k) by
(5.1) and (5.2). When @(bo+ 1) = ag = 3, lettinga =1, y=a9 + 1 and
§ = by + 1, there is a P/(a,b) in T by Lemma 7 and (5.1). These contradict
(x). Hence k =by +2=7 by k > by + 2.
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