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ABSTRACT. A v-path of an arc zy in a multipartite tournament T
is an oriented path in T — y which starts at z such that y does not
dominate the end vertex of the path. We show that if T is a regular
n-partite (n > 7) tournament, then every arc of T has a v-path of
length m for all m satisfying 2 < m < n - 2. Our result extends the
corresponding result for regular tournaments, due to Alspach, Reid
and Roselle [2] in 1974, to regular multipartite tournaments.

1. Introduction

The vertex set of a digraph D is denoted by V(D). If zy is an arc of a
digraph D, then we say that z dominates Y. More generally, if A and B
are two disjoint subdigraphs of D such that every vertex of A dominates
every vertex of B, then we say that A dominates B , denoted by A — B.
The outset N*(z) of a vertex z is the set of vertices dominated by z, and
the inset N~ (z) is the set of vertices dominating z. A digraph D is said
to be regular if there is an integer r such that IN*(z)] = I[N~ (z)| = r
holds for every z € V(D).

A digraph obtained by replacing each edge of a complete n-partite
graph with an arc or a pair of mutually opposite arcs is called a semi-
complete n-partite digraph or a semicomplete multipartite digraph. A
maultipartite tournament is a semicomplete multipartite digraph without
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a cycle of length 2, and a tournament is an n-partite tournament having
exactly n vertices.

Paths and cycles in a digraph are always assumed to be directed. A
bypath of an arc zy is a path from z to y. Alspach, Reid and Roselle 2]
proved that every arc of a regular tournament with » > 7 vertices has
bypaths of all lengths £, 3 < ¢ <n —1. Further results about bypaths in
tournaments (respectively, in local tournaments) can be found in [5] and
(6] (respectively, in [4]).

It is not difficult to construct a regular n-partite (n > 3) tournament T
such that T contains an arc having no bypath of length £ for some £ with
3 < ¢ <n—1 So, the result in (2] cannot be extended to multipartite
tournaments in this way.

Note that the concept of bypaths defined as above has another repre-
sentation, i.e., an arc zy of a tournament 7' has a bypath of length £ if
and only if T — y contains a path of length £ —1 which starts at z, and
y does not dominate the end vertex of the path.

In general, we define a v-path of an arc zy in a digraph D as a path in
D —y which starts at « such that y dominates the end vertex of the path
only if the end vertex also dominates y. Thus, the concept of v-paths in
digraphs is a generalization of that of bypaths in tournaments.

In this paper, we prove the following theorem, and it is clear that our
result generalizes the result of [2] for regular tournaments.

THEOREM. Let T be a regular n-partite tournament withn > 7. Then
every arc of T has a v-path of lengthm for allm satisfying2 < m < n—2.

2. Proof of the theorem

Let Vi, Vi, -+, Va_1 be the partite sets of 7. From the regularity of
T, it is not difficult to check that all partite sets of T have the same
cardinality, say k. So, it is clear that

IN*(z)] = [N~ ()| = (2_71—& for each z € V/(T).

Let a,ap be an arbitrary arc of T and assume without loss of generality
that a; € V; for i = 0,1. We first show that a;ag has a v-path of length
2. Since n > 7, there are at least two vertices b, c in N*(ay) — Vp such
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that T'[{ao, b, c}] is a tournament. Without loss of generality, we assume
b— c. If ¢ — zy for some zy € Vj, then aybc (when z¢ = ag) or ajczg
(when zy # ao) is a desired v-path of aja. So, we may assume that
Vo — c¢. Now, we see from the regularity of 7" that there exists a vertex
z with ¢ — = — ap, and hence, a;cr is a v-path of aiay.

Suppose that ajag has a v-path P of length m—1 (say P = a1a2- - - ap),
but it has no v-path of length m for some m satisfying 3 <m < n — 1.
Let

A = {z|zeV,VinV(P)=0,z—ay,2<i<n-1},
B = {ylyeV, VinV(P)=0,a -y, 2<j<n-1}

Let Py = {ao,a1,as,-* ,an}. It is clear that AU B # () and every vertex
in AUB is adjacent with all vertices in Fy. If T is a tournament, then the
theorem holds by [2]. So, we prove the theorem for k > 2 and consider
the following two cases:

Case 1. A#0.

From the initial hypothesis that a;ay has no v-path of length m, we
see that A — a,,, and consequently, A — P holds.

Let a be an arbitrary vertex of A. Since T is regular, it is easy to check
that there is a vertex a’ such that a,,_s — a’, but a 4 a’. Clearly, o’ € P.
If a and o' are adjacent, then we have ' — a, and hence, ajag has a v-
path a; - - - a,,_2a’aa,, of length m, a contradiction. Assume now that a
and @’ belong to the same partite set of T. Since |[N*(a)| = |N*(a)| and
a — a3 — a', there is a vertex u with ' — u — a. Obviously, u € F,.
Thus, aay has a v-path a; - - - a,,_oa’ua of length m, a contradiction.

Case 2. A =10.

In this case we have B # (). Assume without loss of generality that
Vao1 € B. From the regularity of T' and the definition of B, it is not
difficult to check that every arc from ag to B is in a cycle of length 3.

(a): B — q;.

If there is a vertex b € B with a; — b, then a; — b for all 7 > 2. Since
agb is in a cycle of length 3, there is a vertex z such that b — z — aq.
It is easy to see that z ¢ V(P). But now, a,as- - - a,,_1bzx is a v-path of
aiap which is of length m, a contradiction.

(b): B — ao.
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Assume, on the contrary, that there is a vertex b € B such that a; — b,
then a; — b for all ¢ > 3. Thus, we have V; — b. It follows that ag is
adjacent with each vertex of N*(b), and furthermore, ao — (N*(b)—a)U
V;, where Vj is the partite set of T which contains b. From the assumption
that |V;| = k > 2, we have |[N"(ao)| > |N*(b)], a contradiction to the
regularity of T'.

(c): m>4.

If m = 3, then, by (b) and the assumption that n > 7, we have
|N~(az)| > |N*(az)}, a contradiction.

(d): a — B.
If there is a vertex b € B (assume without loss of generality that
b € V,_1) such that b — a, then we have b — {a3, -+ ,@m-1}. Since

V.1 — as, b is adjacent to each vertex of N*(az). Since INT(b) N Py| =
m and |N*(ag) N Po| £ m — 1, there is a vertex = ¢ V(P) such that
as — ¢ — b. Hence, ajaszbay - - - ap 1s of length m, a contradiction.

(e): am-1 — B.

Suppose, on the contrary, that b — am—3 for some b € B (assume with-
out loss of generality that b € V,_1). If there is a vertex u € N*(a1)\Po
with u — b, then ajubas - - - an, is of length m, a contradiction. Hence,
we have that b — N*(a;)\F. From V,_; — ay and the regularity of T
we conclude that

(1) |N+((11)ﬂp()| 2 lN+(b)ﬂ(POUB)| Zm—l

Suppose that m > 5. Then it is easy to see that b — N*(a)\F,. Since
|IN*(ag)| = [N*(b)| and B — ay, |N*(a2) N P > [N* (b)) N (Fo U B)| >
m — 1 holds. This implies that
(2) ay — {ao,ag,a4,-~- ,am} and N+(b)ﬂB=(0

It is a simple matter to verify by (2) that ag — {as, a4, ,am-1}, and
furthermore, a; 7> as (otherwise, aias- - - ambag yields a contradiction).
So, by (1), the following holds:

(3) a — {(14, as, - - aam}-

Assume that B contains at least two partite sets of T. By (2), there
is a vertex ¥ € B with ¥ — b. So, we see from (3) and (2) that
a1a4as - - - apb'bay is a v-path of ajap, a contradiction. Therefore, B =

V,_;. Clearly, m = n — 2 and we may assume without loss of generality
that a; € V; fori =2,3,--- ,n —2.
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Let H = N (ao)\(PoUVp_1). If apy — z for some z € HU (V) — ap),
then a,a,,bazay - - - @y 12 is of length m, a contradiction. Hence, we have
that H U Vy — a,,-;. But now, the following two inequalities

|N'(am_1)| Z |‘/()| + IH' -+ l{al,ag,am_g,b}| =k + lHl + 4,
IN"(ao)l < [Vim-i\{am-1}| + |H| + [{a1, a2, am}|
k+ |H|+2

imply a contradiction to the regularity of T'.

Suppose now that m = 4. Since n > 7, B contains at least two partite
sets of T' and there is a vertex b’ € B which is adjacent with the vertex
b.

If b — ¥, then a; — {ay,as, a4} holds by (1). It follows that ag —
{az,a3}. Let F = N~ (ap)\Fo. Clearly, |F| > |[N~(ap)| — 2. If there is a
vertex £ € F with ¥’ — z, then a,a4bb'x is a v-path of a,ag, a contradic-
tion. Hence, F — b'. Now we see that |N~(b')| > |F| + |{ao, am, b}| >
|N~(ag)| + 1 contradicts to the regularity of T'.

Assume now that & — b. From (1) and (d), it is eaSy to check that
a9 — ap. Since [N (ag)| = |N~(b)|, we see by the same arguments
as above and (1) that [N (ag) N Po| > 3, ie. {as, a4} — ap. From
Va-1 — a2 and the regularity of T, we conclude that there is a vertex y
with a; — y — b. Obviously, y & {as, a1, a3} and ajasyba; is a v-path of
a4y, a contradiction,

(f): a3 = Bifm >5.

Note by (e) that N*(B) N (V,\P) = 0. Suppose that b — a3 for
some b € B. It is obvious that (N*(a;)\FPy) N N~(b) = 0. Hence,
if N*(a))\Py, # 0, we have b — N*(a;)\FP, and furthermore, ay —
N*(al)\PQ.

If there is a vertex a; (3 < j < m) such that a; — a;, but a¢ 4 a1,
then aja;---ambay---a;_; is a v-path of ajap, a contradiction. This
means that |[N*(ag) NPy > |N*(a;) N Py| —2. It follows by the regularity
of T that |B| < 2. So, by the assumption that £ > 2, we have |B| =
|Va-1| = 2. Note that m = n — 2 and T[F| is a tournament. Let a} be
the vertex in V5 — ap. Then, it is easy to see that o’ — V(P)U B, a
contradiction to the regularity of T. This completes the proof of (e).

According to (a)—(f), we have that {a3,a4,--- ,an} — B — {a1, a2}
Since k > 2 and m < n — 2, we have N7 (ap)\FPy # 0. By (c) and (e),
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N~(ag)\Po — B holds. Since |N~(ap)| = [N (b)|, we have
(4) |N“(ao)ﬂP0lZlN"(b)ﬂ(POUBHZm—l

for any vertex b € B.

If T[B] contains an arc, say Y — b, then, by (4), we have [N~ (ag) N
Py| = m, this means that {a1,a2," " , @} — ao. It is easy to show that
N*(ay) N V(P) = {az}. So, N*(a))\P, # 0. Clearly, B — N (a )\ Fo.
But now, |[N* ()| > [N*(a1)]| yields a contradiction.

Suppose now that B = V,_1 and let b be a vertex of B. Note that
m=n—2and |V;NV(P)|=1fori=0,1,2,- ,n—2. By (e), it is easy
to see that ag — NT(b)\Fy. Since |N*(ap)| = |N*(b)| and b has exactly
two out-neighbors in Py, |B| =2, ie., k = 2. Let a} be the other vertex
in V;. Then we see that ag — V(P)U B, a contradiction to the regularity
of T.

The proof of the theorem is complete.
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