u-PATHS OF ARCS IN REGULAR MULTIPARTITE TOURNAMENTS

TIANXING YAO, YUBAO GUO AND KEMIN ZHANG

Reprinted from the Bulletin of the Korean Mathematical Society Vol. 36, No. 2, May 1999

ν-PATHS OF ARCS IN REGULAR MULTIPARTITE TOURNAMENTS

TIANXING YAO, YUBAO GUO* AND KEMIN ZHANG**

ABSTRACT. A ν -path of an arc xy in a multipartite tournament T is an oriented path in T-y which starts at x such that y does not dominate the end vertex of the path. We show that if T is a regular n-partite $(n \geq 7)$ tournament, then every arc of T has a ν -path of length m for all m satisfying $2 \leq m \leq n-2$. Our result extends the corresponding result for regular tournaments, due to Alspach, Reid and Roselle [2] in 1974, to regular multipartite tournaments.

1. Introduction

The vertex set of a digraph D is denoted by V(D). If xy is an arc of a digraph D, then we say that x dominates y. More generally, if A and B are two disjoint subdigraphs of D such that every vertex of A dominates every vertex of B, then we say that A dominates B, denoted by $A \to B$. The outset $N^+(x)$ of a vertex x is the set of vertices dominated by x, and the inset $N^-(x)$ is the set of vertices dominating x. A digraph D is said to be regular if there is an integer r such that $|N^+(x)| = |N^-(x)| = r$ holds for every $x \in V(D)$.

A digraph obtained by replacing each edge of a complete n-partite graph with an arc or a pair of mutually opposite arcs is called a semicomplete n-partite digraph or a semicomplete multipartite digraph. A multipartite tournament is a semicomplete multipartite digraph without

Received September 23, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 05C20, 05C38.

Key words and phrases: path, regularity, multipartite tournaments.

^{*}This author is supported by a grant from "Deutsche Forschungsgemeinschaft" as a member of "Graduiertenkolleg: Analyse und Konstruktion in der Mathematik" at RWTH Aachen.

^{**}This author was supported by NSFC under no. 19471037.

a cycle of length 2, and a tournament is an n-partite tournament having exactly n vertices.

Paths and cycles in a digraph are always assumed to be directed. A bypath of an arc xy is a path from x to y. Alspach, Reid and Roselle [2] proved that every arc of a regular tournament with $n \geq 7$ vertices has bypaths of all lengths ℓ , $3 \leq \ell \leq n-1$. Further results about bypaths in tournaments (respectively, in local tournaments) can be found in [5] and [6] (respectively, in [4]).

It is not difficult to construct a regular n-partite $(n \geq 3)$ tournament T such that T contains an arc having no bypath of length ℓ for some ℓ with $3 \leq \ell \leq n-1$. So, the result in [2] cannot be extended to multipartite tournaments in this way.

Note that the concept of bypaths defined as above has another representation, i.e., an arc xy of a tournament T has a bypath of length ℓ if and only if T-y contains a path of length $\ell-1$ which starts at x, and y does not dominate the end vertex of the path.

In general, we define a ν -path of an arc xy in a digraph D as a path in D-y which starts at x such that y dominates the end vertex of the path only if the end vertex also dominates y. Thus, the concept of ν -paths in digraphs is a generalization of that of bypaths in tournaments.

In this paper, we prove the following theorem, and it is clear that our result generalizes the result of [2] for regular tournaments.

THEOREM. Let T be a regular n-partite tournament with $n \geq 7$. Then every arc of T has a ν -path of length m for all m satisfying $2 \leq m \leq n-2$.

2. Proof of the theorem

Let V_0, V_1, \dots, V_{n-1} be the partite sets of T. From the regularity of T, it is not difficult to check that all partite sets of T have the same cardinality, say k. So, it is clear that

$$|N^+(x)| = |N^-(x)| = \frac{(n-1)k}{2} \ \text{ for each } x \in V(T).$$

Let a_1a_0 be an arbitrary arc of T and assume without loss of generality that $a_i \in V_i$ for i = 0, 1. We first show that a_1a_0 has a ν -path of length 2. Since $n \geq 7$, there are at least two vertices b, c in $N^+(a_1) - V_0$ such

that $T[\{a_0, b, c\}]$ is a tournament. Without loss of generality, we assume $b \to c$. If $c \to x_0$ for some $x_0 \in V_0$, then a_1bc (when $x_0 = a_0$) or a_1cx_0 (when $x_0 \neq a_0$) is a desired ν -path of a_1a_0 . So, we may assume that $V_0 \to c$. Now, we see from the regularity of T that there exists a vertex x with $c \to x \to a_0$, and hence, a_1cx is a ν -path of a_1a_0 .

Suppose that a_1a_0 has a ν -path P of length m-1 (say $P=a_1a_2\cdots a_m$), but it has no ν -path of length m for some m satisfying $3 \leq m < n-1$. Let

$$A = \{ x \mid x \in V_i, V_i \cap V(P) = \emptyset, x \to a_0, 2 \le i \le n - 1 \}, \\ B = \{ y \mid y \in V_i, V_i \cap V(P) = \emptyset, a_0 \to y, 2 \le j \le n - 1 \}.$$

Let $P_0 = \{a_0, a_1, a_2, \dots, a_m\}$. It is clear that $A \cup B \neq \emptyset$ and every vertex in $A \cup B$ is adjacent with all vertices in P_0 . If T is a tournament, then the theorem holds by [2]. So, we prove the theorem for $k \geq 2$ and consider the following two cases:

Case 1.
$$A \neq \emptyset$$
.

From the initial hypothesis that a_1a_0 has no ν -path of length m, we see that $A \to a_m$, and consequently, $A \to P$ holds.

Let a be an arbitrary vertex of A. Since T is regular, it is easy to check that there is a vertex a' such that $a_{m-2} \to a'$, but $a \not\to a'$. Clearly, $a' \not\in P_0$. If a and a' are adjacent, then we have $a' \to a$, and hence, a_1a_0 has a ν -path $a_1 \cdots a_{m-2}a'aa_m$ of length m, a contradiction. Assume now that a and a' belong to the same partite set of T. Since $|N^+(a')| = |N^+(a)|$ and $a \to a_{m-2} \to a'$, there is a vertex u with $a' \to u \to a$. Obviously, $u \not\in P_0$. Thus, a_1a_0 has a ν -path $a_1 \cdots a_{m-2}a'ua$ of length m, a contradiction.

Case 2.
$$A = \emptyset$$
.

In this case we have $B \neq \emptyset$. Assume without loss of generality that $V_{n-1} \subseteq B$. From the regularity of T and the definition of B, it is not difficult to check that every arc from a_0 to B is in a cycle of length 3.

(a):
$$B \rightarrow a_1$$
.

If there is a vertex $b \in B$ with $a_1 \to b$, then $a_i \to b$ for all $i \geq 2$. Since a_0b is in a cycle of length 3, there is a vertex x such that $b \to x \to a_0$. It is easy to see that $x \notin V(P)$. But now, $a_1a_2 \cdots a_{m-1}bx$ is a ν -path of a_1a_0 which is of length m, a contradiction.

(b):
$$B \rightarrow a_2$$
.

Assume, on the contrary, that there is a vertex $b \in B$ such that $a_2 \to b$, then $a_i \to b$ for all $i \geq 3$. Thus, we have $V_0 \to b$. It follows that a_0 is adjacent with each vertex of $N^+(b)$, and furthermore, $a_0 \to (N^+(b) - a_1) \cup V_j$, where V_j is the partite set of T which contains b. From the assumption that $|V_j| = k \geq 2$, we have $|N^+(a_0)| > |N^+(b)|$, a contradiction to the regularity of T.

(c): $m \ge 4$.

If m=3, then, by (b) and the assumption that $n\geq 7$, we have $|N^-(a_2)|>|N^+(a_2)|$, a contradiction.

(d): $a_m \to B$.

If there is a vertex $b \in B$ (assume without loss of generality that $b \in V_{n-1}$) such that $b \to a_m$, then we have $b \to \{a_3, \dots, a_{m-1}\}$. Since $V_{n-1} \to a_2$, b is adjacent to each vertex of $N^+(a_2)$. Since $|N^+(b) \cap P_0| = m$ and $|N^+(a_2) \cap P_0| \le m-1$, there is a vertex $x \notin V(P)$ such that $a_2 \to x \to b$. Hence, $a_1a_2xba_4\cdots a_m$ is of length m, a contradiction. (e): $a_{m-1} \to B$.

Suppose, on the contrary, that $b \to a_{m-1}$ for some $b \in B$ (assume without loss of generality that $b \in V_{n-1}$). If there is a vertex $u \in N^+(a_1) \backslash P_0$ with $u \to b$, then $a_1 u b a_3 \cdots a_m$ is of length m, a contradiction. Hence, we have that $b \to N^+(a_1) \backslash P_0$. From $V_{n-1} \to a_1$ and the regularity of T we conclude that

$$(1) |N^+(a_1) \cap P_0| \ge |N^+(b) \cap (P_0 \cup B)| \ge m - 1.$$

Suppose that $m \geq 5$. Then it is easy to see that $b \to N^+(a_2) \backslash P_0$. Since $|N^+(a_2)| = |N^+(b)|$ and $B \to a_2$, $|N^+(a_2) \cap P_0| \geq |N^+(b) \cap (P_0 \cup B)| \geq m-1$ holds. This implies that

(2)
$$a_2 \to \{a_0, a_3, a_4, \cdots, a_m\} \text{ and } N^+(b) \cap B = \emptyset.$$

It is a simple matter to verify by (2) that $a_0 \to \{a_3, a_4, \dots, a_{m-1}\}$, and furthermore, $a_1 \not\to a_3$ (otherwise, $a_1 a_3 \cdots a_m b a_2$ yields a contradiction). So, by (1), the following holds:

(3)
$$a_1 \to \{a_4, a_5, \cdots, a_m\}.$$

Assume that B contains at least two partite sets of T. By (2), there is a vertex $b' \in B$ with $b' \to b$. So, we see from (3) and (2) that $a_1a_4a_5\cdots a_mb'ba_2$ is a ν -path of a_1a_0 , a contradiction. Therefore, $B=V_{n-1}$. Clearly, m=n-2 and we may assume without loss of generality that $a_i \in V_i$ for $i=2,3,\cdots,n-2$.

Let $H = N^-(a_0) \setminus (P_0 \cup V_{m-1})$. If $a_{m-1} \to x$ for some $x \in H \cup (V_0 - a_0)$, then $a_1 a_m b a_3 a_4 \cdots a_{m-1} x$ is of length m, a contradiction. Hence, we have that $H \cup V_0 \to a_{m-1}$. But now, the following two inequalities

$$|N^{-}(a_{m-1})| \geq |V_{0}| + |H| + |\{a_{1}, a_{2}, a_{m-2}, b\}| = k + |H| + 4,$$

$$|N^{-}(a_{0})| \leq |V_{m-1} \setminus \{a_{m-1}\}| + |H| + |\{a_{1}, a_{2}, a_{m}\}|$$

$$= k + |H| + 2$$

imply a contradiction to the regularity of T.

Suppose now that m=4. Since $n \geq 7$, B contains at least two partite sets of T and there is a vertex $b' \in B$ which is adjacent with the vertex b.

If $b \to b'$, then $a_1 \to \{a_2, a_3, a_4\}$ holds by (1). It follows that $a_0 \to \{a_2, a_3\}$. Let $F = N^-(a_0) \setminus P_0$. Clearly, $|F| \ge |N^-(a_0)| - 2$. If there is a vertex $x \in F$ with $b' \to x$, then $a_1a_4bb'x$ is a ν -path of a_1a_0 , a contradiction. Hence, $F \to b'$. Now we see that $|N^-(b')| \ge |F| + |\{a_0, a_m, b\}| \ge |N^-(a_0)| + 1$ contradicts to the regularity of T.

Assume now that $b' \to b$. From (1) and (d), it is easy to check that $a_0 \to a_2$. Since $|N^-(a_0)| = |N^-(b)|$, we see by the same arguments as above and (1) that $|N^-(a_0) \cap P_0| \geq 3$, i.e. $\{a_3, a_4\} \to a_0$. From $V_{n-1} \to a_2$ and the regularity of T, we conclude that there is a vertex y with $a_2 \to y \to b$. Obviously, $y \notin \{a_0, a_1, a_3\}$ and $a_1a_2yba_3$ is a ν -path of a_1a_0 , a contradiction.

(f):
$$a_3 \rightarrow B$$
 if $m \geq 5$.

Note by (e) that $N^+(B) \cap (V_0 \setminus P_0) = \emptyset$. Suppose that $b \to a_3$ for some $b \in B$. It is obvious that $(N^+(a_1) \setminus P_0) \cap N^-(b) = \emptyset$. Hence, if $N^+(a_1) \setminus P_0 \neq \emptyset$, we have $b \to N^+(a_1) \setminus P_0$, and furthermore, $a_0 \to N^+(a_1) \setminus P_0$.

If there is a vertex a_j $(3 \le j \le m)$ such that $a_1 \to a_j$, but $a_0 \not\to a_{j-1}$, then $a_1a_j\cdots a_mba_2\cdots a_{j-1}$ is a ν -path of a_1a_0 , a contradiction. This means that $|N^+(a_0)\cap P_0| \ge |N^+(a_1)\cap P_0| -2$. It follows by the regularity of T that $|B| \le 2$. So, by the assumption that $k \ge 2$, we have $|B| = |V_{n-1}| = 2$. Note that m = n - 2 and $T[P_0]$ is a tournament. Let a'_0 be the vertex in $V_0 - a_0$. Then, it is easy to see that $a' \to V(P) \cup B$, a contradiction to the regularity of T. This completes the proof of (e).

According to (a)-(f), we have that $\{a_3, a_4, \dots, a_m\} \to B \to \{a_1, a_2\}$. Since $k \geq 2$ and $m \leq n-2$, we have $N^-(a_0) \setminus P_0 \neq \emptyset$. By (c) and (e),

Tianxing Yao, Yubao Guo and Kemin Zhang

$$N^{-}(a_0)\backslash P_0 \to B \text{ holds. Since } |N^{-}(a_0)| = |N^{-}(b)|, \text{ we have}$$

$$(4) \qquad |N^{-}(a_0)\cap P_0| \ge |N^{-}(b)\cap (P_0\cup B)| \ge m-1$$

for any vertex $b \in B$.

If T[B] contains an arc, say $b' \to b$, then, by (4), we have $|N^-(a_0) \cap$ $|P_0|=m$, this means that $\{a_1,a_2,\cdots,a_m\} o a_0$. It is easy to show that $N^+(a_1)\cap V(P)=\{a_2\}.$ So, $N^+(a_1)\backslash P_0
eq\emptyset.$ Clearly, $B\to N^+(a_1)\backslash P_0.$ But now, $|N^+(b')| > |N^+(a_1)|$ yields a contradiction.

Suppose now that $B = V_{n-1}$ and let b be a vertex of B. Note that m=n-2 and $|V_i\cap V(P)|=1$ for $i=0,1,2,\cdots,n-2$. By (e), it is easy to see that $a_0 \to N^+(b) \backslash P_0$. Since $|N^+(a_0)| = |N^+(b)|$ and b has exactly two out-neighbors in P_0 , |B|=2, i.e., k=2. Let a_0' be the other vertex in V_0 . Then we see that $a_0' \to V(P) \cup B$, a contradiction to the regularity of T.

The proof of the theorem is complete.

References

- [1] B. Alspach, Cycles of each length in regular tournaments, Canad. Math. Bull. 10 (1967), 283-286.
- [2] B. Alspach, K. B. Reid and D. P. Roselle, Bypasses in asymmetric digraphs, J. Combin. Theory Ser. B 17 (1974), 11-18.
- [3] Y. Guo, Outpaths in semicomplete multipartite digraphs, Discrete Appl. Math., to appear.
- [4] _____, Bypaths in local tournaments, J. Korean Math. Soc. 36 (1999), 431-445.
- [5] Y. Guo and L. Volkmann, Bypaths in tournaments, Discrete Appl. Math. 79 (1997), 127-135.
- [6] C. Thomassen, Hamiltonian-connected tournaments, J. Combin. Theory Ser. B 28 (1980), 142-163.

TIANXING YAO, DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY, NANJING 210008, P.R.C.

Yubao Guo, Lehrstuhl C für Mathematik, RWTH Aachen, 52062 Aachen, GERMANY

E-mail: guo@mathc.rwth-aachen.de

Kemin Zhang, Department of Mathematics, Nanjing University, Nanjing 210008, P.R.C.