The value of the Ramsey number $R(C_n, K_4)$ is 3(n-1)+1 $(n \ge 4)$

Yang Jian Sheng, Huang Yi Ru

Department of Mathematics, Shanghai University Shanghai 201800, People's Republic of China

Zhang Ke Min*

Department of Mathematics, Nanjing University Nanjing 210008, People's Republic of China

Abstract

The Ramsey number $R(C_n, K_m)$ is the smallest integer p such that any graph G on p vertices either contains a cycle C_n with length n or contains an independent set with order m. In this paper we prove that $R(C_n, K_4) = 3(n-1) + 1$ $(n \ge 4)$.

We shall only consider graphs without multiple edges or loops.

The Ramsey number $R(C_n, K_m)$ is the smallest integer p such that any graph G on p vertices either contains a cycle C_n with length n or contains an independent set with order m.

In 1973, J.A. Bondy and P. Erdös proved that following theorem.

Theorem 1.1 ([1]).
$$R(C_n, K_m) = (n-1)(m-1) + 1$$
 for $n \ge m^2 - 2$.

In 1976, R.H. Schelp and R.J. Faudree in [8] stated the following problem:

Problem 1.2 ([8]). Find the range of integers n and m such that $R(C_n, K_m) = (n-1)(m-1) + 1$. In particular, does the equality hold for $n \ge m$?

For this problem, the known results are $R(C_4, K_4) = 10$ (see [2]), $R(C_5, K_4) = 13$, $R(C_5, K_5) = 17$ (see [4], [5]) and $R(C_n, K_3) = 2n - 1$ (n > 3) (see [3], [6]). However, so far, even for some fixed small m, the problem has not been solved.

In the following, we will prove that $R(C_n, K_4) = 3(n-1) + 1$ for $n \ge 4$.

Lemma 1.3. Suppose G is a graph that contains the cycle $(v_1, v_2, \dots, v_{n-1})$ of length n-1 but no cycle of length n. Let $X \subseteq V(G) \setminus \{v_1, v_2, \dots, v_{n-1}\}$. Then

- (a) No vertex $x \in X$ is adjacent to two consecutive vertices on the cycle.
- (b) If $x \in X$ is adjacent to v_i and v_j , then $v_{i+1}v_{j+1} \notin E(G)$.
- (c) If $x \in X$ is adjacent to v_i and v_j , then no vertex $x' \in X$ is adjacent to both v_{i+1} and v_{j+2} .

^{*} The project supported by NSFC and NSFJS

Proof. (a) and (b) were used in [1]. If x is adjacent to v_i and v_j and x' is adjacent to v_{i+1} and v_{j+2} , then $x \neq x'$ and $(v_i, x, v_j, v_{j-1}, \dots, v_{i+1}, x', v_{j+2}, \dots, v_{i-1})$ is a cycle of length n in G; this proves (c). \square

Theorem 1.4. For all $n \ge 4$, $R(C_n, K_4) = 3(n-1) + 1$.

Proof. The example $G = 3K_{n-1}$ establishes the lower bound $R(C_n, K_4) \geq 3(n - 1)$ 1) + 1, so it suffices to prove that for $n \ge 4$ every graph G of order 3(n-1)+1contains either C_n or a 4-element independent set. Since the desired result is true for n = 4 and n = 5, we may take n > 5 and assume by induction that $R(C_{n-1}, K_4) = 3(n-2) + 1$. Assume that G(V, E) is a graph of order 3(n-1) + 1that contains neither a C_n nor a 4-element independent set. Using $R(C_n, K_3) =$ 2(n-1)+1 and $R(C_{n-1},K_4)=3(n-2)+1$, we find that G contains a 3-element independent set $X = \{x_1, x_2, x_3\}$, and, disjoint from X, a cycle $(v_1, v_2, \dots, v_{n-1})$ of length n-1. Let us refer to $(v_1, v_2, \dots, v_{n-1})$ as simply the cycle. Since G has no 4-element independent set, each vertex on the cycle is adjacent to at least one vertex in X. Since n-1>3 at least one vertex in X is adjacent to two or more vertices of the cycle. Thus we may assume that x_1 is adjacent to v_i and v_j . By part (b) of Lemma 1.3 $v_{i+1}v_{j+1} \notin E$. Since n > 5 and x_1 cannot be adjacent to three or more vertices of the cycle by part (a) and (b) of Lemma 1.3, thus $x_1v_{i+2} \notin E$. By part (a) of Lemma 1.3, $x_1v_{i+1} \notin E$ and $x_1v_{j+1} \notin E$. Since v_{j+2} is adjacent to some vertex in X, we may assume that $x_2v_{j+2} \in E$. By part (c) of Lemma 1.3 $x_2v_{i+1} \notin E$ and by part (a) of Lemma 1.3 $x_2v_{j+1} \notin E$. Thus $\{x_1, x_2, v_{i+1}, v_{j+1}\}$ is a 4-element independent set, a contradiction. \Box

REFERENCES

- J.A. Bondy and P. Erdős, Ramsey numbers for cycles in graphs, Journal of Combinatorial Theory, Series B (1973), 14,46-54.
- [2] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, III. Small Off-Diagonal Numbers, Pacific Journal of Mathematics (1972), 41 335-345.
- [3] R.J. Faudree and R.H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Mathematics (1974), 8 313-329.
- [4] G.R. Hendry, Ramsey numbers for graphs with five vertices, Journal of Graph Theory (1989), 13 245-248.
- [5] C.J. Jayawardene and C.C. Rousseau, Some Ramsey numbers for a C₅ vs small complete graphs, Preprint (See [7]).
- [6] V. Rosta, On a Ramsey type problem of J.A.Bondy and P.Erdős, I & II, Journal of Combinatorial Theory, Series B (1973), 15 94-120.
- [7] S.P. Radziszowski, Small Ramsey numbers, The Electronic J. Combin (1997), 1 1-29.
- [8] R.H. Schelp and R.J. Faudree, Some problems in Ramsey theory, LNM 642 Springer, Berlin, 1978, 500-515.