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Abstract. It is shown in this paper that Meyer’s conjecture on the equitable coloring
holds for line graphs and complete r-partite graphs.
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1. Introduction

Let G be a graph with vertex set V(G), edge set E(G), maximum degree A(G), minimum
degree §(G), vertex chromatic number x(G), and edge chromatic number x'(G). G is equitably
k-colorable if V(G) can be partitioned into k independent sets V;, Vz, - - -, Vi such that ||V;] —
|Vl <1 for all ¢ and j. The such smallest integer k as above is called the equitable chromatic
number of G, denoted by x_(G). Similarly we can define the equitable edge chromatic number
of a graph G and denote it by x’ (G). Hajnal and Szemerédil!l proved that x_(G) < A(G) +1
for every graph G. Meyer[?! conjectured that X_{G) < A(G) if a connected graph G is neither
a complete graph nor an odd cycle. This conjecture has been confirmed for a few special
cases such as trees(®!, bipartite graphs/4, outerplanar graphs!®, and graphs G having either
A(G) > HV(G)| or A(G) < 3061, Recently, Zhang and Yapl” proved that every planar graph
G with A(G) > 13 is equitably A(G)-colorable.

The purpose of this paper is to investigate the equitable colorings of line graphs and complete
r-partite graphs. We shall use || and [z] to denote the largest integer < z and the smallest
integer > z, respectively.

2. Line Graphs

The line graph, denoted by L(G), of a graph G is a graph in which V(L(G)) = E(G) and
two vertices are adjacent in L(G) iff they are adjacent as edges of G. By the definition, the
following result is straightforward.

Lemma 2.1 If H is the line graph of a graph G, then x(L(G)) = x'(G).

Theorem 2.2 Let G be a graph and k an integer with k > x'(G). Then G is equitably
k-edge colorable.

Proof Let (Ey, Es,---, Ey) be a k-edge coloring of G such that the sum Z [|E:i| — |E;|| as
small as possible. We claim that ||E;| — |E;|| < 1 for all i and j, equivalently, (El,Ez, -, Ey)
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is an equitable k-edge coloring of G. In fact, if there are 4o and jo such that ||E;, | — |Ejoll > 2,
we may suppose that |E;,| > |Ej,|+2. Let H = G[E;, UE;,] denote the subgraph of G induced
by the edge subset E;, U Ej,. Thus every vertex of H is of degree one or two in H since it is
incident to at most one edge of F;, and one edge of E;,. This implies that each component
of H is either an even cycle or a path with edges alternately in E;, and E;,. It follows from
|Eio| > |Ej,| + 2 that there exists a path component P of H such that P starts and ends at the
edges of E; . Suppose that P = ugejujequg - - - €2m+1U2m+1 be a such path, where e; € E,,
t=13,---,2m+1,e, € Ej,, s =2,4,---,2m, m > 0. We form a new k-edge coloring of G as
follows:

Ei, = (Ei, —{e1,e3, -, eamy1}) U{ez,eq, -, €2m},

Ej, = (Ejo — {e2,€4, -+, e2m}) U {e1,e3, - »€2m41},

Ej = Eja ] = 1,2)"'ak a'ndj 7é iO’jO-

Obviously we have

k k
D_NE] = Bl < Y NIE] - |Bll.
":7.7. i'-i

This contradicts the choice of (Eq, E,---, Ey). |

Theorem 2.3 If G is a line graph, then x_(G) = x(G).

Proof Let G be the line graph of a graph H. Then, by Lemma 2.1, X(G) = xX'(H). We
write ¢ = x'(H). By Theorem 2.2, H has an equitable g-edge coloring (Er,Ep,--+,Ey). In
view of the definition of line graph, V(G) is partitioned into q subsets V1, Va, -+, Vg, where V;
corresponds to E;, and |V;| = |E;|, i =1,2,---,q. Since E; is an independent set of edges in H ,
V; also is an independent set of vertices in G. So (V1,Va,---,V,) forms a g-vertex coloring of
G. Furthermore, since ||V;| - |V;|| = || E;| — |E;|| < 1, (Vi, V&, - -+, V,) is an equitable g-coloring
of G. This implies that

x_(G) < q¢=x'(H) = x(G).

Conversely, x_(G) > x(G) is trivial. Therefore

Corollary 2.4 Meyer’s conjecture is true for all line graphs.

Proof First it follows from Theorem 2.3 that x_(G) = x(G) for every line graph G. Next,
by Brooks theorem on vertex coloring, we have x(G) < A(G) when G is neither a complete
graph nor an odd cycle. Consequently, x_(G) < A(G). |

Lemma 2.5 Let G be a graph. Then the following statements are equivalent:

(1) G is a line graph;

(2) The edges of G can be partitioned into a union of complete subgraphs such that each
vertez of G is in at most two such complete subgraphs;

(3) G is Ky 3-free and any induced subgraph isomorphic to Ky — e has at least one of its
triangles even. (We call a triangle even if any vertez in G is adjacent to an even number of its
vertices.) '

By Lemma 2.5 and Theorem 2.3, we immediately have

Corollary 2.6 If G is a graph satisfying (2) or (3) in Lemma 2.5, then x_ (G) = x(G).

Corollary 2.7 If a graph G satisfies one of the following conditions, then x_(G) = x(G).

(a) G contains no induced subgraph which is 1somorphic to K13 or K4 — e.

(b) G is connected, every block of G is complete, and each cut-vertezx lies in ezactly two
blocks.

Proof Tt suffices to note by [8] that G is the line graph of a Kjs-free graph (or a tree) if G
satisfies (a) (or (b)) in the corollary.
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3. Complete r-Partite Graphs

A graph is called a complete r-partite graph, denoted by Kp, n,,... n,, if its vertex set can be
partitioned into r independent sets Vi, Vo, - -, V, so that every vertex in V; is joined to every
vertex in Vj, j # ¢, where |Vj| =n; > 1,i=1,2,---,r, r > 2. Without loss of generality, we
may suppose that 1 < n; < ny <--- < n,, and r > 3 because the case r = 2 was studied by Lih
and Wul¥l. Tt is easy to see that A(Kn, ny,n,) = Doieg i a0d 8(Knyng,on,) = Doie 1 n;. In
particular, Kp, ny..n, = K, if ny = ng =--- =n, =1, where K, denotes the complete graph
of order r. Thus, in this case, we obtain x_(Kn, ny,n.) = Xo (Kr) = x(Kr) =7 = A(K,) +1.

Theorem 3.1 Let Ky, n,,....n, be a complete r-partite graph with r > 1, then

X= (KnlynZy"'1nr) S A(Kn17"21""nr)'

Proof 1t is not difficult to see that the problem of finding the equitable chromatic number
of Ky, 5y, n, can be reduced to solve the following Integer Linear Programming:

r
T =min2w,~
k$i+yi—_—'ni, 1:=1,2,"',’I";
0<y; <z, =1 ;
z;,y; integer.

(ILPy)

Let I = {1,2,---,n1} and J = {k € I|(JLP:) has a feasible solution }. We denote by
(xk,zk, -z y* yk ... y¥) and f} an optimal solution and the optimal value of (ILPy) for
k € J, respectively. Then

X=(Kny g, ,n,)—r,gleu}fk

In order to obtain the required result, we now prove that ff =30 z! <37 ,n;. Obvi-

ously, 1 € J,and z} = [%],i=1,2,---,r. Let us consider two cases as follows
Case 1 1< n; <2 In this case, n, > 2,z1 =1 and z} = = [5] > 1. It follows that

E:c =zl +2! +Za: _1+[”’”1+Z[n’]

1=2 =2
S'ﬂr-l-zni:Zni-
=2 1=2
Case 2 ny > 3. If ny =ny =-.- =n, = 3, then by r > 3, we have
Zw lrlr—2r<3('r—l) Zni.
=2

If n, >4 and [3] < r, then
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Ifn, >4 and [3] > r + 1, then n; > ny > 2r > 6, thus

(- )5 (5] ) <2

If we can further prove that fi < fy, for any k,m € J and k > m, then the proof will be
complete by the following inequality

,
X Bz o) = 1000 57 S F7 €35 = AKr i ine):

i=2
Indeed, for i = 1,2,---,r, we have kak + yf = ma? + y" = ni. Thus

(e — k) = (k- m)zk +yf — u"
> (k- m)z¥ +yf —af"
> (k —m)(e} —=7) + 7"
Equivalently
k(z] —af) 2 yf 2 0.
From k > 1, it follows that z™ — =¥ > 0. Therefore

T ™ T
o= =Y ek =) (@l —ai) 20 |
=1 =1 i=1

Corollary 3.2 x_(Kn, np,-n.} =7 if and only if |n; — nj| <1 for alli and j.

Proof First note that X(Kn,ny,n,) = 7. Let (V4,Va,--+,V;) be an r-partition of the
vertices of Kn, ng,wn, With [Vi| = ni, 4= 1,2,---,7. If x_(Knyna,m.) = T, then, for any
equitable r-coloring of Kn, ny,n.» each color occurs in at most one V; and at least one color
is required to color each V;. Thus it follows that each color is exactly assigned to one V;. This
implies that |n; —nj| = ||Vi| —|V;j]| <1 for all ¢ and j. Conversely, if |n; —n;| < 1 for all i and
j, we can form an equitable r-coloring of Kn, ng,n, Dy coloring every vertex in V; with the
color 4,4 =1,2,---,r. Hence x_ (Knyngyme) < 7. On the other hand, the bound

X= (Knlan21"')nr) Z X(Knlv'"'Zy”',nr =r

is trivial. Therefore x_(Kn,,nz,n.) =T+ ]
4. Chromatic Difference

For a graph G, the bound x_(G) > x(G) is trivial since each equitably k-coloring of G is
always a k-coloring of G. By Theorem 3.1, there do exist some graphs G with x=(G) > x(G).
Thus it is very natural to pose such a problem: Which graphs G have x_(G) = x(G) 7 To
study this problem, it is helpful to introduce a new parameter p(G) = x_(G) — x(G). We
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call p(G) the chromatic difference of G. If E(G) = 0, then p(G) = 0. Hence we always
assume that E(G) is non-empty and thus x(G) > 2. Applying the result of [1}, we have
0<p(@)<AG)+1-2=A(G)-1.

A graph G is said to be a k-type graph if p(G) = k, k = 0,1,---. Theorem 2.3 shows that
all line graphs are 0-type.

Conjecture 4.1 For any graph G, 0 < p(G) < L%QJ

Considering a star K , with p > 3, we have

p(K1p) = x_(K1p) — x(K1p)

When p is odd, the above equality holds. This implies that the upper bound of Conjecture
4.1 is sharp. If Conjecture 4.1 were true, then we would deduce that Meyer’s conjecture holds
for all the graphs G having
A(G
x(@) < 29

since

x(6) = x(@)+0(6) < 52+ |23 | < 8@,

In fact, Conjecture 4.1 holds trivially for x_(G) < Lé_%?_lJ +2or x(G) > [A(zglj + 2. Moreover,
by the results in [6], Conjecture 4.1 also holds for the graphs with A(G) < 4.
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