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THE SECOND EXPONENT SET
OF PRIMITIVE DIGRAPHS***

MIAO ZHENGKE*'** ZHANG KEMIN*

Abstract

Let D = (V, E) be a primitive digraph. The exponent of D, denoted by (D), is the least
integer k such that for any u,v € V there is a directed walk of length k from u to v. The local
exponent of D at a vertex u € V, denoted by exp (u), is the least integer k such that there
is a directed walk of length k from u to v for each v € V. Let V = {1,2,--- ,n}. Following
[1], the vertices of V are ordered so that exp, (1) < exp,(2) < --- < exp,, (n) = (D). Let
En(i) := {exp (i) | D € PDxy}, where PDy is the set of a.ll primitive dlgraphs of order n. It
is known that E,. {(n) = {¥(D) | D € PDy} has been completely settled by [7]. In 1998, En(1)
was characterized by [5]. In this paper, the authors describe E,(2) for all n > 2.
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§1. Introduction and Notations

Let D = (V, E) be a digraph and L(D) denote the set of cycle lengths of D. For u € V
and integer i > 1, let R;(u):= { v € V | there exists a directed walk of length i from u to
v}. We define Ro(u) := {u}. Let u,v € V. If N*(v) = N*(v) and N~ (v) = N7 (v), then
we call v a copy of u.

Let D be a primitive digraph and (D) denote the exponent of D. In 1950, H. Wielandt(®!
found that (D) < (n — 1)? + 1 and showed that there is a unique digraph that attains this
bound. In 1964, A. L. Dulmage and N. S. Mendelsohn(?! observed that there are gaps in the
exponent set E, = {y(D) | D € PD,}, where PD,, is the set of all primitive digraphs of
order n. In 1981, M. Lewin and Y. Vitek3! found a general method for determining all the
gaps between | %2 | +1 and wy, and they conjectured that there is no gapin {1,2,---, [ %]+
1}. In 1985, Shao Jiayul¥l proved that the conjecture is true when n is sufficiently large and
gave a counterexample to show that the conjecture is not true in the case when n = 11. In
1987, Zhang Kemin!”l proved that the conjecture is true except 48 for n = 11. Therefore,
the problem of determining the exponent set is completely solved.

The local exponent of D at vertex u € V, denoted by exp_ (u), is the least integer k such
that there is a directed walk of length k from u to v for each v € V. Let V = {1,2,--- ,nh
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Following [1], we order the vertices of V' so that exp (1) < exp_(2) < --- < exp_ (n) = v(D).
Let En(q) := {exp,(?) | D € PDn} and L(n) = {(p,q) | 2< p < ¢ < n,p+q¢ > n,gcd(p,g) =
1}. Clearly, En(n) = E,. In 1998, Shen Jian and S. Neufeld[®! obtained ES,(1). In this
paper, we proved the following

Main Theorem. E,(2) = {1,2,--- ,"2_—:;"“’:9}U U {(p—1)(g—-1),(p~1)(g—-

(p.9)€L(n),q<n
D+1,--,p(g-2)+n—q+2}u U  {(p-1(n-1)+1,--- ,p(n—2)+2} for alln > 2.
(pn)€EL(n)

§2. Determination of E, (2)

Lemma 2.1.1Y Suppose D € PD,,. Then exp, (k) <exp_ (k—1)+1 forall2 <k < n.

Lemma 2.2.1% Suppose D € PD,,, and {p,q} C L(D) withp+q < n. Then exp, (1) <
nz—gni«l .

Lemma 2.3.° Suppose D € PD,, with | L(D) |> 3. Then exp (1) < 22=3nt4,

Lemma 2.4.55 Let D be a primitive digraph on n vertices. If L(D) = {p,q}, wherep < q
and p + q > n, then exp,_ (1) > max{(p — 1)(g — 1),q — 1}.

Lemma 2.5.50 Let D be a primitive digraph on n vertices. Suppose L(D) > {p,q},
where ged(p,q) = 1 and p < q. If D contains a p-cycle which intersects a q-cycle, then for
al1<k<mn,exp, (k) <p(lg—2)+n—qg+k.

Lemma 2.6.5 E, (1) = {1,2,---,%=3a4}y | {(p—1)(g-1),(p—1)(g—1) +

(p.q)EL(n)
1,---,p(¢g—2)+n-qg+1}.

Lemma 2.7. Forany2 <k <mn, E,_,(k—1) C E, (k).

Proof. Suppose m € E,,_;(k — 1). Then there exists a digraph D, € PD,,_; such that
exp,, (k—1) =m. Let V(D) = {v1,v2,-** ,Un_1,V}. And let D[V(D)\v,] & D;. Further
let v, be a copy of vertex u which has exponent exp,, (1), i.e. exp, (u) = exp, (1). Then
D € PD,, and exp, (k) = exp,, (k —1). Thus m € E,(k).

Lemma 2.8. Let n be odd withn > 5 andﬁz,'—1 <1< n-2 IfD is a digraph
with a Hamilton cycle (v1,v2, -+ ,vn,v1) and two additional arcs (v,,v2), (vi,viy2), then
exp,(2) = 3512-)5("—_31 +n—i+1.

Proof. Since Ry (v;) = {vj;1}for1<j<i—-lori+1<j<n-1,

exp,, (vit1) > exp,, (vit2) > -+ > exp, (vn-1) > exp,, (vs),
exp, (v1) > exp, (vz) > -+ > exp, (vi).
So exp,, (v1) = min{exp_ (vn), exp, (v;)}. It is easy to check that
| R(n—2)j+i(vn) |= min{n,3 + 25} and | R(n_3);4+i-1(vs) |= min{n,2 + 2;5}.
Thus exp, (vn) = Q_—_z_)i(n_—az + 1. Similarly we get exp (v;) = S"—_zlzﬁ"—_?'l + n — 1. Since
i > ™l exp,_(va) > exp,(v;). Thus exp, (1) = exp,(v;) = L";z%("—_al +n —1 and
exp,, (v;) > exp,, (v;) for j # i. Hence exp,(2) = gn_—2¥n_—_32 +n—i+1.
Theorem 2.1. Let positive integers p, q and n be given such that (p,q) € L(n). Then

U {e-De-1,0-1)@-1)+1,--,pl¢—2)+n—gq+2}
(pra)EL(n),q<n

U U {e-DE-1)+1,-,p(n-2)+2} C Ea(2).

(pm)€L(n)
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Proof. We denote by Cjy the cycle of the form (vy, vz, -+ ,vg,v1). Let z = (p—1)(g—1)+a,
where 0 <a<n-p.

Case 1. p = 2. Then ¢ is odd.

Subcase 1.1. ¢ =n. Let D = C,, U {(v;,vi-1) |a+2 < i < ¢=n}. Thenexp, (1) =
exp, (vn) = (n—1)+a and exp_(2) = exp_ (vn_1) = (n—1)+a+1. Thus {n,n+1,--- ,2n—
2} C E,(2).

Subcase 1.2. ¢ =n—1. Let D = (V,E) with V = {v1,v2, -+ ,vn_1,vn}. For 0 <
a < n—2, let D[V\v,] be exactly like the digraph in Subcase 1.1. And let v, be a copy
of vn_1, then exp_(2) = n — 2+ a. If let v, be a copy of v,_3, then exp, (2) =n—1+a.
For a = n — 2, let D consist of C,,_; and the arcs (v1,vn), (vn,v1). Then exp_(2) =2n —3.
Thus {n—2,n—1,--- ,2n — 3} C E.(2).

Case 2. p > 3.

Subcase 2.1. 0 < a < ¢ — p. Consider Cy with additional arcs {(vpyi,v14i) |0 <@ <
q — p— a}. For vertex vj(g < j < n), further arcs (vq,v;), (vj,v3) and (vp41,v;) are added.
In the proof of [5,Theorem 4], it is showed that exp_ (vq_a) = « and Ri(v;) = R;_1(viy1) for
alll > r; + 2, where r; = I_;';_:fll_] forp<i<qg—a-1 Letr=max{r; |p<i<g—a-1}=
Ll:%z.lf:lj Since z > r + 1,

Ry(q—2)(vp) = Rp(g—2)-1(Vp+1) = -+ = Ra(Vg—a—1) = Rz—1(vg-a) # V(D),
Ry(g-2)+1(vp) = Rp(q—2)(Vp+1) = -+ = Raq1(vg—a-1) = Rz(vg—a) = V(D).
Thus exp (v;) > exp, (vq_a) for p < i < g —a— 1. On the other hand, R;(v;) = {viy1} for
2<i<p-landg—-a+1<i<g-—-1and Ri(vg) = {v1}, Ri(v1) = {v2,vg41,Yg42, " ,Un},
Ri(v;) = {vz} for ¢+ 1 < i < n. Then exp, (v;) > exp, (vp) > exp, (vq—q) for 1 <i<p—1
and ¢ + 1 < i < n. Hence exp_ (1) = exp_(vq—a) = = and exp, (2) = = + 1. Therefore
{p-D@-1)+1L-1)g-1+2,,p(g—2)+1} C Ea(2).
Subcase 2.2. ¢ —p < a <n —p. Let D consist of C; and the walks

{('Uq’”q+1’ Tt ava+p—1’va+p’”a+l)} u {(vq,vjav2) | a+p+1<35< n}.
It is easy to check that exp (v,) = z. Since Ry (v;) = {vj41} for 1<j<g—lorg+1<
ifa+p-—-1, Rl(”q) = {”q+la'vl’va+p+1" U}, Rl(”a+p) = {¥e41} and Rl("’j) = {v2}
fora+p+1<j<mn,

exp, (v1) > oxp, (12) > -+ > exp, (ve) > exXP, (Vat1) > -+ > exp, (vg1) > exp, (vg),

exp, (Vg41) > exp, (Vg42) > -+ > €XD, (Vatp) > XD (Vat1)
and exp (v;) = exp,(v1) fora+p+1 < j < n. Thus exp, (1) = exp,(vy) = z and
exp, (2) = exp, (vg—1) = z + 1. Hence
{r(e-2)+2,p(¢-2) +3,---,p(g - 2) + n - g+ 2} C En(2).

Subcase 2.3. ¢ < n. Consider C, with additional arcs {(vp4i,v14:) | 0 < i < g —p}.
For vertices v;(g + 1 < j < n), further arcs (vq—1,v;), (vj,v1) and (vj,vq_pt1) are added.
It is analogous to the Subcase 2.1 that we can get exp, (1) = exp, (v,) = exp, (vn). Thus
exp,(2) = (p—1)(¢ - 1).

Combining Cases 1 and 2, the proof of the theorem is completeed.

Theorem 2.2. {1,2,---, %} C En(2) forn > 4.

Proof. By Lemmas 2.6 and 2.7, {1,2,---, i_—gﬂﬂ} C En(2).
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Case 1. n is odd.

Let p = 222 g = n. Then {"2_4"+5, "2_g"+7 e ,"—2—_%"—6} C En(2) by Theorem 2.1.
Let p = q =mn—2. Then {" —gni9 n "6"+u cey L—sij—_lg} C E,(2) by Theorem 2.1.
Let 4 take over all numbers in {22, 243 ... n — 2} in Lemma 2.8, we get

2_5n+12 n®—5 14 2_4n+7
{n n+ ’n n ,...,n nt }CEn(2) for n > 5.
2 2 2

Case 2. n is even.

Let p=%,¢g=n—1. Then {"2_3’”‘4, "2_4"+6 w’—-} C E.(2) by Theorem 2.1.

Subcase 2.1. n = 0 (mod 4). Let p = ®52,q = n. Then

2-5n+6 n?-5 8 4n+8
{n 2n+ ’n 2n+ ,---,—&}CE(Z)

by Theorem 2.1.
Subcase 2.2. n =2 (mod4). Let p= 5,g=mn— 2. Then

{n2—2n+6’n2—52m+8,”_’ 4n+8} E(2)

by Theorem 2.1.

Combining Cases 1 and 2, the proof is completed.

Theorem 2.3. Let (p,n) € L(n). If p > 3, then there is no D € PD(n) such that
L(D) = {p,n} and expp(2) = (p — 1)(n —1).

Proof. Let Dy be the digraph on n vertices with L(Dg) = {p,n} such that the number
of arcs in Dy is as much as possible. Then

Do 2 Cp U {(vp44,v143) |0 < i < n —p}.
Since p > 3, it is easy to verify that exp,, (2) = (p —1)(n — 1) + 1. Suppose D be any
digraph on n vertices with L(D) = {p,n}. Then D is a subdigraph of Dy. Thus

exp_(2) > exp,, 2)=@E-1)(n-1)+1.

Remark. Theorem 2.3 is not true for p = 2. To see this, we consider the digraph D =
(v1,v2, ** , 5, 1) U (UnyUn—1," - ,U1,Vs). It is obvious that L(D) = {2,n} and exp,(2) =
n—1.

Proof of Main Theorem. Combining Lemmas 2.1-2.5, Theorems 2.1-2.3 and n — 1 <
92_—3"'@, the Main Theorem is true for all n > 4. On the other hand, it is easy to verify
that F2(2) = {1,2} and E3(2) = {1,2,3,4}. The Main Theorem is also true for n = 2,3.
So the proof of the Main Theorem is completed.
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