THE SECOND EXPONENT SET OF PRIMITIVE DIGRAPHS***

MIAO ZHENGKE*,** ZHANG KEMIN*

Abstract

Let D=(V,E) be a primitive digraph. The exponent of D, denoted by $\gamma(D)$, is the least integer k such that for any $u,v\in V$ there is a directed walk of length k from u to v. The local exponent of D at a vertex $u\in V$, denoted by $\exp_D(u)$, is the least integer k such that there is a directed walk of length k from u to v for each $v\in V$. Let $V=\{1,2,\cdots,n\}$. Following [1], the vertices of V are ordered so that $\exp_D(1)\le \exp_D(2)\le \cdots \le \exp_D(n)=\gamma(D)$. Let $E_n(i):=\{\exp_D(i)\mid D\in PD_n\}$, where PD_n is the set of all primitive digraphs of order n. It is known that $E_n(n)=\{\gamma(D)\mid D\in PD_n\}$ has been completely settled by [7]. In 1998, $E_n(1)$ was characterized by [5]. In this paper, the authors describe $E_n(2)$ for all $n\ge 2$.

Keywords Primitive digraph, Local exponent, Gap
1991 MR Subject Classification 05C20, 05C50, 15A33
Chinese Library Classification 0157.5, 0151.21 Document Code A
Article ID 0252-9599(2000)02-0233-04

§1. Introduction and Notations

Let D=(V,E) be a digraph and L(D) denote the set of cycle lengths of D. For $u \in V$ and integer $i \geq 1$, let $R_i(u) := \{ v \in V \mid \text{there exists a directed walk of length } i \text{ from } u \text{ to } v \}$. We define $R_0(u) := \{u\}$. Let $u, v \in V$. If $N^+(v) = N^+(v)$ and $N^-(v) = N^-(v)$, then we call v a copy of u.

Let D be a primitive digraph and $\gamma(D)$ denote the exponent of D. In 1950, H. Wielandt^[6] found that $\gamma(D) \leq (n-1)^2 + 1$ and showed that there is a unique digraph that attains this bound. In 1964, A. L. Dulmage and N. S. Mendelsohn^[2] observed that there are gaps in the exponent set $E_n = \{\gamma(D) \mid D \in PD_n\}$, where PD_n is the set of all primitive digraphs of order n. In 1981, M. Lewin and Y. Vitek^[3] found a general method for determining all the gaps between $\lfloor \frac{w_n}{2} \rfloor + 1$ and w_n , and they conjectured that there is no gap in $\{1, 2, \dots, \lfloor \frac{w_n}{2} \rfloor + 1\}$. In 1985, Shao Jiayu^[4] proved that the conjecture is true when n is sufficiently large and gave a counterexample to show that the conjecture is not true in the case when n = 11. In 1987, Zhang Kemin^[7] proved that the conjecture is true except 48 for n = 11. Therefore, the problem of determining the exponent set is completely solved.

The local exponent of D at vertex $u \in V$, denoted by $\exp_D(u)$, is the least integer k such that there is a directed walk of length k from u to v for each $v \in V$. Let $V = \{1, 2, \dots, n\}$.

Manuscript received September 30, 1998. Revised October 25, 1999.

^{*}Department of Mathematics, Nanjing University, Nanjing 210093, China.

^{**}Department of Mathematics, Xuzhou Normal University, Xuzhou 221009, China.

^{* * *}Project supported by the National Natural Science Foundation of China and the Jiangsu Provincial Natural Science Foundation of China.

Following [1], we order the vertices of V so that $\exp_D(1) \le \exp_D(2) \le \cdots \le \exp_D(n) = \gamma(D)$. Let $E_n(i) := \{\exp_D(i) \mid D \in PD_n\}$ and $L(n) = \{(p,q) \mid 2 \le p < q \le n, p+q > n, \gcd(p,q) = 1\}$. Clearly, $E_n(n) = E_n$. In 1998, Shen Jian and S. Neufeld^[5] obtained $ES_n(1)$. In this paper, we proved the following

 $\begin{array}{ll} \textbf{Main Theorem.} \ E_n(2) = \{1,2,\cdots,\frac{n^2-3n+6}{2}\} \cup \bigcup_{\substack{(p,q) \in L(n), q < n}} \{(p-1)(q-1),(p-1)(q-1),(p-1)(q-1)\} \\ 1) + 1,\cdots,p(q-2) + n - q + 2\} \cup \bigcup_{\substack{(p,n) \in L(n)}} \{(p-1)(n-1) + 1,\cdots,p(n-2) + 2\} \ \textit{for all } n \geq 2. \end{array}$

§2. Determination of $E_n(2)$

Lemma 2.1.^[1] Suppose $D \in PD_n$. Then $\exp_D(k) \le \exp_D(k-1) + 1$ for all $2 \le k \le n$. **Lemma 2.2.**^[5] Suppose $D \in PD_n$, and $\{p,q\} \subset L(D)$ with $p+q \le n$. Then $\exp_D(1) \le \frac{n^2 - 3n + 4}{2}$.

Lemma 2.3.^[5] Suppose $D \in PD_n$ with $|L(D)| \geq 3$. Then $\exp_D(1) \leq \frac{n^2 - 3n + 4}{2}$.

Lemma 2.4.^[5] Let D be a primitive digraph on n vertices. If $L(D) = \{p, q\}$, where p < q and p + q > n, then $\exp_{D}(1) \ge \max\{(p-1)(q-1), q-1\}$.

Lemma 2.5.^[5] Let D be a primitive digraph on n vertices. Suppose $L(D) \supset \{p,q\}$, where gcd(p,q) = 1 and p < q. If D contains a p-cycle which intersects a q-cycle, then for all $1 \le k \le n$, $\exp_D(k) \le p(q-2) + n - q + k$.

Lemma 2.6.^[5] $E_n(1) = \{1, 2, \dots, \frac{n^2 - 3n + 4}{2}\} \cup \bigcup_{(p,q) \in L(n)} \{(p-1)(q-1), (p-1)(q-1) + 1, \dots, p(q-2) + n - q + 1\}.$

Lemma 2.7. For any $2 \le k \le n$, $E_{n-1}(k-1) \subset E_n(k)$.

Proof. Suppose $m \in E_{n-1}(k-1)$. Then there exists a digraph $D_1 \in PD_{n-1}$ such that $\exp_{D_1}(k-1) = m$. Let $V(D) = \{v_1, v_2, \cdots, v_{n-1}, v_n\}$. And let $D[V(D) \setminus v_n] \cong D_1$. Further let v_n be a copy of vertex u which has exponent $\exp_{D_1}(1)$, i.e. $\exp_{D_1}(u) = \exp_{D_1}(1)$. Then $D \in PD_n$ and $\exp_{D_1}(k) = \exp_{D_1}(k-1)$. Thus $m \in E_n(k)$.

Lemma 2.8. Let n be odd with $n \geq 5$ and $\frac{n+1}{2} \leq i \leq n-2$. If D is a digraph with a Hamilton cycle $(v_1, v_2, \cdots, v_n, v_1)$ and two additional arcs (v_n, v_2) , (v_i, v_{i+2}) , then $\exp_D(2) = \frac{(n-2)(n-3)}{2} + n - i + 1$.

Proof. Since $R_1(v_j) = \{v_{j+1}\}$ for $1 \le j \le i-1$ or $i+1 \le j \le n-1$,

$$\begin{split} \exp_{_D}(v_{i+1}) > \exp_{_D}(v_{i+2}) > \cdots > \exp_{_D}(v_{n-1}) > \exp_{_D}(v_n), \\ \exp_{_D}(v_1) > \exp_{_D}(v_2) > \cdots > \exp_{_D}(v_i). \end{split}$$

So $\exp_D(v_1) = \min\{\exp_D(v_n), \exp_D(v_i)\}$. It is easy to check that

$$\mid R_{(n-2)j+i}(v_n) \mid = \min\{n, 3+2j\} \text{ and } \mid R_{(n-2)j+i-1}(v_n) \mid = \min\{n, 2+2j\}.$$

Thus $\exp_D(v_n) = \frac{(n-2)(n-3)}{2} + i$. Similarly we get $\exp_D(v_i) = \frac{(n-2)(n-3)}{2} + n - i$. Since $i \ge \frac{n+1}{2}$, $\exp_D(v_n) > \exp_D(v_i)$. Thus $\exp_D(1) = \exp_D(v_i) = \frac{(n-2)(n-3)}{2} + n - i$ and $\exp_D(v_j) > \exp_D(v_i)$ for $j \ne i$. Hence $\exp_D(2) = \frac{(n-2)(n-3)}{2} + n - i + 1$.

Theorem 2.1. Let positive integers p, q and n be given such that $(p,q) \in L(n)$. Then

$$\bigcup_{\substack{(p,q)\in L(n),q< n}} \{(p-1)(q-1),(p-1)(q-1)+1,\cdots,p(q-2)+n-q+2\}$$

$$\bigcup \bigcup_{(p,n)\in L(n)} \{(p-1)(n-1)+1,\cdots,p(n-2)+2\} \subset E_n(2).$$

Proof. We denote by C_q the cycle of the form $(v_1, v_2, \dots, v_q, v_1)$. Let x = (p-1)(q-1)+a, where $0 \le a \le n-p$.

Case 1. p = 2. Then q is odd.

Subcase 1.1. q = n. Let $D = C_n \cup \{(v_i, v_{i-1}) \mid a+2 \le i \le q = n\}$. Then $\exp_D(1) = \exp_D(v_n) = (n-1) + a$ and $\exp_D(2) = \exp_D(v_{n-1}) = (n-1) + a + 1$. Thus $\{n, n+1, \dots, 2n-2\} \subset E_n(2)$.

Subcase 1.2. q=n-1. Let D=(V,E) with $V=\{v_1,v_2,\cdots,v_{n-1},v_n\}$. For $0\leq a< n-2$, let $D[V\backslash v_n]$ be exactly like the digraph in Subcase 1.1. And let v_n be a copy of v_{n-1} , then $\exp_D(2)=n-2+a$. If let v_n be a copy of v_{n-2} , then $\exp_D(2)=n-1+a$. For a=n-2, let D consist of C_{n-1} and the arcs $(v_1,v_n),(v_n,v_1)$. Then $\exp_D(2)=2n-3$. Thus $\{n-2,n-1,\cdots,2n-3\}\subset E_n(2)$.

Case 2. $p \ge 3$.

Subcase 2.1. $0 \le a < q-p$. Consider C_q with additional arcs $\{(v_{p+i}, v_{1+i}) \mid 0 \le i \le q-p-a\}$. For vertex $v_j(q < j \le n)$, further arcs (v_1, v_j) , (v_j, v_3) and (v_{p+1}, v_j) are added. In the proof of [5,Theorem 4], it is showed that $\exp_D(v_{q-a}) = x$ and $R_l(v_i) = R_{l-1}(v_{i+1})$ for all $l \ge r_i + 2$, where $r_i = \lfloor \frac{i-p}{p-1} \rfloor$ for $p \le i \le q-a-1$. Let $r = \max\{r_i \mid p \le i \le q-a-1\} = \lfloor \frac{q-a-p-1}{p-1} \rfloor$. Since x > r+1,

$$R_{p(q-2)}(v_p) = R_{p(q-2)-1}(v_{p+1}) = \dots = R_x(v_{q-a-1}) = R_{x-1}(v_{q-a}) \neq V(D),$$

$$R_{p(q-2)+1}(v_p) = R_{p(q-2)}(v_{p+1}) = \dots = R_{x+1}(v_{q-a-1}) = R_x(v_{q-a}) = V(D).$$

Thus $\exp_D(v_i) > \exp_D(v_{q-a})$ for $p \le i \le q-a-1$. On the other hand, $R_1(v_i) = \{v_{i+1}\}$ for $2 \le i \le p-1$ and $q-a+1 \le i \le q-1$ and $R_1(v_q) = \{v_1\}$, $R_1(v_1) = \{v_2, v_{q+1}, v_{q+2}, \cdots, v_n\}$, $R_1(v_i) = \{v_2\}$ for $q+1 \le i \le n$. Then $\exp_D(v_i) > \exp_D(v_p) > \exp_D(v_{q-a})$ for $1 \le i \le p-1$ and $q+1 \le i \le n$. Hence $\exp_D(1) = \exp_D(v_{q-a}) = x$ and $\exp_D(2) = x+1$. Therefore

$$\{(p-1)(q-1)+1,(p-1)(q-1)+2,\cdots,p(q-2)+1\}\subset E_n(2).$$

Subcase 2.2. $q-p \le a \le n-p$. Let D consist of C_q and the walks

$$\{(v_q,v_{q+1},\cdots,v_{a+p-1},v_{a+p},v_{a+1})\} \cup \{(v_q,v_j,v_2) \mid a+p+1 \leq j \leq n\}.$$

It is easy to check that $\exp_D(v_q) = x$. Since $R_1(v_j) = \{v_{j+1}\}$ for $1 \le j \le q-1$ or $q+1 \le j \le a+p-1$, $R_1(v_q) = \{v_{q+1}, v_1, v_{a+p+1}, \cdots, v_n\}$, $R_1(v_{a+p}) = \{v_{a+1}\}$ and $R_1(v_j) = \{v_2\}$ for $a+p+1 \le j \le n$,

$$\begin{split} \exp_{_{D}}(v_{1}) > \exp_{_{D}}(v_{2}) > \cdots > \exp_{_{D}}(v_{a}) > \exp_{_{D}}(v_{a+1}) > \cdots > \exp_{_{D}}(v_{q-1}) > \exp_{_{D}}(v_{q}), \\ \exp_{_{D}}(v_{q+1}) > \exp_{_{D}}(v_{q+2}) > \cdots > \exp_{_{D}}(v_{a+p}) > \exp_{_{D}}(v_{a+1}) \end{split}$$

and $\exp_D(v_j)=\exp_D(v_1)$ for $a+p+1\leq j\leq n$. Thus $\exp_D(1)=\exp_D(v_q)=x$ and $\exp_D(2)=\exp_D(v_{q-1})=x+1$. Hence

$${p(q-2)+2,p(q-2)+3,\cdots,p(q-2)+n-q+2}\subset E_n(2).$$

Subcase 2.3. q < n. Consider C_q with additional arcs $\{(v_{p+i}, v_{1+i}) \mid 0 \le i \le q-p\}$. For vertices $v_j(q+1 \le j \le n)$, further arcs (v_{q-1}, v_j) , (v_j, v_1) and (v_j, v_{q-p+1}) are added. It is analogous to the Subcase 2.1 that we can get $\exp_D(1) = \exp_D(v_q) = \exp_D(v_n)$. Thus $\exp_D(2) = (p-1)(q-1)$.

Combining Cases 1 and 2, the proof of the theorem is completeed.

Theorem 2.2. $\{1, 2, \dots, \frac{n^2 - 3n + 6}{2}\} \subset E_n(2)$ for $n \geq 4$.

Proof. By Lemmas 2.6 and 2.7, $\{1, 2, \dots, \frac{n^2-5n+8}{2}\} \subset E_n(2)$.

Case 1. n is odd.

Let $p = \frac{n-1}{2}, q = n$. Then $\{\frac{n^2-4n+5}{2}, \frac{n^2-4n+7}{2}, \cdots, \frac{n^2-3n+6}{2}\} \subset E_n(2)$ by Theorem 2.1. Let $p = \frac{n-1}{2}, q = n-2$. Then $\{\frac{n^2-6n+9}{2}, \frac{n^2-6n+11}{2}, \cdots, \frac{n^2-5n+12}{2}\} \subset E_n(2)$ by Theorem 2.1. Let i take over all numbers in $\{\frac{n+1}{2}, \frac{n+3}{2}, \cdots, n-2\}$ in Lemma 2.8, we get

$$\left\{\frac{n^2-5n+12}{2}, \frac{n^2-5n+14}{2}, \cdots, \frac{n^2-4n+7}{2}\right\} \subset E_n(2) \text{ for } n \geq 5.$$

Let $p = \frac{n}{2}, q = n - 1$. Then $\{\frac{n^2 - 4n + 4}{2}, \frac{n^2 - 4n + 6}{2}, \cdots, \frac{n^2 - 3n + 6}{2}\} \subset E_n(2)$ by Theorem 2.1. Subcase 2.1. $n \equiv 0 \pmod{4}$. Let $p = \frac{n-2}{2}, q = n$. Then

$$\left\{\frac{n^2-5n+6}{2}, \frac{n^2-5n+8}{2}, \cdots, \frac{n^2-4n+8}{2}\right\} \subset E_n(2)$$

by Theorem 2.1.

Subcase 2.2. $n \equiv 2 \pmod{4}$. Let $p = \frac{n}{2}, q = n - 2$. Then

$$\left\{\frac{n^2-5n+6}{2}, \frac{n^2-5n+8}{2}, \cdots, \frac{n^2-4n+8}{2}\right\} \subset E_n(2)$$

by Theorem 2.1.

Combining Cases 1 and 2, the proof is completed.

Theorem 2.3. Let $(p,n) \in L(n)$. If $p \geq 3$, then there is no $D \in PD(n)$ such that $L(D) = \{p, n\} \text{ and } \exp_D(2) = (p-1)(n-1).$

Proof. Let D_0 be the digraph on n vertices with $L(D_0) = \{p, n\}$ such that the number of arcs in D_0 is as much as possible. Then

$$D_0 \cong C_n \cup \{(v_{p+i}, v_{1+i}) \mid 0 \le i \le n-p\}.$$

Since $p \geq 3$, it is easy to verify that $\exp_{D_0}(2) = (p-1)(n-1) + 1$. Suppose D be any digraph on n vertices with $L(D) = \{p, n\}$. Then D is a subdigraph of D_0 . Thus

$$\exp_{p}(2) \ge \exp_{p}(2) = (p-1)(n-1) + 1.$$

Remark. Theorem 2.3 is not true for p=2. To see this, we consider the digraph D= $(v_1, v_2, \cdots, v_n, v_1) \cup (v_n, v_{n-1}, \cdots, v_1, v_n)$. It is obvious that $L(D) = \{2, n\}$ and $\exp_{D}(2) = \{1, n\}$ n-1.

Proof of Main Theorem. Combining Lemmas 2.1–2.5, Theorems 2.1–2.3 and $n-1 \le$ $\frac{n^2-3n+6}{3}$, the Main Theorem is true for all $n\geq 4$. On the other hand, it is easy to verify that $E_2(2) = \{1, 2\}$ and $E_3(2) = \{1, 2, 3, 4\}$. The Main Theorem is also true for n = 2, 3. So the proof of the Main Theorem is completed.

REFERENCES

- [1] Brualdi, R. A. & Liu Bolian, Generalized exponents of primitive directed graphs [J], J. Graph Theory, 14(1990), 483-499.
- [2] Dulmage, A. L. & Mendelsohn, N. S., Gaps in the exponent set of primitive matrices [J], Illinois J. Math., 8(1964), 642-656.
- [3] Lewin, M. & Vitek, Y., A system of gaps in the exponent set of primitive matrices [J], Illinois J. Math., **25:**1(1981), 87–98.
- [4] Shao Jiayu, On a conjecture about the exponent set of primitive matrices [J], Linear Alg. Appl., 65(1985), 91-123.
- [5] Shen Jian & Neufeld, S., Local exponents of primitive digraphs [J], Linear Alg. Appl., 268(1998), 117-129.
- [6] Wielandt, H., Unzerlegbare, nicht negative Matrizen [J], Math. Z., 52(1950), 642-645.
- [7] Zhang Kemin, On Lewin and Vitek's conjecture about the exponent set of primitive matrices [J], Linear Alg. Appl., 96(1987), 102-108.