NEW RESULTS OF B(27) AND B(52)

Zhou Jianguo
Zhang Kemin
(Dept. of Math., Nanjing University, 210093, Nanjing, PRC)

Abstract In this paper, we give a broadcast graph of order 27 with 48 edges and prove 44 ≤
B(27) ≤ 48, moreover we give a new broadcast graph of order 52 with 98 edges, that is to say
B(52) ≤ 98.

Keywords broadcast graph, communication network, minimum broadcast graph

AMS(1991) subject classifications 05C10, 68M10, 90C35

1 Introduction

Broadcasting is the process of distributing information from an originator to all other vertices of a communication network. The problem addressed in this paper is under the assumptions that only one piece of information is to be distributed, each communication involves exactly two adjacent vertices and takes one unit time, and no vertex is involved in two or more simultaneous communications.

Let G be a graph of order n, representing a communication network. It is easy to see that at least \(\lceil \log_2 n \rceil \) time units are required to complete broadcasting under the above assumptions. For \(u \in V(G) \), a broadcast from \(u \) determines a spanning tree of \(G \), denoted by \(T(u) \) called broadcast tree from \(u \), and we define the broadcast time of \(u \), denoted by \(b(u) \), to be the minimum number of time units required to complete broadcasting from vertex \(u \), the broadcast time of \(G \), denoted by \(b(G) \), to be the maximum broadcast time of any vertex in \(G \), i.e.,

\[b(G) = \max \{ b(u) \mid u \in V(G) \} \]

If \(b(G) = \lceil \log_2 n \rceil \), then \(G \) is called a broadcast graph.

* The project supported by NSFC and NSFJS.

Received: Jun. 21, 1997.

第一作者简介, 周建国, 男, 1973年9月生, 基础数学专业, 博士生.
broadcast function $B(n)$ is the minimum number of edges in any broadcast graph with n vertices. A broadcast graph with n vertices and $B(n)$ edges is called a minimum broadcast graph or mbg.

From the point of view of application, minimum broadcast graphs represent the cheapest possible communication networks such that broadcasting can be accomplished from any vertex as fast as theoretically possible.

A survey of the history of these problems and a list of references can be found in [3], [4]. Minimum broadcast graphs are difficult to construct and there is no known method for constructing a mbg for arbitrary n. In fact, even determining the value of $b(u)$ in an arbitrary graph is NP-complete (see [5]). For $B(n)$, only the values of $B(n)$ for $n \leq 22$ or $n = 31, 63$ or $n = 2^k \cdot 2^i - 2$ if $k \geq 5$ have been determined. So far $B(27) \leq 49$, $B(52) \leq 100$ (see [1]).

In this paper, we prove $B(27) \leq 48$ by constructing a broadcast graph of order 27 with 48 edges, and using a method developed in [1] we construct a broadcast graph of order 52 with 98 edges which proves that $B(52) \leq 98$, we also give a lower bound of $B(27)$. We refer to [2] for notations and terminology not defined here.

2 New upper and Lower Bound of $B(27)$

Let G be a minimum broadcast graph on 27 vertices, then we have

Proposition 2.1 $\delta(G) = 3$.

Proof If there exists in G a vertex v of degree 1 or 2, then we can easily show that $b(v) \geq \lceil \log_2 27 \rceil = 5$; If $\delta > 3$ then $|E(G)| > 49$, a contradiction. Thus, complete the proof.

Proposition 2.2 Let $v \in G$ be a vertex of degree 3, then v must be adjacent to a vertex with degree at least 4.

Proof If not, then we can show that broadcasting from v can at most inform 25 vertices in five time units.

Proposition 2.3 $B(27) \geq 44$.

Proof Assume that G contains exactly m vertices of degree at least 4, which are collected in $V' \subset V(G)$, then $\sum_{v \in V'} d(v) \geq 4m$. On the other hand, from Propositions 2.1 and 2.2 we have $\sum_{v \in V'} d(v) \geq 27 - m$.

1. If $4m \geq 27 - m$ then $m \geq 6$. $|E(G)| \geq \lceil (6 \cdot 4 + 21 \cdot 3) / 2 \rceil = 44$.

2. If $27 - m > 4m$ then $m \leq 5$ and $\sum_{v \in V'} d(v) \geq 22$. Thus

$|E(G)| \geq \lceil (22 + 22 \cdot 3) / 2 \rceil = 44$.
Therefore $B(27) \geq 44$.

Fig. 1 A broadcast graph on 27 vertices

Fig. 2 Broadcasting schemes
Theorem 2.1 \(44 \leq B(27) \leq 48\).

Proof The left side of the inequality is true by proposition 2.3. To prove the right side of the inequality, we construct a graph \(G\) described in Fig. 1 as a broadcast graph on 27 vertices with 48 edges, the vertex inside the cycle is denoted by \(x\). Broadcasting schemes are showed in Fig. 2. In fact, by the symmetry of \(G-x\) we need only show twelve broadcasting schemes for the broadcast graph. In Fig. 1, the letter beside a vertex indicates which scheme in Fig. 2 can be used. In a scheme, ‘+’ indicates originator and a label beside a vertex indicates the time unit of the vertex receiving the message. Thus, we have prove the theorem. \(\square\)

3 New Upper Bound of \(B(52)\)

In [1], Bermond et al. developed a method called solid 2-cover to construct new broadcast graphs from smaller broadcast graphs. In this paper, we apply this method on a mgb of order 26 to obtain a new broadcast graph of order 52 with 98 edges which improves the old upper bound of 100. First of all, we introduce some terms defined in [1].

Definition 3.1 Given a broadcast tree in a broadcast graph on \(n\) vertices, a vertex \(u\) is idle at time unit \(t \leq \lceil \log_{2} n \rceil\) if and only if \(u\) is aware of the message at (the beginning of) the time unit \(t\) and \(u\) does not communicate with any of its neighbors during the time unit.

Definition 3.2 Given a broadcast graph \(G\) on \(n\) vertices, a subset of vertices \(M\) is called a solid 2-cover if and only if \(M\) covers all the paths of length 2 in \(G\), and for each \(u \notin M\), there is a broadcast tree from \(u\) such that at least one of the following three conditions holds:

1. All neighbors of \(u\) belong to \(M\) and at least one neighbor of \(u\) is idle at some time during the broadcast.

2. Exactly one neighbor \(v\) of \(u\) does not belong to \(M\), at least one of the neighbors of \(u\) distinct from \(v\) is idle at some time during the broadcast, and at least one of the neighbors of \(v\) distinct from \(u\) is idle at some time during the broadcast.

3. Exactly one neighbor \(v\) of \(u\) does not belong to \(M\) and at least one of the neighbors of \(u\) distinct from \(v\) is idle at some time \(t < \lceil \log_{2} n \rceil\) during the broadcast or at least one of the neighbors of \(v\) distinct from \(u\) is idle at some time \(t < \lceil \log_{2} n \rceil\) during the broadcast.

In the following, we show a solid 2-cover of a mgb \(G\) on 26 vertices.

The set of vertices represented by a stuffed cycle (see Fig. 3) are a solid 2-cover of the mgb on 26 vertices, denoted by \(M\), the number beside a vertex shows which of the three conditions are satisfied, we refer to [5] for relative broadcast schemes. Then join the two copies of \(G\) as in Fig. 4, for \(u \in V(G), u\) and its copy \(v\) is joined if and only if \(u \in M\), then we can get
a broadcast graph on 52 vertices with 98 edges. Thus we have the following theorem.

![Figure 3](image)

Theorem 3.1 \(B(52) \leq 98. \)

Proof Let \(G' \) be the graph as Fig. 4, we show that \(b(G') = \lceil \log_2 26 \rceil + 1 = 6. \) Let \(u \in V(G_1) \) be the originator of the broadcast. If \(u \in M \) then \(u \) may sends the message to its copy \(v \), and then \(u \) and \(v \) broadcast in \(G_1 \) and \(G_2 \) respectively, this takes \(\lceil \log_2 26 \rceil + 1 \) time units.

![Figure 4](image)

Fig. 4 A Broadcast graph on 52 vertices obtained from solid 2-cover

Suppose that \(u \) does not belong to \(M \), since \(M \) is a solid 2-cover of \(G \), one of the three conditions in Definition 3.2 holds, so we have,

Case 1 If Condition 1 holds, then all neighbors of \(u \) belong to \(M \). Let \(T \) be the relative broadcast tree for \(u \) in \(G_1 \), and let \(u(i), i = 1, 2, \cdots \), be the neighbors of \(u \) in \(G_1 \) that are informed by \(u \) at time units \(t = 1, 2, \cdots \). Then we can expand \(T \) to inform vertices of \(G_2 \) as follows. When a \(u(i) \) receives the message, it first sends it to its copy \(v(i) \in G_2 \), then \(u(i) \) and \(v(i) \) both complete broadcast according to \(T \) in \(G_1 \) and \(G_2 \), respectively. Thus all vertices of \(G_1 \) and all vertices of \(G_2 \), except \(v \) will be informed after \(\lceil \log_2 26 \rceil + 1 \) time units. Since Condition 1 is satisfied, we can ensure that some neighbor of \(v \) in \(G_2 \) is idle at some time unit during the broadcast and this vertex can inform \(v \) in his idle time unit.
Case 2 If Condition 2 or 3 holds, similar to the proof of Case 1, we can use the chosen broadcast tree T to ensure that all vertices except the copy of u and the copy of one of its neighbors $u(i) \in M$ are aware of the message at time $\lceil \log_2 26 \rceil + 1$. Since M is a solid 2-cover, there are enough idle vertices to inform the copies of u and $u(i)$ by the end of time unit $\lceil \log_2 26 \rceil + 1$.

Thus the proof is completed.

References