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The Minimal Solutions of Boolean
Matrix-equation A=y
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Abstract: Letr A be a primitive Boolean matrix. ¥ (A) is the least number & such that Af =],
o(A) is the number of 1-entries in A. In this paper, the parameter N' (k. n) =minlc(A)| AT
= A, trace(A) =0, Y(A) ==k} is considered. Furthermore, we describe the set EG(k, n) =
TG(AYig(A)=N(k,n), AT =A, trace(A)=0, Y(A) =k} and obtain a characterization of
the minimal solutions with zero trace of the Boolean matrix equation A* = J .
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let B = 0,1} be the usual binary Boolean algebra. The matrices over B are called
Boolean matrices. An n X n Boolean matrix A is called a primitive matrix if there exists a
positive integer k such that A* =J (where J is the universal matrix). The least such £ is
called the exponent of A, denoted by ¥(A).

In projective plane theory, although a lot of results are obtained on’ Boolean matrix
equation, it is still a famous open problem to find the square roots of a Boolean matrix.

Let A be an n X n Boolean matrix. Define the norm of A, denoted by 6(A), 10 be the
number of 1-entries in A. Clearly, o satisfies the norm axioms. As you know, a special
Boolean matrix-equation A* = J has solutions. In general, it is very difficult to solve this
equation. So, the parameter

N'(k,n) = minfa(A) | AT = A, wrace(A) =0, y(A) = k!
must be considered. And we need the following concepts and propositions. The associated

graph of an n X n symmetric Boolean matrix A = (a; ), denoted by G(A), is the graph
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with vertex set V.=11,2, -, n{ such that there is an edge arc between i and j in D(A) if
and only if a; =a; =1. A graph G is primitive if there exists an integer # >0 such that for
all pairs of vertices i, 7€ V(G) (not necessary distinct), there is a walk from 7 to j with
length k. The least such £ is called the exponent of G, denoted by ¥ (G ). Clearly, a
symmetric Boolean matrix A is primitive i and only if its associated graph G () is primitive
and y(A)=7(G(A)).

Let G be a primitive graph with order n. For any 7, ;€ V((), the local exponent from
i o, denoted by 7(i,;5), is the least integer % such that there exists a walk of length m

from i to j {or all m =k . It is obvious that y(G) = rél?‘ii( y(i,7).
LIEVG)
Proposition'"
isE,=12,3,.2n =4t =Y, where Y is the set of all odd numbers in tn~2,n—-1, -,
2n — 51,
In this paper, we describe the set

EG(k,n) = 1G(A) i 6(A) = N(k,n), AT = A, trace(A) = 0, y(A) = k|

and give a characterization of the minimal symmetric solutions with zero trace of A* = J .

The exponent set of symmetric primitive (0, 1)-matrices with sero trace

Other terms and notations not defined here, we refer the reader 10 [2].

According 1o the definition of N"(k, n) and Proposition 3, k& E,.
Theorem 1 N2, n) = 2\ é%%‘! for n 2= 3. Moreover, G & EG(2, 1) 15 unique

in the sense of permutation similarity.
Proof Since y(G,) =7v(G,) =2 for n =3 (see Figure 1), we have N (2, n) <

3n 37
2! 5 ’ .

Gy (n = odd) G, n = even)
Figure 1

A T=A. A’= J and trace( A ) =0, then there is a walk with length 2 from one vertex
to another in G(A). So any vertex of G(A) is on some 3-cycle. Otherwise, there would
exist a vertex € V(G(A)) such that « is a pendant vertex or u is on an s-cycle (s224) .
et v be a neighbouring vertex of u. Then 7(v, u)>2, a contradiction. Since A>=J, for
any u, v & V(G(A)) there exists 3-cycles C;, C, such that « € C,, v €& Cyand C,NC,5=

& For any 3-cycle C, let

t = |1u: There exists a 3-cycle C’ containing u

such that C" N C is exactly one vertex! | .

Thus we have
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e(G(A)) =3 + Pzihz(n 3= P"—“—j‘—ﬂ

r -3 [3n -3
=20 -3 -5 1= 3 1. (1)

3n—3
2

I GEEG(2, n), then (1) is an equality. So GZ=G, when n is odd and G=G, when

n 1s even.

So a(A)ZZJr 1 Hence N'(2, n)=2lr37[.‘.

Theorem 2 N'(3,5n) =2

‘[_371 -4

‘ 2

the sense of permutation similarity.
Proof Since Y (G3) =y (G,) =3 for n =26 (see Figure 2), we have N (3, n) <

[3n ~—4-|
23141

—l forn = 6. Further, G &€ EG(3, n) is unique in

n—1

Gi{n =odd) G4 (n = even)
Figure 2
Let A" =A, trace(A)=0and y(A)=3. Then for any « € V(G (A)) there is a 3-cycle
containing u . Otherwise, ¥(u, u)>3. By ¥(A) =3, the diameter of G(A) is less then 4
and greater then 1.

Case I The diameter of G(A) is equal to 3.
We claim that G(A) has a subgraph H {see Figure 3).

Figure 3 H

We take any two 3-cycles C,, C,, and let d =d,(C,, C,)<3.. Thus there exists a path

/\

with length . For d =3 (similary for d =2), let P = ruvy, r € C, and yE C,. If there
is a 3-cycle C; containing v such that C, (1 C; =&, then the claim holds. Hence C, ) C,#
. Now, we consider a 3-cycle C, with u € G,. Thus we have C,NC,#Z and C;NC,
#=& . Hence d;(C,, C,)<<2, a contradiction. So G(A) contains a subgraph H.

Case 2 The diameter of G(A) is equal 10 2.

Il there exist two 3-cycles C,, C, such that « € C;, v& C, and C, N C,#= & for any u,

v&€ V(G(A)), then Y(A) =2. This is a contradiction. If there exist two vertices u, ©
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and two 3-cycles C,, C, such that u € C,, v &€ C, and €, N C, =, then we can prove
that G(A) has a subgraph H as in the proof of the case 1. Let

t = | {u: There exists a 3-cycle C containing u

such that C 1) H is exactly one vertex} | .

Thus we have

W

T4 20 -6 -0y = [22=5=t]

>[2n -5 - 28] [3nd] (2)

Soo(A) 22;_371—2_—4] . Hence N (3, n) = 2’?5—11—2:&1

c(G(A) =T+

0|

If GEEG(3,n), then (2) is an eqality. So G=G, when n is odd and G=G, when n

is even.
Theorem 3 N'(2qg,n)=2n for 2<qg<in —2.
Proof Since Y(G,)=2gq for 2<<qg<<n — 2 (see Figure 4), we have N'(2¢, n)<2n for

2<qg<in — 2.

g+2
Figure 4
If A is a symmetric primitive matrix with zero trace, then ¥(A)==2n. Hence N'(2¢, n)
=2n.
Lemma Let G be a primitive undirected graph with exactly one cycle C. Then y(G) is

even .

Proof let G,,G,, *, G, be the components of G~ E(C), and ¢ the length of C. Let

t;, = max min d(u,v,), t = maxit;,ty, 1, 1.
v, € V(C,) u€ V(C)

I1 is obvious that there exists a vertex u, such that the distance from u, to C is t. Hence
Y(Qug, uy) = 2t +« — 1.
Il u,v€ V(G,), then
Y(u,v) <2t +c—-1<2t+c¢—-1.
Hu€V(G), v€EV(G;)(j7i), then
Y(u,v) <t +t;+c-1<2t+c-1.

Therefore y(G) =2t + ¢ —1 is even.

Theorem 4 N'(2¢+1,n)=2(n+1) for 2< ¢ < L"2—4J '

Proof If ¥(A) is odd, then G(A) has at least two odd cycles by the above LLemma. So
N (2¢+1,n)=22(n+1).
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N2
.. . ‘ o =4 . _
Since Y((r,)=2¢ 1 lor2 < g < o ‘ (see Figure 5), we have
iy ; oo =4
NQ2g+1,n) =2n+1) for2< g © Ty
n
Ia
/% ,
// \ '
// \‘\ /
3 5 R VA ST
" exactly. Clearly,

i 2 ;
Figure 5
We assume that (¢ is a primitive graph of order n with one cyele (
cA(GY=2n. Let m =max'd(u.C):u€ V(G)t and ¢ he the length of . We denote G
by T(c, m). By the above Lemma y(G)=2m + ¢ — 1 il ¢ ix odd. So EG(2q, n YD
T Cevm): 2m+ ¢ —1=2¢g%. On the other hand, il G&€ EG(2qg, n), then G is a graph
a connected undirected graph with
and 7 the maximum length of the

with no loop and ¥(G)=2¢q, 6(A(G))=2n. So G is
Let ¢(>1) be the length of C,
Thus y(G)=2m+c—=1=2¢g. So G=T(c.m)& i T(c,

exactly one odd cvele C

Hence EG (2. n)=1T(c,m): 2m +c¢—1=2¢!. So we have
A s the minimal symometric solution with zero trace of A\° =] if and only

path from a vertex 1o (" in (s
)y 2m e —1=2qg".
Main Result
U EG(2g.n) for k=24, Aisthat of A" =] if und onlv if G(A) =G,
2% E,
as 1 is odd and GCAYZE G, as n s even . Ads that of A7 =J if and only if G{A)Y=G, or

IR
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G E

References

Gry as nis odd and GUAYEG, as nois even
and Zhang Kemin, The exponent set of symmetric primitive

[1] Liu Bolian, McKav, B. D., Wormald, N
(0, 1) matrices with zero trace, Linear Algebra Appl ., 136(1990), 107 - 117.
Bondv, J.A. and Murty, U.S.R., Graph Theorv with Applications, Macmillan, London. 1976.

qu‘

L2



