The Minimal Solutions of Boolean Matrix-equation $A^k = J$

MIAO Zheng-ke*)(苗正科) and ZHANG Ke-min (张克民) (Department of Mathematics, Nanjing University, Nanjing, 210093)

Abstract: Let A be a primitive Boolean matrix. $\gamma(A)$ is the least number k such that $A^k = J$. $\sigma(A)$ is the number of 1-entries in A. In this paper, the parameter $N'(k,n) = \min |\sigma(A)| A^T = A$, trace(A) = 0, $\gamma(A) = k$ is considered. Furthermore, we describe the set $EG(k,n) = |G(A)| |\sigma(A)| = N'(k,n)$, $A^T = A$, trace(A) = 0, $\gamma(A) = k$ and obtain a characterization of the minimal solutions with zero trace of the Boolean matrix equation $A^k = J$.

Key words: primitive, exponent, norm

1991 MR subject classification: 05C20, 05C50, 15A33, 15A24

CLC number: O157.5, O151.21

Document code: A

Article ID: 1000-1778(2000)02-0155-05

Let $B = \{0, 1\}$ be the usual binary Boolean algebra. The matrices over B are called Boolean matrices. An $n \times n$ Boolean matrix A is called a primitive matrix if there exists a positive integer k such that $A^k = J$ (where J is the universal matrix). The least such k is called the exponent of A, denoted by $\gamma(A)$.

In projective plane theory, although a lot of results are obtained on Boolean matrix equation, it is still a famous open problem to find the square roots of a Boolean matrix.

Let A be an $n \times n$ Boolean matrix. Define the norm of A, denoted by $\sigma(A)$, to be the number of 1-entries in A. Clearly, σ satisfies the norm axioms. As you know, a special Boolean matrix-equation $A^k = J$ has solutions. In general, it is very difficult to solve this equation. So, the parameter

$$N'(k,n) = \min \{ \sigma(A) \mid A^T = A, \operatorname{trace}(A) = 0, \gamma(A) = k \}$$

must be considered. And we need the following concepts and propositions. The associated graph of an $n \times n$ symmetric Boolean matrix $A = (a_{ij})$, denoted by G(A), is the graph

Received date: Jan. 19, 1998.

Foundation item: The NSF (19871040) of China and NSF (BK97041105) of Jiangsu Province.

^{*)} Permanent address: Department of Mathematics, Xuzhou Normal University, Xuzhou, 221009.

with vertex set $V = \{1, 2, \dots, n\}$ such that there is an edge arc between i and j in D(A) if and only if $a_{ij} = a_{ji} = 1$. A graph G is primitive if there exists an integer k > 0 such that for all pairs of vertices $i, j \in V(G)$ (not necessary distinct), there is a walk from i to j with length k. The least such k is called the exponent of G, denoted by $\gamma(G)$. Clearly, a symmetric Boolean matrix A is primitive if and only if its associated graph G(A) is primitive and $\gamma(A) = \gamma(G(A))$.

Let G be a primitive graph with order n. For any $i,j \in V(G)$, the local exponent from i to j, denoted by $\gamma(i,j)$, is the least integer k such that there exists a walk of length m from i to j for all $m \ge k$. It is obvious that $\gamma(G) = \max_{i,j \in V(G)} \gamma(i,j)$.

Proposition^[1] The exponent set of symmetric primitive (0,1)-matrices with zero trace is $\hat{E}_n = \{2,3,\dots,2n-4\} - Y$, where Y is the set of all odd numbers in $\{n-2,n-1,\dots,2n-5\}$.

In this paper, we describe the set

 $EG(k,n) = \{G(A) \mid \sigma(A) = N(k,n), A^T = \Lambda, \operatorname{trace}(A) = 0, \gamma(A) = k\}$ and give a characterization of the minimal symmetric solutions with zero trace of $\Lambda^k = J$. Other terms and notations not defined here, we refer the reader to [2].

According to the definition of N'(k, n) and Proposition 3, $k \in \hat{E}_n$.

Theorem 1 $N'(2,n) = 2\lceil \frac{3n-3}{2} \rceil$ for $n \ge 3$. Moreover, $G \in EG(2,n)$ is unique in the sense of permutation similarity.

Proof Since $\gamma(G_1) = \gamma(G_2) = 2$ for $n \ge 3$ (see Figure 1), we have $N'(2, n) \le 2 \lceil \frac{3n-3}{2} \rceil$.

Figure 1

If $A^T = A$, $A^2 = J$ and trace(A) = 0, then there is a walk with length 2 from one vertex to another in G(A). So any vertex of G(A) is on some 3-cycle. Otherwise, there would exist a vertex $u \in V(G(A))$ such that u is a pendant vertex or u is on an s-cycle $(s \ge 4)$. Let v be a neighbouring vertex of u. Then $\gamma(v,u) > 2$, a contradiction. Since $A^2 = J$, for any $u,v \in V(G(A))$ there exists 3-cycles C_1,C_2 such that $u \in C_1$, $v \in C_2$ and $C_1 \cap C_2 \ne \emptyset$. For any 3-cycle C, let

 $t = |\{u : \text{ There exists a 3-cycle } C' \text{ containing } u$ such that $C' \cap C$ is exactly one vertex $||\cdot|$.

Thus we have

$$\varepsilon(G(A)) \geqslant 3 + \left\lceil \frac{3t}{2} \right\rceil + 2(n - 3 - t) = \left\lceil \frac{2n - 3 - t}{2} \right\rceil$$
$$\geqslant \left\lceil 2n - 3 - \frac{n - 3}{2} \right\rceil = \left\lceil \frac{3n - 3}{2} \right\rceil. \tag{1}$$

So
$$\sigma(A) \ge 2 \left\lceil \frac{3n-3}{2} \right\rceil$$
. Hence $N'(2, n) = 2 \left\lceil \frac{3t}{2} \right\rceil$.

If $G \in EG(2, n)$, then (1) is an equality. So $G \cong G_1$ when n is odd and $G \cong G_2$ when n is even.

Theorem 2 $N'(3,n) = 2 \lceil \frac{3n-4}{2} \rceil$ for $n \ge 6$. Further, $G \in EG(3,n)$ is unique in the sense of permutation similarity.

Proof Since $\gamma(G_3) = \gamma(G_4) = 3$ for $n \ge 6$ (see Figure 2), we have $N'(3, n) \le 2 \left\lceil \frac{3n-4}{2} \right\rceil$.

Figure 2

Let $A^T = A$, trace(A) = 0 and $\gamma(A) = 3$. Then for any $u \in V(G(A))$ there is a 3-cycle containing u. Otherwise, $\gamma(u, u) > 3$. By $\gamma(A) = 3$, the diameter of G(A) is less then 4 and greater then 1.

Case 1 The diameter of G(A) is equal to 3.

We claim that G(A) has a subgraph H (see Figure 3).

Figure 3 H

We take any two 3-cycles C_1 , C_2 , and let $d = d_G(C_1, C_2) \leq 3$. Thus there exists a path with length d. For d = 3 (similarly for d = 2), let P = xuvy, $x \in C_1$ and $y \in C_2$. If there is a 3-cycle C_3 containing v such that $C_2 \cap C_3 = \emptyset$, then the claim holds. Hence $C_2 \cap C_3 \neq \emptyset$. Now, we consider a 3-cycle C_4 with $u \in C_4$. Thus we have $C_1 \cap C_4 \neq \emptyset$ and $C_3 \cap C_4 \neq \emptyset$. Hence $d_G(C_1, C_2) \leq 2$, a contradiction. So G(A) contains a subgraph H.

Case 2 The diameter of G(A) is equal to 2.

If there exist two 3-cycles C_1 , C_2 such that $u \in C_1$, $v \in C_2$ and $C_1 \cap C_2 \neq \emptyset$ for any u, $v \in V(G(A))$, then $\gamma(A) = 2$. This is a contradiction. If there exist two vertices u, v

and two 3-cycles C_1 , C_2 such that $u \in C_1$, $v \in C_2$ and $C_1 \cap C_2 = \emptyset$, then we can prove that G(A) has a subgraph H as in the proof of the case 1. Let

 $t = | \{u : \text{ There exists a 3-cycle } C \text{ containing } u \}$ such that $C \cap H$ is exactly one vertex $| \cdot |$.

Thus we have

$$\varepsilon(G(A)) \geqslant 7 + \left\lceil \frac{3t}{2} \right\rceil + 2(n - 6 - t) = \left\lceil \frac{2n - 5 - t}{2} \right\rceil$$
$$\geqslant \left\lceil 2n - 5 - \frac{n - 6}{2} \right\rceil = \left\lceil \frac{3n - 4}{2} \right\rceil. \tag{2}$$

So
$$\sigma(A) \geqslant 2 \left\lceil \frac{3n-4}{2} \right\rceil$$
. Hence $N'(3,n) = 2 \left\lceil \frac{3n-4}{2} \right\rceil$.

If $G \in EG(3, n)$, then (2) is an eqality. So $G \cong G_3$ when n is odd and $G \cong G_4$ when n is even.

Theorem 3 $N'(2q, n) = 2n \text{ for } 2 \le q \le n - 2.$

Proof Since $\gamma(G_5) = 2q$ for $2 \le q \le n - 2$ (see Figure 4), we have $N'(2q, n) \le 2n$ for $2 \le q \le n - 2$.

Figure 4

If A is a symmetric primitive matrix with zero trace, then $\gamma(A) \ge 2n$. Hence N'(2q, n) = 2n.

Lemma Let G be a primitive undirected graph with exactly one cycle C. Then $\gamma(G)$ is even.

Proof Let G_1, G_2, \dots, G_r be the components of G = E(C), and c the length of C. Let $t_i = \max_{v_i \in V(C_i)} \min_{u \in V(C)} d(u, v_i), \qquad t = \max\{t_1, t_2, \dots, t_r\}.$

It is obvious that there exists a vertex u_0 such that the distance from u_0 to C is t. Hence $\gamma(u_0, u_0) = 2t + c - 1$.

If $u, v \in V(G_i)$, then

$$\gamma(u,v) \leqslant 2t_i + c - 1 \leqslant 2t + c - 1.$$

If $u \in V(G_i)$, $v \in V(G_i)(j \neq i)$, then

$$\gamma(u,v) \leqslant t_i + t_j + c - 1 \leqslant 2t + c - 1.$$

Therefore $\gamma(G) = 2t + c - 1$ is even.

Theorem 4
$$N'(2q+1, n) = 2(n+1)$$
 for $2 \le q \le \lfloor \frac{n-4}{2} \rfloor$.

Proof If $\gamma(A)$ is odd, then G(A) has at least two odd cycles by the above Lemma. So $N'(2q+1,n)\geqslant 2(n+1)$.

Since
$$\gamma(G_6) = 2q + 1$$
 for $2 \leqslant q \leqslant \left\lfloor \frac{n-4}{2} \right\rfloor$ (see Figure 5), we have
$$N'(2q+1,n) = 2(n+1) \quad \text{for } 2 \leqslant q \leqslant \left\lfloor \frac{n-4}{2} \right\rfloor.$$

We assume that G is a primitive graph of order n with one cycle C exactly. Clearly, $\sigma A(G) = 2n$. Let $m = \max\{d(u,C); u \in V(G)\}$ and c be the length of C. We denote G by T(c,m). By the above Lemma $\gamma(G) = 2m + c - 1$ if c is odd. So $EG(2q,n) \supset T(c,m): 2m + c - 1 = 2q > 0$. On the other hand, if $G \in EG(2q,n)$, then G is a graph with no loop and $\gamma(G) = 2q$, $\sigma(A(G)) = 2n$. So G is a connected undirected graph with exactly one odd cycle C. Let c(>1) be the length of C, and m the maximum length of the path from a vertex to C in G. Thus $\gamma(G) = 2m + c - 1 = 2q$. So $G = T(c,m) \in T(c,m): 2m + c - 1 = 2q$. So we have

Main Result A is the minimal symmetric solution with zero trace of $A^k = J$ if and only if $G(A) \in \bigcup_{4 \le 2q \le k, \ 2q \in E_n} EG(2q, n)$ for $k \geqslant 4$. A is that of $A^2 = J$ if and only if $G(A) \cong G_1$ as n is odd and $G(A) \cong G_2$ as n is even. A is that of $A^3 = J$ if and only if $G(A) \cong G_1$ or G_3 as n is odd and $G(A) \cong G_4$ as n is even.

References

- [1] Liu Bolian, McKay, B. D., Wormald, N. and Zhang Kemin, The exponent set of symmetric primitive (0,1)-matrices with zero trace, *Linear Algebra Appl.*, 136(1990), 107 = 117.
- [2] Bondy, J. A. and Murty, U. S. R., Graph Theory with Applications, Macmillan, London, 1976.