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Abstract
The Ramsey number R(Cy, or K1, Ky,) is the smallest integer p such
that every graph G on p vertices contains either a cycle C,, with length
n or a K, _1, or an independent set of order m. 1n this paper we prove
that R(C,, or Kn-1,K3)=2(n—-2)+1 (» > 5), R(C,, or K,_1,K4) =
3(n—2)+1 (» > 7). In particular, we prove that R(Cqor K3,K3) =6,
If(C4 or 1\’3, 1(4) = 8, R(C{, or K4, K4) = 11 and II(CG or 1{5, 1(4) = 14.

1. Introduction.

We shall consider only graphs without multiple edges or loops.

The Ramsey nunber R(Cy, or K1, Kn) is the smallest integer p such that
every graph G on p vertices contains either a cycle Cp, with length n or a complete
graph K,_; on n — 1 vertices, or an independent set of order m.

In 1976, R.H. Schelp and R.J. Faudree in {2] stated the following problem:

Problem 1.1 ([2)). Is it true that R(C, or Ko, Km) = (n—2)(m-1)+1
(n>m)?

With this problem, the aim of Schelp and Faudree was to solve the following
problem:

Problem 1.2 ([2]). Find the range of integers n and m such that R(Cn, Ky) =
(n - 1)(;m — 1) + 1. In particular, show that the equality holds for n > m.

However, we think that Problem 1.1 is more difficult than Problem 1.2. And in
fact, the statement is falsc for m < n < 2(m — 1). (See Lemma 2.3 below.)

In [3], we proved that R(Cy, K4) =3(n ~ 1) +1 (n>4).

In this paper, we prove that R{C, or Kn-1,K3) =2n-2)+1(n>5) and
R(Cpor Kno1, Kg) =3(n-2}+1(n2 7). In particular, we prove that R(Cy or
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K3,K3) = 6, R(C4 or Kg,K4) = 8, R(Cs or K4,K4) =11 and R(CG or K5,K4) =
14.

The following notation will be used in this paper. If G is a graph, the vertex
set (resp. edge set) of G is denoted by V(G) (resp. E(G)). For z € V(G), N(z) =
{ve V(G) | zv € E(G)} and Nlz} = N(z) U {z}. If X C V(G), then (X) is the
subgraph induced by X. We denote by a(G) the independence number of G, and
by g(G) the girth of G.

2. Lemmas.

For convenience, in Lemma 1 to Lemma 3 below, we assume G is a graph that
contains the cycle (v1, vz, - ,vn) of length n but no cycle of length n + 1.

Lemma 2.1 ([3]). Let X C V(G)\ {v1,v2, - ,va}. Then
(a) No vertez z € X is adjacent to two consecutive vertices on the cycle.
(b) Ifz € X is adjacent to v; and vj, then viy1V541 ¢ E(G).
(¢) If x € X is adjacent to v; and v;, then no verter z' € X is adjacent to both
Vig1 ond vj42.

Lemma 2.2. Let I, be an independent set of order m — 1 with I G V{(G)\
{vy,v2,>* ,vn}. Ifn>2m—3 and IN(x)N{vi,v2, - ,Un}| =k, wherex € In_1,
then k <m — 3.

Proaof. For z € I,,—1 suppose the neighbors of = on the cycle are v, vi,,... ,Vi,-
By parts (a) and (b) of Lemma 2.1 we know that that {z,vi,41,. .. Uiy 41} 18 an
independent set; hence k + 1 < m — 1. To prove that k < m — 3, suppose to
the contrary that & = m — 2. Then 2k = 2m — 4 so since n 2 2m — 3 we may
put z = v;, 42, where ig + 2 # 7; (mod n). Then xz ¢ E(G). li ¢’z € E(G) for
some 2’ € I,,_; then by part (c) of Lemma 2.1 {z,z',v;,,... ,v;,} is an m-element

independent set; otherwise Im_; U {2z} is an m-element independent set. Hence
k<m-~3. O

Corollary. If n > (m — 1)(m — 3) + 1 and G conteins a C,.1 and a verter
disjoint independent set I,_, with sizem — 1, then G either contains a Cy, or an
independent set of m vertices.

Proof. If there is no independent set of m vertices then each vertex ou the Cy,—-1 is
adjacent to at least one vertex in I;,—;. But then some vertex in I, is adjacent

to at least [(n — 1)/(m ~ 1)] > m — 2 vertices on the cycle, contradicting Lemma
22. O

Lemma 2.3.

(1) R(Cy, or Kn-1,Ky)

(2) R(Cy or Knz1, Ky)
Proof.

(1) This is trivial.

(2) Starting with the cycle (z1,y2,... s Lm—1,Ym-1,Tm), let G be the graph
obtained by replacing each y; by a Kn_3. (Thus each vertex in the K,_3 that

(n-2)(m=1)+1 (n>m).

>
>(n-2)(m-1)+2 (m<n<2m-~1)).
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replaces y; is adjacent to x; and z;4+1.) It is easy to see that G contains no K, _;
and a(G) < m - 1. If the edge ) is removed, then each block of the resulting
graph has n — 1 vertices; hence there is no C,,. Any other cycle in G must use the
edge z,,xy, and then it must have length at least 2(m ~1)+1>n+1. O

Lemma 2.4 [1). Let G be a graph onn > 3 vertices. If §(G) > n/2, then G either
15 pancyclic or else G = Koany2-

3. The Ramsey number R(C, or K,_1,K,,) for m = 3, 4.
Theorem 3.1. R(C,, or K,,_1,K3) =2(n-2)+1 (n>5).
Proof.

Let G be a graph with order 2(n — 2) 4+ 1. Suppose a(G) < 2 and suppose G
contains neither a C,, nor a K,,_;.

Let z € V(G) and V; = V(G) \ N(x). Then (V;) is a clique of G. Since G does
not contain a K,,_, then |Vz} <n—2. Thusd(z) > n -~ 2.

If d(z) > n -1 for every € V(G) then by Lemma 2.4 G is pancyclic, a
contradiction.

Thus there is a vertex £ € V(G) such that d(z) < n — 2. (Note n > 5). Hence
we have d(x) = n — 2 and (V) = K,,_5. It is clear that there are two nonadjacent
vertices in N(z), say y1,yz. Since a(G) < n — 2, there is a vertex z, in V, such
that 2; & N(y;). Thus 2z, € N(y;) since a(G) < 2. Similarly, there is a vertex in
Vz, say z;, such that z; ¢ N{y2) and 2, € N(y).

Thus (x,41,v1,v2, -, Vn_4,Va_3,¥2) is a cycle of G, where vy = 2, Up_3 = 23
and {v2,v3, -+ , -4} C Vi \ {21, 22}, a contradiction.

Therefore R(Cy, or Kyy_1,K3) =2(n-2)+1(n>5). O

Theorem 3.2.

(1) R(C4 or K;j,K;;) = 6.
(2) R(C4 or K:j,K.;) = 8.
(3) R(Cs or 1"4,K4) =11.
(4) R(Cﬁ or Ks,K4) = 14.

Proof.

(1) Tt is clear that R(Cy or K3, K3) = 6.

(2) Suppose G is of order eight and girth at least five. We shall prove that
a(G) > 4. If G is bipartite, this conclusion is immediate, so we assume that
G contains an odd cycle. If (X) = C; is the shortest odd cycle in G, then the
remaining vertex u is adjacent to at most one vertex in X. But any five-element
subset of X contains a three-clement independent set; hence {zi, z;,zx, u} is an
independent set for appropriate 4, , k. If {(X) 2 Cj; is the shortest odd cycle in G,
then since {u,v,w} = V(G)\ X docs not span K3 we may assume that u and v are
nonadjacent. Since g(G) > 5 neither u nor v is adjacent to more than one vertex
in X. Hence there are three vertices in X, none of which is adjacent to either u or
v. Since G contains no K3, we thus find that {zi,zj,u,v} is an independent set
for appropriate t, j.
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(3) Suppose G is a graph of prder eleven that contains neither Cs nor Ky, and
a(G) < 3. In view of the result R(Cs or K4, K3) = 7 obtained earlier, we have
§(G) > 4. Using R(Cy4, K4) = 10 as well, we may assume that

V(G)=XUYUZ = {1,22,%3,24} U {y1, 92,43} U {21, 22, 23, 24},

where (z1,%2,%3,24) is a Cy4 in G and Y is an independent set. Since each ver-
tex in X is adjacent to at least one vertex in Y and G contains no Cs, there is
no loss of generality in assuming T,y1,Tay1,Z2y2 € E(G). Then z3z4 ¢ E(G);
otherwise, (x1,y1,%3,%2,%4) 18 a Cs in G. Since there is no Cs in G, it is ap-
parent that z2y; € E(G) and x4y € E(G). In the same way x,y; ¢ E(G) and
z3yz € E(G). Since §(G) > 4, we have y;2 € E(G) for some z € Z. Note that
51z € E(G), 122 € E(G), zz3 & B(G); otherwise G contains (z,x1,Z2, %3, ¥1),
(2,92, %2, T3, 1), (2 %3,%2,%1,y1), respectively. Now zix3 € E(G); otherwise
{z\,Z3,¥2,2} is an independent set. Then z4y; ¢ E(G); otherwise G contains
the cycle (za,y2,T2,T1,%3). Since z4y1 € E(G) and x4y; ¢ E(G), we have
z4y3 € E(G) and thus z3y; ¢ E(G). Finally, if zy3 € E(G) then G contains

the cycle (2,y3, T4,%1,91) and if zys € E(G) then {x3,y2,ys, 2} is an independent
set.

(4) Suppose G is a graph of order fourteen that contains neither Cg nor Ks,
and a(G) < 3. In view of the results R(Cs, K4) = 12 and R(Cs or K5, K3) = 9, we
may assume that X = {z1,%2,Z3,%4, %5} and Y = {y1,y2,ya} are disjoint subsets
of V(G) such that (z1,...,75) is a Cs in G and Y is an independent set. Since

6 > (4 — 1)(4 — 3) + 1, the desired result follows from the corollary to Lemma
22. O

Lemma. If G is a graph of order 2m having independence number a(G) < 3 and
containing neither K41 nor Ciuqo then G 2 2K,

Proof. In view of Bondy’s theorem, we may assume that 6(G) < m — 1. Let
z € V(G) be a vertex of degree §(G), and set A = N[z and B = V(G) \ A.
Then |B| > m and (B) is complete since a(G) < 3. Since Ky € G, we have
§(G) = m — 1. If {A) is complete then G 2 2K,,, so let us assume u,v € A and
uv € E(G). Since K,, ¢ G and o(G) < 3 there are distinct vertices w,z € B
such that uw ¢ E(G) and vz € E(G). Then the path w, v, z,u, 2 together with the
appropriate path of length m — 2 joining w and z in (B) yields a Cy42 C G and
thus a contradiction. O

Theorem 3.3. R(C, or K1, K4) =3(n-2)+1(n>7).

Proof. Suppose n > 7 and G is a graph of order 3(n—2)+1 that contains neither C,,
nor K,_, and satisfies a(G) < 3. Since R(Cy—1,K4) =3(n—2) + 1 forn > 5, we
nay assume that (2,,%3,...,%,_1) is a cycle in G. With X = {#1,72,... ,Zn_1}
consider the subgraph of G spanned by V(G) \ X. If this graph has independence
number 3 then we have C,, C G or a(G) > 4 by the corollary to Lemma 2.2. Hence
the subgraph of G spanned by V(G)\ X has 2(n — 2) vertices and its independence
number is 2. By the preceding Lemma, we thus find a partition V(G)\ X = (Y, 2)
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such that (Y) 2 (Z) = K,_,. Since {X) is not complete, we may assume that
12x € E(GQ) where k < [(n +1)/2]. If z1v € E(G) and zxv € E(G) for every
v € YU Z then {z,z,y, 2} is a 4-clement independent set for arbitrary y € Y
and z € Z such that yz ¢ E(G). (There must be such a z since G contains
no K,_;.) Hence by symmetry we may assume that z,y; € E(G) and (since G
contains no K,_1) r1y2 ¢ E(G). Note that zxy; ¢ E(G) for all i # 1, otherwise
(since (n+1)/2+1 < n) there is a cycle (z1,... , Tk, ¥y ... ,31) in G of length n.
In particular, 2y € E(G). We now counsider two cases.

Case (i). zzz ¢ E(G) for all z € Z. If 12; € E(G) for some z; € Z then
y22 ¢ E(G) for all z € Z; otherwise there is a cycle (xy,y1,- .. ,¥2, 2, 2) of length
n in G. Then since there is some z; € Z such that z,z; ¢ E(G) we find that
{z1, Tk, ¥2,2;} is an independent set. If z12 ¢ E(G) for all z € Z then we can pick
a vertex z; € Z such that y,z; ¢ E(G) and then {z;,zk, ¥2, 2;} is an independent
set.

Case (ii). zxz, € E(G) and zxy2 ¢ E(G). By repeating an earlier argument,
we have 2122 € E(G). If y222 € E(G) then {x,zx, ¥2, 22} is an independent set.
Otherwise, (x1,... ,%k,21,...,22,¥2,... ,41) is a cycle in G of length > k + 4 and
G contains a C, provided n > [(n+ 1)/2] + 4. This completes the proof in case
n > 8. In case n = 7, we are left to consider the case k = 4. In particular, we
may assume ;73 € E(G) and then the argument proceeds as before except that
(x1, 73, %4, 21, 22, Y2, ¥1) provides the C;. O
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