TAIWANESE JOURNAL OF MATHEMATICS Vol. 6, No. 1, pp. 75-87, March 2002 This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON CONTAINER LENGTH AND WIDE-DIAMETER IN UNIDIRECTIONAL HYPERCUBES

Lu Changhong and Zhang Kemin

Abstract. In this paper, two unidirectional binary n-cubes, namely, $Q_1(n)$ and $Q_2(n)$, proposed as high-speed networking schemes by Chou and Du, are studied. We show that the smallest possible length for any maximum fault-tolerant container from a to b is at most n + 2 whether a and b are in $Q_1(n)$ or in $Q_2(n)$. Furthermore, we prove that the wide-diameters of $Q_1(n)$ and $Q_2(n)$ are equal to n + 2. At last, we show that a conjecture proposed by Jwo and Tuan is true.

1. INTRODUCTION

The hypercube is one of the best candidates for *high-speed computing* [12, 13], and using *optical fibers* as point-to-point transmission links, *Metropolitan Area Networks* (MAN s) with hypercube topology can support *high-speed, high-bandwith, short-delay*, and *parallel communications* [2, 3, 6, 15, 16]. As pointed in [10] by Jwo and Tuan, due to the lack of a bidirectional electrical/optical converter and the high cost of a *full-duplex* tansmission, a unidirectional topology is desirable for MANs [3, 4]. In particular, Chou and Du [3] proposed two different schemes, namely, Q₁(n) and Q₂(n), to define the orientations of the edges in the binary n-cube as follows: (x) is the number of 1's in the binary representation of x. Consider the two vertices $a = a_{n_i} a_{n_i} 2^{\text{c}\text{c}\text{c}\text{c}a_{i+1}a_ia_{i,1} 1^{\text{c}\text{c}\text{c}\text{c}a_1a_0}$ and $b = a_{n_i} a_{n_i} 2^{\text{c}\text{c}\text{c}\text{c}a_{i+1}\overline{a_i}a_{i,1} 1^{\text{c}\text{c}\text{c}\text{c}a_1a_0}$.

 $Q_1(n)$: Let P (a; i) be the *polarity* of the ith communication port of a which is defined as

$$P(a; i) = (i 1)^{(a)+i}$$

Received October 20, 1999; revised December 10, 1999.

Communicated by F. K. Hwang.

²⁰⁰¹ Mathematics Subject Classification: 05C40, 68M10, 68R10.

Key words and phrases: Hypercube, wide-diameter, container, connectivity.

^{*}The project is supported by NSFC and NSFJS.

If P (a; i) is positive, then there is a directed edge from a to b; otherwise, there is a directed edge from b to a. The unidirectional hypercube defined by the above polarity function is called a *positive* $Q_1(n)$. A *negative* $Q_1(n)$ is defined in the same way but with a different polarity function:

$$P(a; i) = (i 1)^{(a)+i+1}$$

Clearly, $Q_1(n)$ and its negative counterpart are isomorphic. Unless otherwise stated, we shall consider the positive $Q_1(n)$ only.

Observe that $Q_1(n)$ can be constructed by one $Q_1(n_i \ 1)$, one negative $Q_1(n_i \ 1)$, and $2^{n_i \ 1}$ edges between them.

 $Q_2(n)$: Like $Q_1(n)$, the orientations of the edges in $Q_2(n)$ are defined by the polarities of the corresponding communication ports. If n is odd, $a_{n_i 1} = 1$ and $0 \cdot i \cdot n_i 2$, then the corresponding polarity function is

otherwise, the polarity P (a; i) is the same as that for $Q_1(n)$. In fact, when n is odd, $Q_2(n)$ can be constructed by two $Q_1(n \mid 1)$'s and $2^{n_i \mid 1}$ edges between them. Since $Q_2(n)$ is identical to $Q_1(n)$ when n is even, we shall only consider $Q_2(n)$ when n is odd.

General results and more details on $Q_1(n)$ and $Q_2(n)$ can be found in [3, 10].

Any set of vertex-disjoint paths from vertex x to vertex y, denoted by C(x; y), is called an (x; y)-container [6]. The width of C(x; y), written as w(C(x; y)), is its cardinality. The length of C(x; y), written as l(C(x; y)), is the longest path length in C(x; y). Define $D_w(x; y)$ to be the minimum possible length of any (x; y)-container with width w. Let w(x; y) denote the maximum number of vertex-disjoint paths from x to y. The wide-diameter of a graph G [5, 7], denoted by WD(G), is the maximum of $D_{w(x;y)}(x; y)$ for all pairs of vertices x and y. Obviously, the wide-diameter of a graph is no less than its diameter. The wide-diameter, proposed by Hsu [7], and Flandrin and Li [5] independently, is a good index to characterize the reliability of transmission delay in a network, and has received much attention recently [5-9, 11, 14]. We refer to [1] for notations and terminology not defined here.

Recently, Jwo and Tuan [10] have shown that $w(x; y) = \min(\operatorname{out}(x); \operatorname{in}(y))$ for all pairs of vertices x and y in $Q_1(n)$ or $Q_2(n)$, i.e., both $Q_1(n)$ and $Q_2(n)$ are maximum fault-tolerant. Furthermore, they have also shown that $D_{w(x;y)}(x; y)$ is at most (1) I + 4, where I is the shortest path length in $Q_1(n)$ from x to y, and (2) I + 5, where I is the shortest path length in $Q_2(n)$ (n is odd) (i) from x to y when x and y have the same leading-bit values and (ii) from x to $y^0(y^0)$ and y only differ at leading-bit position) when otherwise. They also suggest that the constructed container in [9] has the smallest possible length among all maximum fault-tolerant containers from x to y.

In this paper, we shall prove that $D_{x(x;y)}(x;y)$ is no more than n + 2 for any pairs of vertices x and y in $Q_1(n)$ or $Q_2(n)$. Furthermore, we prove that the wide-diameters of $Q_1(n)$ and $Q_2(n)$ are equal to n + 2 and the conjecture in [9] is true. Since the diameters of $Q_1(n)$ and $Q_2(n)$ are n + 1 when n is even and the diameters of $Q_1(n)$ and $Q_2(n)$ re n + 2 when n is odd, we have that $jWD(Q_i(n))_j$ Diam $(Q_i(n)j \cdot 1; i = 1; 2)$:

2. Preliminaries

Fact 1 [3]. Given two vertices a and b in $Q_1(n)$ (resp. $Q_2(n)$); the shortest path length from a to b can be computed as follows:

1/2

2p̂i	(p̂i	ń)	mod	2;	if	p^ >	n;
2n +	(ĥį	p)	mod	2;	if	p۰	ń:

Fact 2 [3]. Given two vertices a and b in $Q_1(n)$; let | (resp. $|^{\emptyset}$) be the shortest path length from a (resp. b) to b (resp. a). Then,

1/2		•					
	11	$I^{0} = 0;$	if	(p̂i	ĥ)	mod	2 = 0;
	li	I; = 2;	if	(p̂i	ĥ)	mod	2 = 1:

Fact 3 [3]. The diameter of $Q_i(n)$ is (a) n + 1; if n is even; (b) n + 2; if n is odd; i = 1; 2.

Fact 4 [9]. Let a and b be two vertices of $Q_1(n)$ (resp. $Q_2(n)$). Then *(a; b) = min(out(a); in(b)). In other words; both $Q_1(n)$ and $Q_2(n)$ are maximum fault-tolerant.

Lemma 1. $WD(Q_i(n)) = n + 1$; *if* n *is even*; $WD(Q_i(n) = n + 2$; *otherwise*; i = 1; 2.

Proof. By Fact 3 and the definition of wide-diameter, it is obvious.

Lemma 2. Let a and b be two vertices of $Q_1(n)$ where n is odd; and I be the shortest path length from a to b. Then, I = n + 2 if and only if

^{1/2}
$$(\hat{n}_{i} p) \mod 2 = 1;$$

 $\hat{n} = \frac{n+1}{2}:$

Proof. By Fact 1, we have I = n + 2 if and only if

$$n + 2 = 2p_i (p_i h) \mod 2; \text{ if } p > h;$$

or

$$n + 2 = 2\hat{n} + (\hat{n}_i \hat{p}) \mod 2; \text{ if } \hat{p} \cdot \hat{n}:$$

Since n + 2 is odd and $\hat{p} \cdot (n + 2)=2$, we easily find

$$I = n + 2 () \qquad \stackrel{1}{n} = \frac{n+1}{2}; \qquad mod \ 2 = 1; \\ n = \frac{n+1}{2}; \qquad \blacksquare$$

Lemma 3. Let a and b be two vertices of $Q_1(n)$ where n is odd; and I be the shortest path length from a to b. Then I = n + 1 if and only if

^{1/2}
$$(\hat{n}_{i} p)$$
 mod $2 = 0;$ ^{1/2} $(\hat{n}_{i} p)$ mod $2 = 0;$
 $\hat{n} = \frac{n+1}{2};$ $p = \frac{n+1}{2}:$

Proof. By Fact 1, we have I = n + 1 if and only if

$$n + 1 = 2p_i (p_i n) \mod 2; \text{ if } p > n;$$

or

$$n + 1 = 2\hat{n} + (\hat{n}_i \hat{p}) \mod 2; \text{ if } \hat{p} \cdot \hat{n}:$$

Since n + 1 is even, we easily find

$$I = n + 1 () \qquad \begin{array}{c} \frac{1}{2} & (\hat{n}_{j} \ \hat{p}) \\ \hat{n} = \frac{n+1}{2}; \end{array} \qquad \begin{array}{c} \text{mod } 2 = 0; \\ \hat{n} = \frac{n+1}{2}; \end{array} \qquad \begin{array}{c} \frac{1}{2} & (\hat{p}_{j} \ \hat{n}) \\ \hat{p} = \frac{n+1}{2}: \end{array} \qquad \qquad \blacksquare$$

Lemma 4 [10]. Let a and b be two vertices of $Q_1(n)$ with $z_i = 1$ for every even integer i in $[0; n_i \ 1]$. Then $D_{*(a;b)}(a;b)$ equals the shortest path length from a to b.

For $a = a_{n_i 1} \text{C}a_{1a_0}$ and $b = b_{n_i 1} \text{C}a_{1b_0}$ in $Q_1(n)$, if $z_{n_i 1} = 1$ and $z_i = 0$ for some even integer i, then each vertex $x = x_{n_i 1} \text{C}a_{1x_0}$ can be relabeled by the mapping defied as follows:

1. If n is odd, then choose an even integer i with $z_i = 0$ and define

2. If n is even, then arbitrarily choose an i with $z_i = 0$ and define

[®]_i!
$$\frac{x_i x_{n_i 2} x_{n_i 3} \text{ }^{\text{tc}} \text{ }^{\text{tc}} x_{i+1} x_{n_i 1} x_{i_i 1} \text{ }^{\text{tc}} \text{ }^{\text{tc}} x_{0}; \text{ if i is odd};}{\overline{x_i x_{n_i 1} x_{n_i 2} \text{ }^{\text{tc}} \text{ }^{\text{tc}} x_{1+1} x_{0} x_{i_i 1} \text{ }^{\text{tc}} \text{ }^{\text{tc}} x_{1}; \text{ if i is even:}}$$

The following result is due to Jwo and Tuan [10], which is also easy to deduce.

Lemma 5 [10]. Let a and b be two vertices of $Q_1(n)$ with $z_{n_i 1} = 1$ and $z_i = 0$ for some even integer i. The relabeling mapping $^{\circledast}_i$ described above is an automorphism of $Q_1(n)$.

3. The Container Length and Wide-diameter of $Q_1(n)$

In this section, we shall first prove the following theorem:

Theorem 1. Let a and b be two vertices of $Q_1(n)$. Then $D_{w(a;b)}(a;b) \cdot n + 2$:

Proof. We proceed by induction on n. When n = 2, it is trivial. Assume that Theorem 1 is true for $n \cdot k_1$ 1 and k_2 3.

Suppose that $a_{k_i \ 1} = b_{k_i \ 1} = 0$ (resp. 1). Let P_1 ; P_2 ; CCC; P_r be a collection of the maximum number of vertex-disjoint paths from a to b in $Q_1^1(k_i \ 1)$, where $r = *(a^{(0)}; b^{(0)})$ (resp. $r = *(b^{(0)}; a^{(0)})$). Obviously, we can regard P_1 ; P_2 ; CCC; P_r as a maximum amount of vertex-disjoint paths from $a^{(0)}$ to $b^{(0)}$ (resp. from $b^{(0)}$ to $a^{(0)}$) in $Q_1(k_i \ 1)$. By induction hypothesis, we can assume that each of the r paths has length at most k + 1.

Case 1. k is odd.

Subcase 1.1. (a) is odd or (b) is even.

FIG. 1. k is odd, (a) is even, and (b) is odd, or k is even, (a) is odd, and (b) is even: the r + 1 vertex-disjoint paths from a to b in $Q_1(k)$.

In this situation, we have min(out(a), in(b)) = $(a^{(0)}; b^{(0)})$ (resp. min(out(a), in(b)) = $(b^{(0)}; a^{(0)})$). By Fact 3, $(a; b) = (a^{(0)}; b^{(0)})$ (resp. $(a; b) = (b^{(0)}; a^{(0)})$). Thus, P₁; P₂; ¢¢¢; P_r is also a collectoin of the maximum number of vertex-disjoint paths from a to b in Q₁(k), where r = (a; b). So, D_(a;b)(a; b) \cdot k + 1.

Subcase 1.2. (a) is even and (b) is odd.

We have min (out(a), in(b)) = $(a^{(0)}; b^{(0)}) + 1$ (resp. min (out(a), in(b)) = $(b^{(0)}; a^{(0)}) + 1$). By Fact 3, $(a; b) = (a^{(0)}; b^{(0)}) + 1$ (resp. $(a; b) = (b^{(0)}; a^{(0)}) + 1$). See Figure 1. Since $a_{k_i \ 1}$ has positive polarity and $b_{k_i \ 1}$ has negative polarity, there exist an edge e_1 from a to a^0 and an edge e_2 from b^0 to b. Let P^0 be a shortest path from a^0 to b^0 in $Q_1^2(k_i \ 1)$. It is easy to see that there exists a new path $P = e_1 + P^0 + e_2$, which certainly is vertex-disjoint with all the paths P_1 ; P_2 ; ccc; P_r from a to b in $Q_1^1(k_i \ 1)$. Since P^0 is a shortest path in $Q_1^2(k_i \ 1)$, the length of P^0 is no more than k by Fact 3, and the length of P is no more than k + 2. So, the length of the maximum fault-tolerant (a; b)-container P_1 ; P_2 ; ccc; P_r ; P is no more than k + 2.

Case 2. k is even.

Subcase 2.1. (a) is odd and (b) is even.

We have min(out(a), in(b)) = $(a^{(0)}; b^{(0)}) + 1$ (resp. min(out(a), in(b)) = $(b^{(0)}; a^{(0)}) + 1$). By Fact 3, $(a; b) = (a^{(0)}; b^{(0)}) + 1$ (resp. $(a; b) = (b^{(0)}; a^{(0)}) + 1$)). See Fig. 1. Proceed similarly to that in Subcase 1.2 and obtain that P₁; P₂; ccc; P_r; P are a maximum fault-tolerant (a; b)-container. We calculate the length of P. When $a_{n_i, 1} = 0$, the length of P⁰ is equal to the length of the shortest path from $b^{(0)}$ to $a^{(0)}$ in Q₁(k_j 1). Obviously, this is at most k + 1 by Fact 3. Since $(b^{(0)}) = (b)$ is

FIG. 2. k is even, (a) is odd and (b) is odd: the r + 1 disjoint-paths from a to b in $Q_1(k)$.

even, we know that \hat{n} of $DP(b^{(0)}; a^{(0)})$ is less than k=2 and the shortest path from $b^{(0)}$ to $a^{(0)}$ has length at most k by Lemma 2. When $a_{n_i 1} = 1$, the length of $P^{(0)}$ is equal to the length of the shortest path from $a^{(0)}$ to $b^{(0)}$ in $Q_1(k_i 1)$. Obviously, this is also no more than k + 1 by Fact 3. Since $\hat{(a^{(0)})} = \hat{(a)}_i 1$ is even, we know that \hat{n} of $DP(a^{(0)}; b^{(0)})$ is less than k=2 and the shortest path from $b^{(0)}$ to $a^{(0)}$ also has length at most k. In a word, $P^{(0)}$ has length at most k. So, P has length at most k + 2. By the induction hypothesis, we easily see that the constructed maximum fault-tolerant (a; b)-container $P_1; P_2; \& c \& ; P_{\Gamma}; P$ has length at most k + 2.

Subcase 2.2. (a) is odd and (b) is odd.

We similarly have $*(a; b) = *(a^{(0)}; b^{(0)}) + 1$ (resp. $*(a; b) = *(a^{(0)}; b^{(0)}) + 1$). See Figure 2. Since $a_{k_i | 1}$ has positive polarity, there exists an edge e_1 from a to a^0 . Althoung b has k=2 incoming ports available within $Q_1^1(k_i | 1)$, only (k=2)_i 1 incoming ports are used by the collection of vertex-disjoint paths $P_1; P_2; \text{CCC}; P_r$, where $r = *(a^{(0)}; b^{(0)})$ (resp. $r = *(b^{(0)}; a^{(0)})$). Thus, there is an unused incoming port, say port j, of b which results in the edge e_3 from the vertex $c = b_{k_i | 1} \text{CCC}_{b_j + 1} b_j b_{j_i | 1} \text{CCC}_{b_0}$ to b. Note that c is not in any of $P_1; P_2; \text{CCC}; P_r$, and $c^0 = b_{k_i | 1} \text{CCC}_{b_j + 1} b_j b_{j_i | 1} \text{CCCC}_{b_0}$. Since c and c^0 differ in the (k_i 1)th bit and the polarity of that bit in c^0 is positive, there is an edge e_2 from c^0 to c. Let P^0 be a shortest path from a^0 to c^0 in $Q_1^2(k_i | 1)$. Then, the new path $P = e_1 + P^0 + e_2 + e_3$ does not intersect any internal vertex in $P_1; P_2; \text{CCC}; P_r$. So, $P_1; P_2; \text{CCC}; P_r$ and P is a maximum fault-tolerant (a; b)-container.

Since P_1 ; P_2 ; CCC; P_r is identical to a maximum amount of vertex-disjoint paths from $a^{(0)}$ (resp. $b^{(0)}$) to $b^{(0)}$ (resp. $a^{(0)}$) in $Q_1(k_1 \ 1)$, and since we assume that each of

FIG. 3. k is even, (a) is even and (b) is even: the r + 1 vertex-disjoint paths from a to b in Q₁(k).

the r paths has length at most k + 1, it is sufficient to prove that the new path P has length at most k + 2. When $a_{k_i \ 1} = 0$, the length of P⁰ is equal to that of the shortest path from c⁰⁰ to a⁰⁰ in Q₁($k_i \ 1$). Since (c^{00}) is even and (a^{00}) is odd, we have $\uparrow 6 \ (k=2) + 1$ and $(\not p_i \ \uparrow) \mod 2 6 0$. By Lemmas 2 and 3, we have the length of the shortest path from c⁰⁰ to a⁰⁰ in Q₁($k_i \ 1$) is at most $k_i \ 1$. When $a_{k_i \ 1} = 1$, the length of P⁰ is equal to that of the shortest path from a⁰⁰ to c⁰⁰ in Q₁($k_i \ 1$). Note that (a^{00}) is even and (c^{00}) is odd. Similarly, we obtain that P⁰ has length at most $k_i \ 1$. So, we know that P always has length at most k + 2.

Subcase 2.3. (a) is even and (b) is even.

In this situation, $(a; b) = (a^{(0)}; b^{(0)}) + 1$ (resp. $(a; b) = (b^{(0)}; a^{(0)})$). As shown in Figure 3, $P_1; P_2; CCC; P_r$ and the new path $P = e_1 + e_2 + P^0 + e_3$ is a maximum fault-tolerant (a; b)-container with width (a; b), where $r = (a^{(0)}; b^{(0)})$ (resp. $r = (b^{(0)}; a^{(0)})$) and P^0 is a shortest path from d^0 to b^0 in $Q_1^2(k_i = 1)$. Similarly, we can prove that P^0 has length at most $k_i = 1$ and the length of P is no more than k + 2. Thus, $D_{a(a;b)}(a; b) \cdot k + 2$. The detail is left to readers.

Subcase 2.4. (a) is even and (b) is odd.

In this situation, $*(a; b) = *(a^{(0)}; b^{(0)})$ (resp. $*(a; b) = *(b^{(0)}; a^{(0)})$). We easily know $D_{*(a;b)}(a; b) \cdot k + 2$. The proof is similar to that of Subcase 1.1.

By induction, we get that $D_{*(a;b)}(a;b) \cdot n + 2$.

The proof of Thereom 1 is completed.

Theorem 2. The wide-diameter of $Q_1(n)$ (n , 3) is equal to n + 2.

Remark 1. In [10], Jwo and Tuan have shown that the smallest possible length for any maximum fault-tolerant container from a to b is at most I + 4, where I is the shortest path in $Q_1(n)$ from a to b. Now, we show that this upper bound is best. When n 4 is even, consider the two vertices a = 00 ¢¢¢0 and b = 0011 ¢¢¢1 in $Q_1(n)$ (n 4 is even). Since DP(a;b) = 0011 ¢¢¢1 and $\beta = n = (n + 2) = 2$, we have I = n + 2 by Fact 1. As above, we know that the length for any maximum fault-tolerant container from a to b is at least n + 2. By Theorem 1, we see that the smallest possible length for any maximum fault-tolerant container from a to b is at least n + 2. By Theorem 1, we see that the smallest possible length for any maximum fault-tolerant container from a to b is at least n + 2. By Theorem 1, we see that the smallest possible length for any maximum fault-tolerant container from a to b is equal to n + 2, i.e., it equals I + 4. Thus the upper bound given by Jwo and Tuan in [10] is in a sense best possible.

4. The Container Length and Wide-diameter of $Q_2(n)$

By the definition, it is enough to consider for odd n. Let a and b be two vertices in $Q_2(n)$. We know $Q_2(n)$ is constructed from two $Q_1(n_i \ 1)$'s in [3], say, $Q_1^1(n_i \ 1)$ and $Q_1^2(n_i \ 1)$. And we assume a 2 $Q_1^1(n)$. Note that if there exists a path $a = v_0 \ v_1 \ v_1 \ t \ t \ v_k$ in $Q_1^1(n_i \ 1)$, then there is a corresponding path $a^0 = v_0^0 \ v_1^0 \ t \ t \ v_k^0$ in $Q_1^2(n_i \ 1)$. Suppose that P_1 ; P_2 ; $t \ v_r$ are a collection of maximum number of vertex-disjoint paths from a to $a_{n_i \ 1} \ b^{(0)}$ in $Q_1^1(n_i \ 1)$, where $r = *(a^{(0)}; b^{(0)})$, and $P_1^0; P_2^0; t \ v_r^0$ are their counterparts in $Q_1^2(n_i \ 1)$. Obviously, $P_1; P_2; t \ v_r$ is identical to a maximum fault-torelant $(a^{(0)}; b^{(0)})$ -container in $Q_1(n_i \ 1)$. By Theorem 1, we assume each of paths $P_1; P_2; t \ v_r$ has length at most n + 1.

Case 1. (a) is odd or (b) is even.

FIG. 4. (a) is odd or (b) is even, and $a_{n_i 1} \in b_{n_i 1}$: the r vertex-disjoint paths from a to b in $Q_2(n)$.

Subcase 1.1. $a_{n_i 1} = b_{n_i 1}$:

In this situation, we know $(a;b) = (a^{(0)};b^{(0)})$. Therefore, $P_1; P_2; CCC; P_r$ is a maximum fault-torelant (a;b)-container in $Q_2(n)$, and $D_{(a;b)}(a;b) \cdot n + 1$.

Subcase 1.2. $a_{n_i 1} \in b_{n_i 1}$

Similarly, $>(a; b) = >(a^{(0)}; b^{(0)}) = r$. a and b are not in the same subcube. Then a and b^0 are in $Q_1^1(n_i \ 1)$ and b and a^0 are in $Q_1^2(n_i \ 1)$. See Figure 4. Observe that among P_1 ; P_2 ; cccc; P_r , (1) at most one path has length less than 3, and (2) each of the remaining paths has length more than 2 and thus contains at least two internal vertices. For $1 \cdot i \cdot r$, let u and v be two consecutive vertices in P_i and let u^0 and v^0 be their counterparts in P_i^0 , respectively. Note that it is easy to check that there always exists u with an outgoing edge to u^0 or v to v^0 . Then we can select a vertex c_i in P_i with an outgoing edge to c_i^0 in P_i^0 , i = 1; 2; cccc; r. Evidently, the 2r vertices $c_1; c_2; ccc; c_1; c_2; cccc; c_1^0; c_2^0; cccc; c_1^0$, are all distinct. For each i in [1; r], a path from a to b in $Q_2(n)$ can be formed by first going through the subpath of P_i from a to c_i to b. These newly formed r paths are vertex-disjoint and each of them has length at most n + 2 since each of the paths $P_1; P_2; cccc; P_r$ has length at most n + 1 by Theorem 1. Then $D_{>(a;b)}(a; b) \cdot n + 2$.

Case 2. (a) is even and (b) is odd.

Subcase 2.1. $a_{n_i 1} = b_{n_i 1}$.

FIG. 5. (a) is even, (b) is odd, and $a_{n_i 1} = b_{n_i 1}$: the r + 1 vertex-disjoint paths from a to b in $Q_2(n)$.

We know $*(a;b) = *(a^{"};b^{"}) + 1$, and a and b are in the same subcube. See Figure 5, where P^{0} is a shortest path from a^{0} to b^{0} in $Q_{1}^{2}(n)$. Since the $(n \mid 1)$ th port of a has positive polarity and that of b has negative polarity, there exist e_{1} from a to a^{0} and e_{2} from b^{0} to b. We easily get a new path $P = e_{1} + P^{0} + e_{2}$. Due to Fact 3 and the fact that $n \mid 1$ is even, we know that the length of P^{0} is at most n. Then P has length at most n + 2. Now, it is easy to see $D_{*(a;b)}(a;b) \cdot n + 2$.

Subcase 2.2. a_{ni} 1 **6** b_{ni} 1.

We have w(a; b) = w(a'; b'') + 1 by Fact 4. See Figure 6, where P_t is a shortest path in $fP_i ji \ 2 \ [1; r]g$. Since the $(n_i \ 1)$ th port of a has positive polarity and that of b has negative polarity, e_1 is from a to a^0 and e_2 is from b^0 to b. For each pair P_i and P_i^0 , i **6** t, there exists a vertex c_i in P_i and c_i^0 in P_i^0 such that a new path from a to b in $Q_2(n)$ is formed by taking the subpath from a to c_i in P_i , then through the edge from c_i to c_i^0 , and finally from c_i^0 to b in P_i^0 . For the pair P_t and P_t^0 , two new paths are formed: One is $e_1 + P_t^0$ and the other is $P_t + e_2$. Since each of the paths $P_1; P_2; CCC; P_r$ has length at most n + 1 by Theorem 1, we easily see that each of the paths in the new container has length at most n + 2. Thus $D_{w(a;b)}(a; b) \cdot n + 2$.

From the above discussion, we have the following theorem:

Theorem 3. Let a and b be two vertices of $Q_2(n)$. Then $D_{w(a;b)}(a;b) \cdot n + 2$:

From Lemma 1, we have:

Theorem 4. The wide-diameter of $Q_2(n)$ (n is odd) is equal to n + 2.

FIG. 6. (a) is even, (b) is odd, and $a_{n_1} + b_{n_1} + b_{n_1}$

5. CONCLUSION

In this paper, we give the wide-diameters of the two unidirectional binary ncubes proposed by Chou and Du [3]. Since the constructed container in this paper is the same as that in [10], Remarks 1 and 2 show that the conjecture in [10] is true.

References

- 1. J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, Macmillan Press Ltd, London, 1976.
- F. Boragonove and E. Cadorin, HR⁴-net: A hierachical random-routing reliable and reconfigurable network for metropolitan area, in *Pro. IEEE INFOCOM*, March, 1987, pp. 320-326.
- 3. C. H. Chou and David H. C. Du, Unidirectional hypercubes, in: *Proc. Supercomputing* '90, 1990, pp. 254-263.

- 4. K. Day and A. Tripathi, Unidirectional star graphs, *Inform. Process. Lett.* **45** (1993), 123-129.
- 5. E. Flandrin and H. Li, Mengerian properties, Hamiltonicity and claw-free graphs, *Networks* 24 (1994), 660-678.
- 6. D. F. Hsu, On container width and length in graphs, groups, and networks, *IEICE Trans. Fundam.* E(77A) (1994), 668-680.
- D. F. Hsu and Y. D. Lyuu, A graph-theoratical study of transmission delay and fault-tolerance, in: *Proc. of 4th ISMM International Conference on Parallel and Distributed Computing and Systems* 1991, pp. 20-24.
- 8. D. F. Hsu and T. Luszak, Note on the k-diameter of k-regular k-connected graphs, *Discrete Math.* **132** (1994), 291-296.
- Y. Ishigami, The wide-diameter of the n-dimensionml toroidal mesh, *Networks* 27 (1996), 257-266.
- 10. J. S. Jwo and T. C. Tuan, On container length and connectivity in unidirectional hypercubes, *Networks* **32** (1998), 307-317.
- 11. Q. Li, D. Sotteau and J. M. Xu, 2-diameter of de Bruijn graphs, *Networks* 28 (1996), 7-14.
- 12. S. Lakshmivarahan and S. K. Dhall, *Analysis and Design of Parallel Algorithms*, McGraw-Hill, New York, 1990.
- 13. F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann, Son Mates, CA, 1992.
- 14. S. C. Liaw and G. J. Chang, Wide diameters of Butterfly networks, *Taiwanese J. Math.* **3** (1999), 83-88.
- 15. N. Maxemchuk, The Manhattan street network, in: *Proc. GLOBECOM'85, Del.*, 1985, pp. 255-261.
- N. Maxemchuk, Routing in the Manhattan street network, *IEEE Trans. Commum.* 35 (1987), 503-512.

Lu Changhong and Zhang Kemin Department of Mathematics, Nanjing University, Nanjing, 210093, China.