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ON CONTAINER LENGTH AND WIDE-DIAMETER IN
UNIDIRECTIONAL HYPERCUBES

Lu Changhong and Zhang Kemin

Abstract. In this paper, two unidirectional binary n-cubes, namely, Q1(n)
and Q2(n), proposed as high-speed networking schemes by Chou and Du, are
studied. We show that the smallest possible length for any maximum fault-
tolerant container from atob isat most n+2 whether a and b arein Q1 (n) or
in Q2(n). Furthermorewe provetha the wide-diameters of Q;(n) and Q2(n)
are gqual to n + 2. At last, we show that a conjecture proposed by Jwo and
Tuan is true.

1. INTRODUCTION

The hypercubeis one of the best candidates for high-speed computing [12, 13],
and using optical fibers as point-to-point tranamission links Metropolitan Area Net-
works (MAN s) with hypercube topology can support high-speed, high-bandwith,
short-delay, and parallel communications [2, 3, 6, 15, 16]. As pointed in [10]
by Jvo and Tuan, due to the lack of a bidirectiond electricd/optical converter
and the high cost of a full-duplex tansmisson, a unidirectiond topology is desir-
able for MANs [3, 4]. In particular, Chou and Du [3] proposed two different
schemes, namely, Q1(n) and Q2(n), to define the orientations of the edges in
the binary n-cube as follows: ~(x) is the number of 1's in the binary represen-
tation of X. Congder the two vertices a = an; 1an; 2 ¢¢Cai+1aiai; 1 ¢¢tasag and
b= an; 18n; 2 ¢¢Caj+1ajai; 1 ¢Cay ap.

Qi(n): Le P(a;i) bethe polarity of the ith communication port of a which
is defined as
P(ai)= (i ) @
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If P(a;i)ispogtive then there is adirected edge from a to b; otherwise, thereis
a directed edge from b to a. The unidirectional hypercube defined by the aove
polarity function is cdled a podtive Q1(n). A negative Q1(n) is defined in the
same way but with a different polarity function:

P )= (i 1) @+

Clearly, Q1(n) and its negative counterpart are isomorphic. Unless otherwise Sated,
we shall congder the positive Q1(n) only.

Observe that Qq(n) canbeconstructed by oneQq(nj 1), onenegaive Q; (nj 1),
and 2"i 1 edges between them.

Q2(n): Like Q1(n), the orientations of the edges in Q2(n) are defined by the
polarities of the corresponding communication ports. If n is odd, an; 1 = 1 and
0-1- nj 2,thenthe correponding polarity function is

P(a i) = (j 1) @it

otherwise, the polarity P (a; 1) is the same as that for Q1(n). In fect, when n is
odd, Q2(n) can be constructed by two Q1 (n j 1)'sand 2"i ! edges between them.
Since Q2(n) is identical to Q1(n) when n is even, we shall only congder Q2(n)
when n is odd.

Generd results and more details on Q1(n) and Q2(n) can be found in [3, 10].

Any set of vertex-disjoint paths from vertex x to vertex y, denoted by C(x;y),
is called an (x; y)-container [6]. The width of C(x;y), written asw(C(X;y)), isits
cardinality. The length of C(x;y), written as I(C(X;y)), is the longes path length
in C(x;y). Define Dw(X;y) to be the minimum possible length of any (X;y)-
container with width w. Let »(X; y) denote the maximum number of vertex-digoint
paths from x to y. The wide-diameter of a graph G [5, 7], denoted by WD(G),
is the maximum of D,,.,y(X;y) for all pars of vertices x andy. Obvioudy, the
wide-diameter of a graph is no less than its diameter. The wide-diameter, proposed
by Hsu [7], and Flandrin and Li [5] independently, is a good index to characterize
the reliability of transmisson delay in a network, and has received much etention
recently [5-9, 11, 14]. We refer to [1] for notations and terminology not defined
here.

Recently, Jvo and Tuan [10] have shown that »(X; y) = min(out(x); in(y)) for
dl pairs of vertices x and y in Q1(n) or Qz2(n), i.e, both Q1(n) and Q2(n) are
maximum fault-tolerant. Furthermore, they have dso shown that D, .,y (X;Y) is
a most (1) I +4, where | is the shortest path length in Q1(n) from x to y, and
(2) I +5, where | is the shortes path length in Q2(n) (n is odd) (i) from x toy
when x and y have the same leading-bit values and (ii) from x to y’(y’ and y only
differ at leadi ng-bit position) when otherwise. They also sugges that the constructed
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container in [9] has the amallest possble length among al maximum fault-tolerant
containers fromx toy.

In this paper, we shall prove tha D, .yy(X;y) is no more than n + 2 for
any pairs of vertices X and y in Q1(n) or Q2(n). Furthermore, we prove that
the wide-diameters of Q1(n) and Q2(n) are equal to n + 2 and the conjecture in
[9] is true. Since the diameters of Q1(n) and Q2(n) are n + 1 when n is even
and the diameters of Q1(n) and Q2(n) re n + 2 when n is odd, we have that
JWD(@Qi(n))i Diam(Qi(n)j - 1;i=1;2

2. PRELIMINARIES

Suppose that a = an; 18n; 2 ¢¢¢ag and b = bp; 1bn; 2 ¢¢Chy are two vertices in
Q1(n) (rep. Q2(n)). Define DPi(a;b) = a; © b, where 0 - i - nj 1 and
© is Boolean addition. DP (a; b) is defined as the n-bit sequence: DPn; 1(&; b)
¢¢¢DP1(a; b)DPo(a; b). The polarity of DP(a;b) is the same as tha of a. p
and © denote the number of 1's in DP (a; b) with positive and negdive polarity,
respectively. For ingance, if a = 1111 and b = 0001, then DP(a; b) = 1110 and
p=1;n =2. For notationd simplicity, we will use z; to represent DP;(a; b).

Fact 1[3]. Given two verticesa and b in Q1(n) (resp. Q2(n)); the shortest
path length from a to b can be computed as follows:
Y
2 20i (Pin) mod 2; if p>n;
26+Mi P mod 2, if p- A

Fact 2 [3]. Given two verticesa and b in Q1(n); let | (rep. I') be the shortest
path length froma (reg. b) to b (resp. a). Then,

i
“1iP=0; if (p;i ") mod 2=0;

Il
I; L=2 if (finN) mod 2=1:

Fact 3 [3]. The diameter of Qj(n) is(@ n+1;if niseven, (b)n+2;if nis
odd; i = 1;2.

Fact 4 [9]. Let a and b be two vertices of Q1(n) (resp. Q2(n)). Then »(a; b) =
min(out(a);in(b)). In other words; both Q1(n) and Q2(n) are maximum fault-
tolerant.

Lemmal WD(Qi(n)) ., n+1;if niseven; WD(Qi(n) , n+2; otherwise;
i=1;2.

Proof. By Fact 3 and the definition of wide-diameter, it is obvious. [ ]



78 Lu Chang-hong and Zhang Ke-min

Lemma 2. L&t a and b be two vertices of Q1(n) where n isodd; and | be the
dhortest path length froma to b. Then, | =n +2 if and only if

Y
i mod 2=1;
f = D*+1.

L.

Proof. By Fact 1, we have | = n + 2 if and only if
n+2=2pi (i N) mod 2; ifp>n;

or
n+2=20+(i P mod2 ifp- f

Sncen+2isoddand p - (n+2)=2, we essily find

nj mod 2 =1;
I=n+20 1P .

Lemma 3. L&t a and b be two vertices of Q1(n) where n isodd; and | be the
dhortest path length froma tob. Then| =n + 1 if and only if
) )

i mod2=0; nipP mod2=0;
— N+l or s — n+i.
— 2 -2

Proof. By Fact 1, we have |l =n +1 if and only if
n+1=2pi (®in) mod?2; ifp=>n;

or
n+1=20+Mji P mod?2 ifp- f

Sincen+ 1is even, we easily find

) Y%
N j mod 2 =0; in mod 2 =0;
I=n+1 O g_l np-i)-l. or (p\_l n-21. -
-7 -7 -

Lemma 4 [10]. Let a and b be two vertices of Q1(n) with z; = 1 for every
eveninteger i in [0;nj 1]. Then D,y (a;b) equals the shortest path length from
atob.

For a = an; 1 ¢¢¢ajag and b = bn; 1 ¢¢hihg in Qi(n), if zn;1 =1 andz; =0
for some even integer i, then each vertex X = Xp; 1 ¢¢¢Xx1Xo can berdabded by the
mapping defied as follows:
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1. If n isodd, then choose an even integer i with z; =0 and define
®i: X ¥ XiXnj 2Xn; 3 CCEXj+1Xn; 1Xi; 1 ¢CCXo:

2. If n iseven, then arbitrarily choose an i with zi = 0 and define

Y%
i =

XiXnj 1Xnj 2 ¢CCXj+1 XoXi; 1 ¢ECX1; if i iseven:

The following result is due to Jwo and Tuan [10], which is aso easy to deduce.

Lemma 5 [10]. Let a and b be two vertices of Q1(n) with zp; 7 = 1 and
zi = 0 for some even integer i. The re abeling mapping ®; described above is an
automor phism of Q1(n).

3. THE CoNTAINER LENGTH AND WIDE-DIAMETER OF Q1(N)
In this section, we shdl firg prove the following theorem:
Theorem 1. Let a and b be two vertices of Q1(n). Then D, apy(a;b) - n+2:

Proof. We proceed by induction on n. When n = 2, it is trivial. Assume that
Theorem listrueforn - kj 1andk , 3.

Let n =k. If z; = 1 for every even integer i withO0 - i - kj 1, Lemma4
and Fact 3 guarantee that Theorem 1 is true. Without loss of generdity, we may
asume that there exists an even integer i such that z; = 0. By Lemma 5, we
can assume that z¢; 1 = 0, i.e, a and b arein the same subcube Q1(k i 1). Let
Qi(k j 1) represent the subcube containing a and b, and Q%(k j 1) respresent the
other subcube. Given an n-bit binary number v = vp; 1 ¢¢¢vyvo, let V! denote the
n-bit binary number Vi; 1vn; 2 ¢¢¢vo and v® denote the (n j 1)-bit binary number
Vnj 2Vn; 3 0¢0vo. Clearly, a® and b? are two verticesin a Qi(k j 1). By Fact 4,
»(@"; b%) = min(out(@®); in(b™)) and »(©Y; a%) = min(out(b™); in(a")).

Suppose that ax; 1 = bk; 1 = 0 (regp. 1). Let Pyq; Py; ¢¢¢; Py be a collection
of the maximum number of vertex-digoint paths froma tob in Qi(k j 1), where
r =»@" ") (regp. r = »(b%; a")). Obviously, we can regard P1;Py; ¢6¢; Py asa
maximum amount of vertex-disjoint paths from a® to b (resp. from b® to &%) in
Qi(k i 1). By induction hypothes s we can assume tha eech of the r paths has
length at most k + 1.

Case 1. kisodd.

Subcase 1.1. “(a) isodd or “ (b) is even.
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FIG. 1. k is odd, “(a) is even, and “(b) is odd, or k is even, “(a) is odd, and ~(b) is
even: ther + 1 vertex-disjoint paths from a to b in Qq (k).

In this situation, we have min(out(a), in(b)) = »(a%; b¥) (rep. min(out(a),
in(b)) = »(Y; a%). By Fact 3, »(a;b) = »(@%b") (repp. »(a;h) = »(L"; av)).
Thus, P1;P2;¢¢¢; Py is also acollectoin of the maximum number of vertex-digoint
paths from a to b in Q1 (k), where r = »(a; b). So, D,apy(ah) - k+ 1.

Subcase 1.2. “(a) is even and ~ (b) is odd.

We have min(out(a), in(b)) = »@%;b") + 1 (resp. min(out(a), in(b)) =
»(0"; a®) +1). By Fact 3, »(a;b) = »(@"; ") +1 (resp. »(a; b) = »(b¥;al)+1). See
Figure 1. Since ay; 1 has podtive polarity and by ; 1 has negative pol arity, there exist
an edgee; from atoa’ and an edge e from b’ to b. Let P be a shortest path from
dtoh’inQf(ki 1). Itiseasy tosee tha there exits anew path P = e; + P'+ey,
which certainly is vertex-digjoint with dl the paths P1; Po; ¢¢¢; P, froma tob in
Qlk i 1). Since P’ is a shortest path in Q%(k j 1), the length of P? is no more
than k by Fact 3, and the length of P is no more than k + 2. So, the length of the
maximum fault-tolerant (a;b)-container Pq; P,; ¢¢¢; P,; P is no more than k + 2.

Case 2. k iseven.

Subcase 2.1. “(a) isodd and “ (b) is even.

We have min(out(a), in(b)) = »@%;0b") + 1 (resp. min(out(a), in(b)) =
»(0%;a")+1). By Fact 3, »(a;b) = »(a¥; b")+1 (resp. »(a;h) = »(b¥; a)+1)). See
Fig. 1. Proceed similarly to that in Subcase 1.2 and obtain that Py; Py; ¢¢¢; Py; P
are a maximum fault-tolerant (a; b)-container. We cdculate the length of P. When
an; 1 = 0, the length of P" isequa to the length of the shortest path from b to &¥
in Qu(k i 1). Obvioudy, this is & most k+1 by Fact 3. Since “(b") =" (b) is
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FIG. 2. kiseven, “(a) isodd and “(b) is odd: the r + 1 disjoint-paths from a to b in
Qa1 (k).

even, we know that n of DP (b”; a) is less than k=2 and the shortest path from b¥
to a? has length & most k by Lemma 2. When an; 1 =1, the length of P! is equal
to the length of the shortest path from a® to b® in Q1(k j 1). Obviously, thisis dso
no more than k + 1 by Fact 3. Since " (&) = "(a) j 1 iseven, we know that f of
DP (a”; b0 is less than k=2 and the shortest path from b” to a® aso has length at
mogt k. In aword, P" haslength & most k. So, P has length at most k + 2. By
the induction hypothesis, we eadly see that the constructed maximum fault-tolerant
(a;b)-container P1; Py; ¢¢¢; Pr; P haslength at mogt k + 2.

Qubcase 2.2. " (a) is odd and “ (b) is odd.

We similarly have »(a; b) = »(a%; b%) + 1 (resp. »(a; b) = »(a%;b") + 1). See
Figure 2. Since ay; ;1 has positive polarity, there exists an edge e; from a to a.
Althouhgb has k=2 incoming ports available within Qi (ki 1), only (k=2)j 1 incom-
ing ports are used by the collection of vertex-disjoint paths Pq; P,; ¢¢¢; P, where
r =»(a% b") (rep. r = »("; a)). Thus, there is an unused incoming port, say port
j, of b which resuitsin the edge es from the vertex ¢ = by; 1 ¢¢¢hj +1bjbj; 1 ¢¢¢ho to
b. Note that c is not in any of Py;Py; ¢¢¢; Py, and ¢ = by 1¢(]:¢bj+1bjbjI 1 ¢¢Cho.
Since ¢ and ¢ differ in the (k j 1)th bit and the polarity of that hit in ¢’ is pos-
itive, there is an edge e» from cO toc. Let P! be a shortest path from a’ to ¢ in
Q3(kj 1). Then, thenew pah P = e; +P'+e, +e3 does not intersect any internal
vertex in Pq;Py; ¢¢¢; Pr. So, Pq; P2;¢¢¢; Py and P is a maximum fault-tolerant
(a;b)-contaner.

Since Py; Py; ¢¢¢; Py isidentical to amaximum amount of vertex-disjoint paths
from a” (resp. b") to bY (resp. a¥) in Q1(k j 1), and since we assume tha each of
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FIG. 3. kiseven, "(a) is evenand ~ (b) is even: the r + 1 vertex-digoint paths from a to

bin Qu(k).

the r paths has length & mog k + 1, it is sufficient to prove tha the new path P
has length at most k + 2. When ak; 1 = 0, the length of P! isequal to that of the
shortest path from c? to a¥ in Qy(k j 1). Since “(c") is even and “(a™) is odd,
wehaenh & (k=2) +1and (i n) mod 26 0. By Lemmas 2 and 3, we have
the length of the shortest path fromc® to a” in Qu(k j 1) isat mostk j 1. When
a; 1 = 1, the length of P! is equd to that of the shortest path from a¥ to c” in
Q;(k i 1). Notethat “(a¥) is even and ~ (c?) is odd. Similarly, we obtain that P?
has length at mos k j 1. So, we know tha P adways has length a most k + 2.
Thus, Dyap(a;b) - kK+2.

Subcase 2.3. “(a) is even and ~ (b) is even.

In this situation, »(a; b) = »(a%; b%) + 1 (resp. »(a;b) = »(b";av)). Asshown
in Figure 3, P1;P2; ¢¢¢; P, and the new path P =e; +e, +P Y+ e3 isamaximum
fault-tolerant (a;b)-contaner with width »(a; b), where r = »(a% b%) (resp. r =
»(";a")) and P? is a shorteg path from d” to b in Q%(k j 1). Similarly, we can
prove that P? has length & most k j 1 and the length of P is no more than k + 2.
Thus, D, (a;h) - k+2. The detal is It to readers

Subcase 2.4. “(a) is even and “ (b) is odd.
In thissituation, »(a; b) = »(a; b") (resp. »(a; b) = »(b"; al)). We essily know

D,apy(@;b) - k+ 2. The proof is similar to that of Subcase 1.1.
By induction, we get that D, py(a;h) - n+2.
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The proof of Thereom 1 is completed. [ ]

Due to Thereom 1, we know that the wide-diameter of Q1(n) is no more than
n+ 2 and, when n is odd, WD(Q1(n)) = n+2 by Lemma 1. On the other hand,
if there exists some even number k (, 4) such tha WD(Q1(k)) = k + 1, then
consider two vertices a = 00 ¢¢¢0 and b = 0011 ¢¢¢1 in Q1(k). Since " (a) is even
and “(b) is even, we know »(a;b) = »(@% b") + 1, so any (a;b)-conta ner with
width »(a; b) mug have a path, say P, which passes the vertex b’ = 1011 ¢¢¢1, and
(';b) isthelast edgein P . Let P! be ashortest path fromato b’ in Q1(k). By Fact
1, we calculate that the length of P isequd to k + 1 snce DP (a; b’) = 1011 ¢¢¢1
andp=(kij 2)=2, n=k=2. Then P has length a least k + 2. So the length of
any (a;b)-container with width »(a;b) is at least k + 2, a contradiction. Thus, we
have the follow thoerem:

Theorem 2. The wide-diameter of Q;(n) (n, 3) isequal to n + 2.

Remark 1. In[10], Jwo and Tuan have shown that the smdles possble
length for any maximum faul t-tolerant container froma tob is at most | + 4, where
| is the shortest path in Q4(n) from a to b. Now, we show that this upper bound is
best. Whenn , 4 iseven, condder thetwo verticesa = 00¢¢¢0 and b = 0011 ¢¢¢l
inQ1(n) (n, 4iseven). Snce DP(a;h) =0011¢¢¢tland p=n = (nj 2)=2,
wehavel =nj 2byFact 1. Asabove we know that the length for any maximum
fault-tolerant container from a to b isa least n + 2. By Theorem 1, we see that
the smallest possible length for any maximum fault-tolerant container fromatobis
equal ton +2,i.e, it equals | + 4. Thus the upper bound given by Jwo and Tuan
in [10] is in a sense best possible.

4. THE CONTAINER LENGTH AND WIDE-DIAMETER OF Q2(n)

By the definition, it is enough to consider for odd n. Let a and b be two
vertices in Q2(n). We know Q2(n) is congructed from two Qi1(nj 1)'sin [3],
sy, Qi(ni 1) and (nj 1). And we assume a 2 Q3(n). Note tha if there
existsapatha=vp ¥ v; ¥ ¢0¢ ¥ v inQ3(n 1), then there is a corresponding
pah & =vj ¥ v} ¥ ¢e¢ ¥ vl in Qf(ni 1). Supposethat Py; Po; ¢¢¢; Py area
collection of maximum number of vertex-disjoint paths froma to an; 16% in Q}(n
1), where r = »(@%;b%), and P{;P3; ¢¢¢; P! are their counterparts in Q%(n j 1).
Obvioudy, Py; P,; ¢¢¢; P, isidentical toamaximum fault-tordant (a; b®)-container
inQ;(nj 1). By Theorem 1, we assume each of paths Py; P,; ¢¢¢; P, has length
a most n+1.

Casel. “(a) isodd or “(b) is even.
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FIG. 4. “(a) isodd or “(b) iseven, and an; 1 & bn; 1: the r vertex-disjoint paths from a
tob in Q,(n).

In this situation, we know »(a;b) = »(@";b"). Therefore, P;;P,;¢¢¢; P, isa
maximum fault-torelant (a;b)-container in Q,(n), and D,,a.p (@;h) - N+ 1.

s.lbcase 12 ani 1 & bni 1

Similarly, »(a; b) = »(a"; bY) = r. aand b are not in the same subcube. Thena
andb’ aein Q}(nj 1) andb and &’ arein Q?(nj 1). SeeFigure 4. Observe that
among P1; P2; ¢¢¢; Py, (1) at mog one pah has length less than 3, and (2) each of
the remaining paths has length more than 2 and thus contains & lesst two intemd
vetices For1 - i - r, let uand v be two consecutive vertices in Pj and let U’
and V! be their counterpartts in P{, respectively. Note that it is easy to check that
there dways exigs u with an outgoing edge to u’ or v to V!. Then we can sdect
avertex ¢j in Pj with an outgoing edgeto ¢! in P}, i = 1;2;¢¢¢; r. Evidently, the
2r vertices c1;¢z; ¢0¢; ¢y, c};ch; ¢¢¢; cl, areall distinct. For each i in [1; r], a path
fromatob in Q2(n) can be formed by firg going through the subpath of P; from
a to c;, then through the edge from c; to ¢!, and, findly, through the subpath of
P from ¢! to b. These newly formed r paths are vertex-disjoint and each of them
has length & most n + 2 snce each of the paths Py; P,; ¢¢¢; P, has length & most
n+1 by Theorem 1. Then D,@p)(a;b) - n+ 2.

Case 2. “(a) iseven and “ (b) is odd.
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FIG. 5. “(a) iseven, “(b) isodd, and an; 1 = bn; 1: the r + 1 vertex-digoint paths from
atobin Qz(n).

We know »(a;b) = »(@";b") + 1, and a and b are in the same subcube. See
Figure 5, where P! is a shortest path from & to b’ in Q%(n). Sincethe (nj 1)th
port of a has pogtive polarity and that of b has negative polarity, there exist e; from
atoa’ and e, from b’ toh. We easily get anew pah P =e; + P+ e;. Dueto
Fact 3 and the fact that n j 1 is even, we know that the length of P? is & most n.
Then P has length & most n +2. Now, it iseasy to see D,5.p(ash) - n+ 2.

Qbcase 2.2. an; 1 & bni 1-

We have »(a; h) = »(a@";b") + 1 by Fact 4. See Figure 6, where P; is a shortest
path in fP;ji 2 [1; r]g. Sincethe (n j 1)th port of a has postive polarity and that
of b has negative polarity, e; isfrom a toa’ and e, is fromb” tob. For each pair P;
and P!, i 6 t, there exists a vertex ¢j in Pj and ¢! in P{ such that a new path from
atobin Q2(n) isformed by taking the subpath from a to ¢; in P;, then through the
edge from ¢; to ¢}, and finally from ¢ to b in P{. For the pair Py and P{, two new
paths are formed: Oneise; + P{ and the other is Py +e,. Since each of the paths
P1; P2; ¢¢¢; Py has length & most n + 1 by Theorem 1, we eadly see that each of
the paths in the new container has length at most n+ 2. Thus D, a5y (a;b) - n+2.

From the above discusd on, we have the following theorem:

Theorem 3. Let a and b be two vertices of Q2(n). Then D, apy(a;b) - n+2:
From Lemma 1, we have

Theorem 4. The wide-diameter of Q2(n) (n is odd) is equal to n + 2.
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FIG. 6. “(a) iseven, "(b) isodd, and an; 1 & bn; 1
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Remark 2. For the two vertices a = 00¢¢¢0 and b = 1001 ¢¢¢1 in Q2(n)
(n . 3isodd), since DP (a;b) =00011¢¢¢1 and p=H = (nj 3)=2, we have
| =nij 3 by Fact 1, where| is the shortest path length from a to b!. As Subcase 2.2
of Theorem 2, we know that for any maximum fault-tolerant container froma tob,
there is a path through the edge (a;c), where ¢ = 0010 ¢¢¢0. We easly know tha
the shortest path fromc to b in Q, has length n + 1. So we see that the smallest
possible length for any maximum fault-tolerant container from a to b is equd to
n+2, i.e, itequals|+5. Thustheupper bound given by Jvo and Tuan [10] isin
a sense bed possible.

5. CONCLUSION

In this paper, we give the wide-diameters of the two unidirectional binary n-
cubes proposed by Chou and Du [3]. Since the constructed container in this paper
is the same as tha in [10], Remarks 1 and 2 show that the conjecture in [10] is
true.
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