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i s
Ahsiract Let Z = Y (n;—1)and A = ) (m;—1). This paper considers the generalized
i1 j=1
Ramsey nutaber R(K1,ny, -+ Kine, mi1 K2, -, msK2) for any 3 and A. And the authors
get their exact values if 1 < A € ¥ and their upper bounds if A > X.
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1 Introduction and Lemmas

All graphs will be finite and undirected without loops or multiple edges. All undefined
terms see [2]. 3(G) is denoted the number of edges in the maximum matching of graph G. Let
t s
Y =) (n;—1)and A=} (m; — 1), where m, n; are positive integers. Let G, Gz, - -+, Gm
i=1 i=1

J
be simple graphs. The generalized Ramsey number R(G;, Ga, - -+, G,,) is the smallest integer

n such that every m-edge coloring (Fi, Ea, ---, En) of K, contains, for some ¢, a subgraph
isomorphic to G; in color i. The problem of the generalized Ramsey number about the stars or
stripes is interesting for many people such as [1], [3], [5] and [6].

Theorem AlYl (i) If ¥ is odd, then R(K1n,, -+, K1) = 5 +2;

(ii) If X is even and all n; are odd, then R(Ky n,, -+, Kin, ) =2+ 2;

(iii) If X is even and at least one n; is even, then R(Ky n,, -+, Kin,) =2+ 1.

Theorem BB Let my, ma, - - -, ms be integers and my = max{ms, ma, -+, ms}. Then
R(leg, mng, sy mSKQ) =mi + 14+ A.

In this paper, we consider the generalized form such as R(Ki ., -+, Kin,, m1Ka, -,

msK3). For this purpose, we need the following Lemmas:

Lemma 1 Let G be a connected graph with |V(G)| > 26(G), then G contains a path
with length > 26(G).

Lemma 24 Let G be a 2-connected graph with [V(G)] > 26(G), then G contains a cycle
with length > 26(G).
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Lemma 3 Let G be a connected graph, then 3(G) > min{|V (G )1/2,6(G)}.
Proof If 6(G) > [V(G)|/2, thus G contains a Hamilton cycle. Hence 3(G) = (V(G)|/2].
If §(G) < [V(G)|/2, thus |[V(G)| > 26(G). Hence 3(G) > §(G) by Lemma 1.

2 Theorems and Their Proofs

Theorem 1 Let R =: R(K1,,," -, K1 n,,mK3), thus

2m ifm>2X+1;
R=¢ m+Y¥+1 ifm<E+1and?2 T or 2|¥ and &li of r,; are odd;
m+ X ifm <X 41 and 23 =nd at least one of n; is even.

Proof (1) m 2 X+ 1. Let, all ¢f edges of K,.,_1 have color ay1. Thus there is neither
mKy in color 2.y ner Ky, (1 = 1,2,- -,t) in color a; on Kam_1. Hence we have R > 2m.
Oz the other havod, 1ot Ka,, be colored by colors oy, ag, - -+, agq1. If there is no K ,, in color
a (i = 1,2,---,t), we consider an edge induced subgraph H; by all of edges in color cy1.
Clearly, 6(Hy) > 2m — 1 — ¥ > m. Thus H; has a Hamilton cycle. So 3(H;) = m. Hence
R < 2m. Therefore R=2m if m > ¥ + 1.

(2) m < ¥+1 and X is odd or ¥ is even and all of n; are odd. Since Theorem A(i) and (ii),
G = Ky 1 UK, 1 can be colored by colors ay, ag, - -+, oy such that G does not contain K ,,, in
color oy (i =1,2,---,t). And G° is colored by color ay41. It is easy to get 3(G°) =m—1 < m.
Hence R>2m+ X + 1.

On the other hand, let Kn, 4541 be colored by colors a1, o, - - -, ctp4q. If there is no K,
in color a; (i = 1,2,---,t), we consider the edges induced subgraph H, by all of edges in
color a¢py. Clearly, §(Hz) 2 (m + %) — ¥ = m. If Hs is connected, by Lemma 3, 3(Hs) >
min{[(m + £ + 1)/2],m} = m. If Hy isn’t connected, thus let C;,Cy be two components of
Hj,. Since 8(C;) 2 6(Hz) =z m (i = 1,2). 8(Hy) = B(C1) + B(C2) = min{[|V(Cy)}/2],8(C1)} +
min{[|V(C2)|/2],6(Cs)} 2 2min{[(m + 1)/2],m} > m by Lemma 3. Hence R < m + ¥ + 1.
Therefore R=m+ X +1if m <X +1and X is odd or ¥ is even and all of n; are odd.

(3) m < £+ 1 and X is even and at least one of n; is even. By Theorem A(iii), using an
analogous to the proof of (2), we can get R 2 m + X.

Now we prove the reverse inequality. Let the edges of K,,.+5 be colored by colors a1, ag, - - -,
vy 41. If there is no edges of Ky p, in color a; (i = 1,2,---,t), we consider the edge induced
subgraph Hj by all of edges in color ay; ;. Thus §(H3) 2 (m+X—-1)—-X=m—1.

If Hy has at least three components, say C1,Co,Cs. Thus we have 6(C;) = 6(H3) (i =
1,2,3). For m = 1,2,3, it is easy to get S(Hs) > m. For m > 4, by Lemma 3, 8(H3) >

B(C)+B(C2)+8(C3) = me{[{V /2], 6(C)} = 3min{[m/2],m—1} = 3[m/2) 2 m. If Hs

has exactly two components Ci,Co, thus [V(Cy)| 2 m, |[V(C2)| 2z m. If |[V(Ch)| = |V(C’2)| =m,
then m = ¥ = even and Ci, C; are complete graphs. Hence 3(H3) = m/2+m/2 =
If max{{V(Cl)| [V(C2)|} 2 m+ 1, say [V(Cy)| 2 m+ 1. By Lemma 3, we have ﬂ(HJ)

AC) +P(C2) 2 Z min{(|V'(C:)l/2],6(C3)} 2 min{[(m + 1)/2], m — 1} + min{[m/2],m — 1} =
[(m + 1)/2] + [m/2] m. If Hjz is connected with a cut vertex v and if Hy — v has at
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least three components, say Di,Dg, D3. For m = 1,2,3,4, it is easy to get 3(Hz) > m.
For m > 5, by Lemma 3, 3(H3) > B(Dy) + B(D2) + B(D3) > E min{{|V(D;)|/2],6(D;)} >
3min{[(m — 1)/2],m — 2} = 3[(m — 1)/2] > m. If H3 — v has exactly two components, say
Dy, D,, thus we can assume that [(V(D1)] 2 m,|V(D2)| = m — 1 and |[V(D1)| > [V(D2)|
since |V(Hz —v)] = m+X—122m—1,6(D1) > m—2 and 6(D2) > m — 2. It is easy
to prove 8(H3) > m if m < 3. If & = m, then [V(Dy)| = m and |V(Dz)| = m — 1. For
m > 4, there are Hamilton cycles in D; and Ds respectively. Since N(v) N V(D) # 0 and
m = ¥ = even, 8(Hs3) = B(D1) + B(H3[V(D2) U {v}]) = m/2 +m/2 =m. IfY =m+1,
thus m is odd. i.e., m > 5. Using an analogous method as above, we can get G(H3) » m. If
L 2m+2and m > 4, thus |V(Dy)| + [V(Dg)] = X+ m -~ 1 2 2m+ 1. Heince we always
have [|V(D1)}/2] + [IV(D2)]/2] = m. Note that 0(D)) +4(Dg) > 2(m ~2) 2 m 5(D1) +
IV(D2)l/2] zm—2+[(m—-1)/21 2 m if m 2 5 end [lVl 1;(/2]-{-5(D2) m/2]+m—-2>

Therefore, by Lzama 3, 8(Hs) > D) + p(Ls) = }: min{([V(D;)|/2],6(D;)} 2mifm 25

or m = 4 and 1V (D2) 2 m. Hence the remaining case is Dy = K3. At this time, we have
B(Hs) = B(D1) + B(Hs[V (D) U{w}) > m
If Hy is 2-connected and if §(Hs) = (m + X)/2, thus there is a hamilton cycle in Hj.
Hence 8(Hs) 2 m. U 6(Hs) < (m + X)/2, then m + £ > 26(H3) = 2(m — 1). By Lemma
2, there is a cycle C in Hs with length > 2(m — 1). If there is a cycle in H3 with length
> 2m, then G(H3z) > m. If there is a cycle C in Hz with length 2m — 1, thus there is a
vertex ¢ C which is adjacent with C. So 3(Hj3) = m. If the length of the longest cycle C

is 2m — 2, say C = (x1,%2, -+, Tam—2), then 3(H3z} > m. In fact, otherwise F(Hz) = m — 1,
thus V(H3) — V(C) = {y1,¥2,- -, ¥s_,nso} is an independent set of Hz. Since C is a longest
cycle in Hz and §(H3) > m — 1, we can assume that N(y;) = N(y2) = -+ = N(yy_,.,,) =

{z1, 23, -, Zom—3}. And then {2, 24, -, Z2m—2} U (V(H3) — V(C)) is an independent set of
Hj with size (X —m +2) + (m — 1) = £ + 1. Hence, by Theorem A(iii) on K15, there is a
subgraph K ,,, in color o, a contradiction.

Theorem 2 If A < ¥, then

R = R(Kl,nUKl,ng’ T 7K1,ntam1K27m2K2a e 7mSK2)
A+X+2 if ¥isodd or ¥ is even and all of n; are odd,

A+ZX +1 if ¥ is even and at least one of n; is even.

Proof (1) X is odd or ¥ is even and all of n; are odd. Since Theorem A(i) and (ii),
G = Kx41 U Ky can be colored by colors oy, ag, -« - , o such that G does not contain Kin,
in color a¢ (i = 1,2,---,t). And then let G° = (X;Y;E) be a complete bipartite graph,
where |[X| = A and Y| = © + 1. Let (X1, Xy, -, X,) be a partition of X with | X;] =
m; —1(j =1,2,---,5). And let the edge of E, which is incident with a vertex in X;, be
colored by colors ay; (j =1,2,---,s). Clearly G¢ does not contain a subgraph m; K> in color
aty; (7=1,2,---,s). Hence R> A+ X +2.

Now we prove the reverse inequality. Let K51 x42 be colored by colors ai, asg, - - -, Qpts. If
thereis no K, in color @; (¢ = 1,2,---,t). By Theorem 1, there exists a (A+1)K2(C Kpysyo)
such that which edges in colors aey; (j = 1,2,--+,5). So there is some m;K> (1 < j < s) in
color a;4;. Hence R<A+X+2. ie, R=A+3+2.
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(2) X is even and at least one of n; is even. Using an analogous method of (1), we can get
R=A+YX4+1 #

Theorem 3 If A > £, and let my = max{mi,ma, -, ms}, R = R(K\,,, -, Ky,
miKa, -+, mgK3), we have:

(i) ¥ is odd or ¥ is even and all of n; are odd , thus max{m; + A + 1,A+ X +2} < R <
2(A + 1),

(ii) X is even and at least one of n; is even, then max{m; +A+1,A+Z+1} < R < 2(A+1).

Proof When ¥ is odd, let Kopqo be colored by colors ay, g, -+, aprs. If there is no
Ky, in color a; (i = 1,2,---,t). By Theorem 1, there exists a (A + 1)K:{C Kapyo) whose
edges is colored by color asj (j = 1,2,---,5). So, there is somz 1 K2 “i € j < s) in color
ayj. Hence R < 2(A + 1). By Theorem B, we have I 2 my; + A -~ 1. Hence in the following,
we will prove that R > A+ X +2. Let C = &7 4541 and let (Vi,Va, -+, Vi, Viy1) be a partition
on V(G) with |[V;l = m: — 1 (0 = 1,2,--,s) and |Vi41] = £+ 1. G is colored by colors
Qy, 0, -, 0, a8 follows: lev e = xy € G (1) 2,y € Vi, thus e is colored by color ay; (2)
x ¢ Vi, € Vyandi < j, thus e is colored by color a; (j =2,3,---,5); (3)z € V; (1 =1,2,---,5)
and y € Viq1, thus e is colored by color «;; (4) by Theorem A(i) K)y,,, can be colored by
colors a1, -, syy such that there is no K p, in color a,y; (i = 1,2,--+,t). Clearly, G is no
m;Ky (j=1,2,---,5) in color ;. Hence R > A+ % + 2.

Using an analogous method as above, we can prove the remains part of (i) and (ii).

Theorem 4 If A =%, and R = R(Kin,. - Kipn,miKa, - ,msKa), my 22 (j =
1,2,---,s), then

AL2 If s=1or X is odd or X is even and all of n; are odd; or
if 2|¥ and at least one n; is even and s = 2 with m; = mg

If 2{¥ and at least one n; is even and s = 2 with my # m»
20+ 1

or s> 3.

Proof By Theorem 1, we get R = 2A + 2 if s = 1. By Theorem 3(i), we get R = 2A + 2
if ¥ is odd or ¥ is even and all of n; are odd.

Now, we consider the case that ¥ is even and at least one n; is even and s = 2 with
my; = mg. By Theorem 3, we have R < 2A 4+ 2. On the other hand, let V(Karp) =
{21,292, TA YL, Y2, YA, 2}, X = {z1,@0,--+,xa} and Y = {y1,y2,---,ya}. Clearly.
G = K| x|, y| is 1-factorable. (Fy,Fy,---, F}) is a partition of these A 1-factors with | F;| = n;—1.
All of edges in F; are colored by color o; (i = 1,2,---,t), every edges of complete graph on
X U {2} is colored by color as41, and every edge of the complete graph on Y U {z} is colored
by color a;4o. Thus there is no K ,, in color a; (i = 1,2,---,t) on Kapy1, and there is also
no m;Ks in color ey 4 (j = 1,2) on Kopay1. Thus R > 2A 4+ 2. Therefore R = 2A + 2 if X is
even and s = 2 with my; = mo.

In the following, we prove that B = 2A + 1 if ¥ is even and at least one n; is even and
s 2 3or s =2 with m; # my. By Theorem 3, we get R > 2A 4+ 1. On the other hand, let
K3a41 be colored by colors ag., g, -, apps. If there is no K ,, in color a; (i = 1,2,---.t), and
let H be an edge induced subgraph by all of edges which colored by colors ayq1, cypa, -+, ey,
thus 8(H) > 2A — X = A. Clearly. H is connected, otherwise at least one component C' with
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3(C) < A, acontradiction. If there is a cut vertex v of H, then H —v has exactly two components
Dy, Dy with HV(D1) U {v}] = H[V(D2) U {v}] = Kp+1. Let C1,C2 be Hamilton cycles in
D1, D, respectively. For every j, let E; be the set of edges with color a;; in C; U Cy. And let
aj = |Ej;|, the edge induced subgraph H; = (C1UC2)[E}]. Thus we have §8; =: 8(H;) > {a;/2}.
If there is an odd number a;, then there is another odd number ay since C;UC, has 2A+2 edges.
S 5 S
Thus we have ) 8; > > {a;/2} > (3. (a;/2)+1) = A+1. So there is some mj, Ks (1 < jo < 8)
i=1 j=1 j=1
in color ay+j,. Hence in the following we always assume that a; (1 < j < s) are even. Using an

analogous method as above, we can get that every component of H; (1 < j < s) has cven number
8 s

of edges. Thus we have §; > a;/2 for every j (1 < j < ¢), and then Zlﬁj > 3_.1 a;/2 = A If
only one color, say oy, 1, appears on C; UCy, then there |s 1 Ko wit}z coler uth_H in H. If only
two colors, say ay+1, ¢ 42, appear or O U (Y, thus when s > 2 vhere is m; K3 in color oz, or
ma K3 in color ayip since 5{C; UCy) = A 2 {(my - i) + (m2 ~ 1) + 1. Hence we only need to
consider the case that at least thige colors appear on C; UC,;. When s = 2, note that m; # mg.
So we can assurie that there are at least two colors appear on C;. Let v; be a common vertex
of two monochromatic paths on Cy. Since v1v must be colored by one of color oy (1€ 5<9),
there always exists some m, Ky in color asj, (1 < jo < 8).

If H is 2-connected, by Lemma 2, then H contains a cycle with length > 2A. If there is
a cycle with length 2A + 1, thus it always contains a monochromatic odd component in this
cycle. So it is easy to see that there is a m;Ky (1 < j < s) in color ayq;. If the length of
the longest cycle C'is 2A in H. Let V(H) — V(C) = {u}. Clearly, since dg(u) > 6(H) > A,
du(u) = A. In this case, if there is no m; K, in color a¢r; for any j € {1,2,---, s}, we can
prove as above that every component of H; in Cis even. Let C = (z1, 22, -, Z2A,Z1), and let
Ny (u) = {z1,23,---,z2a-1}. Clearly, V(C) — Np(u) contains all of the common vertices of
components of H; (1 < j < s). If there is an edge T2z9; € E(H) (1 < i< j < A), then there is
a (2A + 1)-cycle in H, a contradiction. Hence {u, s, x4, - ,T2p} is an independent set in H.
By Theorem A (iii), there exists a K n, in color a; (1 < i < t). Combining all of these cases,
we have R < 2A+1. So R=2A+1if ¥ is even and at least one n; is even and s 23o0rs=2
with m; # mg. This completes the proof of Theorem 4.
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