THE RAMSEY NUMBERS FOR STARS AND STRIPES* Zhang Kemin (张克氏) Department of Mathematics, Nanjing University, Nanjing 210093, China Zhang Shusheng (张树生) Guhou Middle School, Ningdu 342814, China Abstract Let $\Sigma = \sum_{i=1}^t (n_i - 1)$ and $\Lambda = \sum_{j=1}^s (m_j - 1)$. This paper considers the generalized Ramsey number $R(K_{1,n_1}, \dots, K_{1,n_t}, m_1 K_2, \dots, m_s K_2)$ for any Σ and Λ . And the authors get their exact values if $1 \leq \Lambda \leq \Sigma$ and their upper bounds if $\Lambda > \Sigma$. Key words Ramsey number; Stars; Stripes. 2000 MR Subject Classification 05C55; 05D10 ### 1 Introduction and Lemmas All graphs will be finite and undirected without loops or multiple edges. All undefined terms see [2]. $\beta(G)$ is denoted the number of edges in the maximum matching of graph G. Let $\Sigma = \sum_{i=1}^{t} (n_i - 1)$ and $\Lambda = \sum_{j=1}^{s} (m_j - 1)$, where m_i , n_i are positive integers. Let G_1, G_2, \dots, G_m be simple graphs. The generalized Ramsey number $R(G_1, G_2, \dots, G_m)$ is the smallest integer n such that every m-edge coloring (E_1, E_2, \dots, E_m) of K_n contains, for some i, a subgraph isomorphic to G_i in color i. The problem of the generalized Ramsey number about the stars or stripes is interesting for many people such as [1], [3], [5] and [6]. **Theorem A**^[1] (i) If Σ is odd, then $R(K_{1,n_1}, \dots, K_{1,n_t}) = \Sigma + 2$; - (ii) If Σ is even and all n_i are odd, then $R(K_{1,n_1},\cdots,K_{1,n_t})=\Sigma+2;$ - (iii) If Σ is even and at least one n_i is even, then $R(K_{1,n_1}, \dots, K_{1,n_t}) = \Sigma + 1$. **Theorem B**^[3] Let m_1, m_2, \dots, m_s be integers and $m_1 = \max\{m_1, m_2, \dots, m_s\}$. Then $R(m_1K_2, m_2K_2, \dots, m_sK_2) = m_1 + 1 + \Lambda$. In this paper, we consider the generalized form such as $R(K_{1,n_1}, \dots, K_{1,n_t}, m_1K_2, \dots, m_sK_2)$. For this purpose, we need the following Lemmas: **Lemma 1**^[4] Let G be a connected graph with $|V(G)| > 2\delta(G)$, then G contains a path with length $\geq 2\delta(G)$. **Lemma 2**^[4] Let G be a 2-connected graph with $|V(G)| \ge 2\delta(G)$, then G contains a cycle with length $\ge 2\delta(G)$. ^{*}Received April 16, 2001; revised October 2003. The project supported by NSFC E-mail:zkmf@nju.edu.cn **Lemma 3** Let G be a connected graph, then $\beta(G) \ge \min\{|V(G)|/2, \delta(G)\}$. **Proof** If $\delta(G) \ge |V(G)|/2$, thus G contains a Hamilton cycle. Hence $\beta(G) = [|V(G)|/2]$. If $\delta(G) < |V(G)|/2$, thus $|V(G)| > 2\delta(G)$. Hence $\beta(G) \ge \delta(G)$ by Lemma 1. ## 2 Theorems and Their Proofs **Theorem 1** Let $R =: R(K_{1,n_1}, \dots, K_{1,n_t}, mK_2)$, thus $$R = \begin{cases} 2m & \text{if } m \geqslant \Sigma + 1; \\ m + \Sigma + 1 & \text{if } m < \Sigma + 1 \text{ and } 2 \not\mid \Sigma \text{ or } 2 \mid \Sigma \text{ and all of } n_i \text{ are odd;} \\ m + \Sigma & \text{if } m < \Sigma + 1 \text{ and } 2 \mid \Sigma \text{ and at least one of } n_i \text{ is even.} \end{cases}$$ **Proof** (1) $m \geqslant \Sigma + 1$. Let all of edges of K_{2m-1} have color α_{t+1} . Thus there is neither mK_2 in color α_{t+1} ner K_{1,n_i} $(i=1,2,\cdots,t)$ in color α_i on K_{2m-1} . Hence we have $R \geqslant 2m$. On the other hand, let K_{2m} be colored by colors $\alpha_1,\alpha_2,\cdots,\alpha_{t+1}$. If there is no K_{1,n_i} in color α_i $(i=1,2,\cdots,t)$, we consider an edge induced subgraph H_1 by all of edges in color α_{t+1} . Clearly, $\delta(H_1) \geqslant 2m-1-\Sigma \geqslant m$. Thus H_1 has a Hamilton cycle. So $\beta(H_1)=m$. Hence $R \leqslant 2m$. Therefore R=2m if $m \geqslant \Sigma+1$. (2) $m < \Sigma + 1$ and Σ is odd or Σ is even and all of n_i are odd. Since Theorem A(i) and (ii), $G = K_{\Sigma+1} \cup K_{m-1}$ can be colored by colors $\alpha_1, \alpha_2, \dots, \alpha_t$ such that G does not contain K_{1,n_i} in color α_i $(i = 1, 2, \dots, t)$. And G^c is colored by color α_{t+1} . It is easy to get $\beta(G^c) = m - 1 < m$. Hence $R \ge m + \Sigma + 1$. On the other hand, let $K_{m+\Sigma+1}$ be colored by colors $\alpha_1, \alpha_2, \cdots, \alpha_{t+1}$. If there is no K_{1,n_i} in color α_i $(i=1,2,\cdots,t)$, we consider the edges induced subgraph H_2 by all of edges in color α_{t+1} . Clearly, $\delta(H_2) \geqslant (m+\Sigma) - \Sigma = m$. If H_2 is connected, by Lemma 3, $\beta(H_2) \geqslant \min\{[(m+\Sigma+1)/2], m\} = m$. If H_2 isn't connected, thus let C_1, C_2 be two components of H_2 . Since $\delta(C_i) \geqslant \delta(H_2) \geqslant m$ (i=1,2). $\beta(H_2) \geqslant \beta(C_1) + \beta(C_2) \geqslant \min\{[|V(C_1)|/2], \delta(C_1)\} + \min\{[|V(C_2)|/2], \delta(C_2)\} \geqslant 2 \min\{[(m+1)/2], m\} \geqslant m$ by Lemma 3. Hence $R \leqslant m + \Sigma + 1$. Therefore $R = m + \Sigma + 1$ if $m < \Sigma + 1$ and Σ is odd or Σ is even and all of n_i are odd. (3) $m < \Sigma + 1$ and Σ is even and at least one of n_i is even. By Theorem A(iii), using an analogous to the proof of (2), we can get $R \ge m + \Sigma$. Now we prove the reverse inequality. Let the edges of $K_{m+\Sigma}$ be colored by colors $\alpha_1, \alpha_2, \dots, \alpha_{t+1}$. If there is no edges of K_{1,n_i} in color α_i $(i=1,2,\dots,t)$, we consider the edge induced subgraph H_3 by all of edges in color α_{t+1} . Thus $\delta(H_3) \geq (m+\Sigma-1)-\Sigma=m-1$. If H_3 has at least three components, say C_1,C_2,C_3 . Thus we have $\delta(C_i)\geqslant \delta(H_3)$ (i=1,2,3). For m=1,2,3, it is easy to get $\beta(H_3)\geqslant m$. For $m\geqslant 4$, by Lemma 3, $\beta(H_3)\geqslant \beta(C_1)+\beta(C_2)+\beta(C_3)\geqslant \sum_{i=1}^3\min\{[|V(C_i)|/2],\delta(C_i)\}\geqslant 3\min\{[m/2],m-1\}=3[m/2]\geqslant m$. If H_3 has exactly two components C_1,C_2 , thus $|V(C_1)|\geqslant m,|V(C_2)|\geqslant m$. If $|V(C_1)|=|V(C_2)|=m$, then $m=\Sigma=$ even and C_1,C_2 are complete graphs. Hence $\beta(H_3)=m/2+m/2=m$. If $\max\{|V(C_1)|, |V(C_2)|\} \ge m+1$, say $|V(C_1)| \ge m+1$. By Lemma 3, we have $\beta(H_3) = \beta(C_1) + \beta(C_2) \ge \sum_{i=1}^2 \min\{[|V(C_i)|/2], \delta(C_i)\} \ge \min\{[(m+1)/2], m-1\} + \min\{[m/2], m-1\} = [(m+1)/2] + [m/2] = m$. If H_3 is connected with a cut vertex v and if $H_3 - v$ has at least three components, say D_1, D_2, D_3 . For m=1,2,3,4, it is easy to get $\beta(H_3)\geqslant m$. For $m\geqslant 5$, by Lemma 3, $\beta(H_3)\geqslant\beta(D_1)+\beta(D_2)+\beta(D_3)\geqslant\sum\limits_{i=1}^3\min\{[|V(D_i)|/2],\delta(D_i)\}\geqslant 3\min\{[(m-1)/2],m-2\}=3[(m-1)/2]\geqslant m$. If H_3-v has exactly two components, say D_1,D_2 , thus we can assume that $|(V(D_1)|\geqslant m,|V(D_2)|\geqslant m-1$ and $|V(D_1)|\geqslant |V(D_2)|$ since $|V(H_3-v)|=m+\Sigma-1\geqslant 2m-1,\delta(D_1)\geqslant m-2$ and $\delta(D_2)\geqslant m-2$. It is easy to prove $\beta(H_3)\geqslant m$ if $m\leqslant 3$. If $\Sigma=m$, then $|V(D_1)|=m$ and $|V(D_2)|=m-1$. For $m\geqslant 4$, there are Hamilton cycles in D_1 and D_2 respectively. Since $N(v)\cap V(D_2)\neq\emptyset$ and $m=\Sigma=$ even, $\beta(H_3)=\beta(D_1)+\beta(H_3[V(D_2)\cup\{v\}])=m/2+m/2=m$. If $\Sigma=m+1$, thus m is odd. i.e., $m\geqslant 5$. Using an analogous method as above, we can get $\beta(H_3)\geqslant m$. If $\Sigma\geqslant m+2$ and $m\geqslant 4$, thus $|V(D_1)|+|V(D_2)|=\Sigma+m-1\geqslant 2m+1$. Hence we always have $[|V(D_1)|/2]+[|V(D_2)|/2]\geqslant m$. Note that $\delta(D_1)+\delta(D_2)\geqslant 2(m-2)\geqslant m,\delta(D_1)+[|V(D_2)|/2]\geqslant m-2+[(m-1)/2]\geqslant m$ if $m\geqslant 5$ and $[|V(D_1)|/2]+\delta(D_2)\geqslant [m/2]+m-2\geqslant m$. Therefore, by Lemma 3, $\beta(H_3)\geqslant\beta(D_1)+\beta(D_2)=\sum_{i=1}^2\min\{[|V(D_i)|/2],\delta(D_i)\}\geqslant m$ if $m\geqslant 5$ or m=4 and $|V(D_2)|\geqslant m$. Hence the remaining case is $D_2=K_3$. At this time, we have $\beta(H_3)=\beta(D_1)+\beta(H_3[V(D_2)\cup\{v\}])\geqslant m$. If H_3 is 2-connected and if $\delta(H_3) \geqslant (m+\Sigma)/2$, thus there is a hamilton cycle in H_3 . Hence $\beta(H_3) \geqslant m$. If $\delta(H_3) < (m+\Sigma)/2$, then $m+\Sigma > 2\delta(H_3) \geqslant 2(m-1)$. By Lemma 2, there is a cycle C in H_3 with length $\geqslant 2(m-1)$. If there is a cycle in H_3 with length $\geqslant 2m$, then $\beta(H_3) \geqslant m$. If there is a cycle C in C in C in C is adjacent with C. So C in C if the length of the longest cycle C is C is C is adjacent with C is an independent set of C is a longest cycle in C in C in C in C is an independent set of C is a longest cycle in C in C in C in C is an independent set of C in C in C is an independent set of C in i **Theorem 2** If $\Lambda < \Sigma$, then $$R =: R(K_{1,n_1}, K_{1,n_2}, \cdots, K_{1,n_t}, m_1 K_2, m_2 K_2, \cdots, m_s K_2)$$ $$= \begin{cases} \Lambda + \Sigma + 2 & \text{if } \Sigma \text{ is odd or } \Sigma \text{ is even and all of } n_i \text{ are odd,} \\ \Lambda + \Sigma + 1 & \text{if } \Sigma \text{ is even and at least one of } n_i \text{ is even.} \end{cases}$$ **Proof** (1) Σ is odd or Σ is even and all of n_i are odd. Since Theorem A(i) and (ii), $G = K_{\Sigma+1} \cup K_{\Lambda}$ can be colored by colors $\alpha_1, \alpha_2, \dots, \alpha_t$ such that G does not contain K_{1,n_i} in color α_t $(i = 1, 2, \dots, t)$. And then let $G^c = (X; Y; E)$ be a complete bipartite graph, where $|X| = \Lambda$ and $|Y| = \Sigma + 1$. Let (X_1, X_2, \dots, X_s) be a partition of X with $|X_j| = m_j - 1$ $(j = 1, 2, \dots, s)$. And let the edge of E, which is incident with a vertex in X_j , be colored by colors α_{t+j} $(j = 1, 2, \dots, s)$. Clearly G^c does not contain a subgraph $m_j K_2$ in color α_{t+j} $(j = 1, 2, \dots, s)$. Hence $R \geqslant \Lambda + \Sigma + 2$. Now we prove the reverse inequality. Let $K_{\Lambda+\Sigma+2}$ be colored by colors $\alpha_1, \alpha_2, \dots, \alpha_{t+s}$. If there is no K_{1,n_i} in color α_i $(i=1,2,\dots,t)$. By Theorem 1, there exists a $(\Lambda+1)K_2(\subseteq K_{\Lambda+\Sigma+2})$ such that which edges in colors α_{t+j} $(j=1,2,\dots,s)$. So there is some m_jK_2 $(1 \le j \le s)$ in color α_{t+j} . Hence $R \le \Lambda + \Sigma + 2$. i.e., $R = \Lambda + \Sigma + 2$. (2) Σ is even and at least one of n_i is even. Using an analogous method of (1), we can get $R = \Lambda + \Sigma + 1$. # **Theorem 3** If $\Lambda \geq \Sigma$, and let $m_1 = \max\{m_1, m_2, \dots, m_s\}$, $R =: R(K_{1,n_1}, \dots, K_{1,n_t}, m_1K_2, \dots, m_sK_2)$, we have: - (i) Σ is odd or Σ is even and all of n_i are odd, thus $\max\{m_1 + \Lambda + 1, \Lambda + \Sigma + 2\} \leq R \leq 2(\Lambda + 1)$; - (ii) Σ is even and at least one of n_i is even, then $\max\{m_1 + \Lambda + 1, \Lambda + \Sigma + 1\} \leqslant R \leqslant 2(\Lambda + 1)$. **Proof** When Σ is odd, let $K_{2\Lambda+2}$ be colored by colors $\alpha_1, \alpha_2, \cdots, \alpha_{t+s}$. If there is no K_{1,n_i} in color α_i $(i=1,2,\cdots,t)$. By Theorem 1, there exists a $(\Lambda+1)K_2(\subseteq K_{2\Lambda+2})$ whose edges is colored by color α_{t+j} $(j=1,2,\cdots,s)$. So, there is some m_jK_2 $(1\leqslant j\leqslant s)$ in color α_{t+j} . Hence $R\leqslant 2(\Lambda+1)$. By Theorem B, we have $R\geqslant m_1+\Lambda+1$. Hence in the following, we will prove that $R\geqslant \Lambda+\Sigma+2$. Let $G=K_{\Lambda+\Sigma+1}$ and let $(V_1,V_2,\cdots,V_s,V_{s+1})$ be a partition on V(G) with $|V_i|=m_i-1$ $(i=1,2,\cdots,s)$ and $|V_{s+1}|=\Sigma+1$. G is colored by colors $\alpha_1,\alpha_2,\cdots,\alpha_{t+s}$ as follows: let $\varepsilon=xy\in G$. (1) $x,y\in V_1$, thus e is colored by color α_1 ; (2) $x\in V_i,y\in V_j$ and $i\leqslant j$, thus e is colored by color α_j $(j=2,3,\cdots,s)$; (3) $x\in V_i$ $(i=1,2,\cdots,s)$ and $y\in V_{s+1}$, thus e is colored by color α_i ; (4) by Theorem A(i) $K_{|V_{s+1}|}$ can be colored by colors $\alpha_{s+1},\cdots,\alpha_{s+t}$ such that there is no K_{1,n_i} in color α_{s+i} $(i=1,2,\cdots,t)$. Clearly, G is no m_jK_2 $(j=1,2,\cdots,s)$ in color α_j . Hence $R\geqslant \Lambda+\Sigma+2$. Using an analogous method as above, we can prove the remains part of (i) and (ii). **Theorem 4** If $\Lambda = \Sigma$, and $R =: R(K_{1,n_1}, \dots, K_{1,n_t}, m_1K_2, \dots, m_sK_2), m_j \ge 2$ $(j = 1, 2, \dots, s)$, then $$R = \begin{cases} \Lambda + 2 & \text{if } s = 1 \text{ or } \Sigma \text{ is odd or } \Sigma \text{ is even and all of } n_i \text{ are odd; or} \\ & \text{if } 2|\Sigma \text{ and at least one } n_i \text{ is even and } s = 2 \text{ with } m_1 = m_2 \\ 2\Lambda + 1 & \text{or } s \geqslant 3. \end{cases}$$ **Proof** By Theorem 1, we get $R = 2\Lambda + 2$ if s = 1. By Theorem 3(i), we get $R = 2\Lambda + 2$ if Σ is odd or Σ is even and all of n_i are odd. Now, we consider the case that Σ is even and at least one n_i is even and s=2 with $m_1=m_2$. By Theorem 3, we have $R\leqslant 2\Lambda+2$. On the other hand, let $V(K_{2\Lambda+1})=\{x_1,x_2,\cdots,x_\Lambda,y_1,y_2,\cdots,y_\Lambda,z\}$, $X=\{x_1,x_2,\cdots,x_\Lambda\}$ and $Y=\{y_1,y_2,\cdots,y_\Lambda\}$. Clearly, $G=K_{|X|,|Y|}$ is 1-factorable. (F_1,F_2,\cdots,F_t) is a partition of these Λ 1-factors with $|F_i|=n_i-1$. All of edges in F_i are colored by color α_i ($i=1,2,\cdots,t$), every edges of complete graph on $X\cup\{z\}$ is colored by color α_{t+1} , and every edge of the complete graph on $Y\cup\{z\}$ is colored by color α_{t+2} . Thus there is no K_{1,n_i} in color α_i ($i=1,2,\cdots,t$) on $K_{2\Lambda+1}$, and there is also no m_jK_2 in color α_{t+j} (j=1,2) on $K_{2\Lambda+1}$. Thus $R\geqslant 2\Lambda+2$. Therefore $R=2\Lambda+2$ if Σ is even and s=2 with $m_1=m_2$. In the following, we prove that $R = 2\Lambda + 1$ if Σ is even and at least one n_i is even and $s \geq 3$ or s = 2 with $m_1 \neq m_2$. By Theorem 3, we get $R \geq 2\Lambda + 1$. On the other hand, let $K_{2\Lambda+1}$ be colored by colors $\alpha_1, \alpha_2, \dots, \alpha_{t+s}$. If there is no K_{1,n_i} in color α_i $(i = 1, 2, \dots, t)$, and let H be an edge induced subgraph by all of edges which colored by colors $\alpha_{t+1}, \alpha_{t+2}, \dots, \alpha_{t+s}$, thus $\delta(H) \geq 2\Lambda - \Sigma = \Lambda$. Clearly, H is connected, otherwise at least one component C with $\delta(C) < \Lambda$, a contradiction. If there is a cut vertex v of H, then H-v has exactly two components D_1, D_2 with $H[V(D_1) \cup \{v\}] = H[V(D_2) \cup \{v\}] = K_{\Lambda+1}$. Let C_1, C_2 be Hamilton cycles in D_1, D_2 respectively. For every j, let E_j be the set of edges with color α_{t+j} in $C_1 \cup C_2$. And let $a_j = |E_j|$, the edge induced subgraph $H_j = (C_1 \cup C_2)[E_j]$. Thus we have $\beta_j =: \beta(H_j) \geqslant \{a_j/2\}$. If there is an odd number a_j , then there is another odd number a_k since $C_1 \cup C_2$ has $2\Lambda + 2$ edges. Thus we have $\sum\limits_{j=1}^s \beta_j \geqslant \sum\limits_{j=1}^s \{a_j/2\} \geqslant (\sum\limits_{j=1}^s (a_j/2) + 1) = \Lambda + 1$. So there is some $m_{j_0}K_2$ ($1 \leqslant j_0 \leqslant s$) in color α_{t+j_0} . Hence in the following we always assume that a_j ($1 \leqslant j \leqslant s$) are even. Using an analogous method as above, we can get that every component of H_j ($1 \leqslant j \leqslant s$) has even number of edges. Thus we have $\beta_j \geqslant a_j/2$ for every j ($1 \leqslant j \leqslant s$), and then $\sum\limits_{j=1}^s \beta_j \geqslant \sum\limits_{j=1}^s a_j/2 = \Lambda$. If only one color, say α_{t+1} , appears on $C_1 \cup C_2$, then there is m_1K_2 with color α_{t+1} in H. If only two colors, say α_{t+1} , α_{t+2} , appear on $C_1 \cup C_2$, thus when $s \geqslant 3$ there is m_1K_2 in color α_{t+1} or m_2K_2 in color α_{t+2} since $\beta(C_1 \cup C_2) = \Lambda \geqslant (m_1 - 1) + (m_2 - 1) + 1$. Hence we only need to consider the case that at least three colors appear on $C_1 \cup C_2$. When s = 2, note that $m_1 \neq m_2$. So we can assume that there are at least two colors appear on C_1 . Let v_1 be a common vertex of two monochromatic paths on C_1 . Since v_1v must be colored by one of color α_{t+j} ($1 \leqslant j \leqslant s$), there always exists some $m_{j_0}K_2$ in color α_{t+j_0} ($1 \leqslant j_0 \leqslant s$). If H is 2-connected, by Lemma 2, then H contains a cycle with length $\geqslant 2\Lambda$. If there is a cycle with length $2\Lambda+1$, thus it always contains a monochromatic odd component in this cycle. So it is easy to see that there is a m_jK_2 $(1\leqslant j\leqslant s)$ in color α_{t+j} . If the length of the longest cycle C is 2Λ in H. Let $V(H)-V(C)=\{u\}$. Clearly, since $d_H(u)\geqslant \delta(H)\geqslant \Lambda$, $d_H(u)=\Lambda$. In this case, if there is no m_jK_2 in color α_{t+j} for any $j\in\{1,2,\cdots,s\}$, we can prove as above that every component of H_j in C is even. Let $C=(x_1,x_2,\cdots,x_{2\Lambda},x_1)$, and let $N_H(u)=\{x_1,x_3,\cdots,x_{2\Lambda-1}\}$. Clearly, $V(C)-N_H(u)$ contains all of the common vertices of components of H_j $(1\leqslant j\leqslant s)$. If there is an edge $x_{2i}x_{2j}\in E(H)$ $(1\leqslant i< j\leqslant \Lambda)$, then there is a $(2\Lambda+1)$ -cycle in H, a contradiction. Hence $\{u,x_2,x_4,\cdots,x_{2\Lambda}\}$ is an independent set in H. By Theorem A (iii), there exists a K_{1,n_i} in color α_i $(1\leqslant i\leqslant t)$. Combining all of these cases, we have $R\leqslant 2\Lambda+1$. So $R=2\Lambda+1$ if Σ is even and at least one n_i is even and $s\geqslant 3$ or s=2 with $m_1\neq m_2$. This completes the proof of Theorem 4. #### References - 1 Burr S A, Roberts J A. On Ramsey numbers for stars. Utilitas Math, 1973, 4: 217-220 - 2 Bondy J A, U S R Murty. Graph Theory with Applications. London and Basingstorke: The Macmillan Press Ltd, 1976, - 3 Cockayne E J, Lorimer P J. The Ramsey nember for stripes. J Austral Math Soc Ser A, 1975, 19: 252-256 - 4 Dirac G A. Some theorems on abstract graphs. Proc London Math Soc, 1952, 3(2): 69-81 - 5 Lorimer P. The Ramsey numbers for stripes and one complete graph. J of Graph Theory, 1984, 8: 177-184 - 6 Lorimer P, Solomon W. The Ramsey numbers for stripes and complete graphs 1. Disc Math, 1992, 104: 91-97 # 关于星和条的 Ramsey 数 张克民 (南京大学数学系 南京 210093) 张树生 (固厚中学 宁都 342814) 摘要: 令 $\Sigma = \sum_{i=1}^t (n_i - 1)$ 和 $\Lambda = \sum_{j=1}^s (m_j - 1)$. 该文研究了广义 Ransey 数 $R(K_{1,n_i}, \cdots, K_{1,n_t}, m_1K_2, \cdots, m_sK_2)$. 当 $1 \leqslant \Lambda \leqslant \Sigma$ 时,得到了它们的精确值;当 $\Sigma > \Lambda$ 时,得到了它们的上界 **关键词:** Ramsey 数; 星; 条. MR(2000) 主題分类: 05C55; 05D10 中图分类号: 0157.1 文献标识码: A 文章線号: 1003-3998(2005)07-1067-06