YEUJC: 927 DTD 5 pp. 1–3 (col. fig: NIL)

ARTICLE IN PRESS

Available online at www.sciencedirect.com

European Journal of Combinatorics

European Journal of Combinatorics xx (xxxx) xxx-xxx

www.elsevier.com/locate/ejc

A note on Ramsey numbers with two parameters*

Yi Ru Huang^a, Jian Sheng Yang^a, Ke Min Zhang^b

^aDepartment of Mathematics, Shanghai University, Shanghai 200436, China ^bDepartment of Mathematics, Nanjing University, Nanjing 210008, China

Received 21 July 2004; accepted 9 December 2004

Abstract

The Ramsey number $R(G_1, G_2)$ is the smallest integer p such that for any graph G on p vertices either G contains G_1 or \overline{G} contains G_2 , where \overline{G} denotes the complement of G. In this paper, some new bounds with two parameters for the Ramsey number $R(G_1, G_2)$, under some assumptions, are obtained. Especially, we prove that $R(K_6 - e, K_6) \le 116$ and $R(K_6 - e, K_7) \le 202$, these improve the two upper bounds for the classical Ramsey number in [S.P. Radziszowski, Small Ramsey number, Electron. J. Combin. DS1 (2002) 1–36].

8 © 2005 Published by Elsevier Ltd

MSC: 05C55; 05D10

Keywords: Ramsey numbers; Bound

The Ramsey number $R(G_1, G_2)$ is the smallest integer p such that for any graph G on p vertices either G contains G_1 or \overline{G} contains G_2 , where \overline{G} denotes the complement of G. A graph G with order p is called a $(G_1, G_2; p)$ -graph, if G does not contain G_1 and \overline{G} does not contain G_2 . It is easy to see that $R(G_1, G_2) = p_0 + 1$ iff $p_0 = \max\{p \mid$ there exists a $(G_1, G_2 : p)$ -graph}. The $(G_1, G_2; p)$ -graph is called a $(G_1, G_2; p)$ -Ramsey graph if $p = R(G_1, G_2) - 1$. Let G be a graph with order p, d_i be the degree of vertex i in G, and $\overline{d_i} = p - 1 - d_i$, where $1 \le i \le p$. Assume that G^{p-1} is the subgraph of

This work is supported by Grant 10171062 of the NSF of China. E-mail addresses: yrhuang119@sina.com.cn (Y.R. Huang), yjsyjs@staff.shu.edu.cn (J.S. Yang).

ARTICLE IN PRESS

Y.R. Huang et al. / European Journal of Combinatorics xx (xxxx) xxx-xxx

G with one vertex being deleted from G and G^{p-2} is the subgraph of G with one vertex being deleted from G^{p-1} .

Theorem 1. Let G_1 (resp. G_2) be a graph with order m (resp. n) and $3 \le m \le n$. Assume that $R(G_1^{m-2}, G_2) \le \alpha + 1$, $R(G_1, G_2^{n-2}) \le \beta + 1$, $R(G_1^{m-1}, G_2) \le \gamma + 1$, and 0 < x < 3, $y \ge 2(3-x)\gamma$. Then the following inequalities must hold:

(a) If
$$\frac{9}{4} < x < 3$$
, then

$$R(G_1, G_2) \le 2 + \frac{1}{4x - 9} \left\{ C + \sqrt{C^2 + (4x - 9)D} \right\}.$$
 (a)

2

g

10

11

12

14

15

16

17

18

19

20 21

22

23

(b) If
$$0 < x < \frac{9}{4}$$
, then

$$R(G_1, G_2) \ge 2 + \frac{1}{9 - 4x} \left\{ -C + \sqrt{C^2 + (4x - 9)D} \right\}$$

or

2

$$R(G_1, G_2) \le 2 + \frac{1}{9 - 4x} \left\{ -C - \sqrt{C^2 + (4x - 9)D} \right\}.$$
 (b)

(c) If
$$x = \frac{9}{4}$$
, then

$$R(G_1, G_2) \le F(y) = 2 + \frac{1}{6y - 6\alpha - 3\beta - 9}$$

$$\times \left\{ (y + \beta - \alpha)^2 + 9\gamma y - \frac{27}{4}\gamma^2 \right\}$$
 (c)

where
$$C = 2x + 2x\beta - 3\beta + 3\alpha - 3y$$
 and $D = (y + \beta - \alpha)^2 + 4xy\gamma - 4x(3 - x)\gamma^2$.

Proof. For any $(G_1, G_2; p)$ -Ramsey graph, denote the number of subgraphs K_3 in G (resp. in \overline{G}) by $|K_3|$ (resp. $|\overline{K}_3|$). One has

$$3|K_3| = \sum_{ij \text{ is an edge of } G} |N(i) \bigcap N(j)|.$$

Since any subgraph of G does not contains the subgraph G_1 , $|N(i) \cap N(j)| \le \alpha$ for ij being an edge of G, thus $3|K_3| \le \frac{1}{2}\alpha \sum_{i=1}^p d_i$. Similarly, $3|\overline{K}_3| \le \frac{1}{2}\beta \sum_{i=1}^p \overline{d_i}$. Now by [1], we have:

$$3\binom{p}{3} - \frac{3}{2} \sum_{i=1}^{p} d_i \overline{d_i} = 3|K_3| + 3|\overline{K}_3| \le \frac{1}{2} \left\{ \beta(p-1)p - (\beta - \alpha) \sum_{i=1}^{p} d_i \right\}.$$

It is clear that $d_i \leq \gamma$, and

$$p(p-1)(p-2-\beta) \leq \sum_{i=1}^{p} \{-3d_i^2 + (3p-3-\beta+\alpha)d_i\}$$

$$= \sum_{i=1}^{p} \{-xd_i^2 + (3p-3-\beta+\alpha-y)d_i - (3-x)d_i^2 + yd_i\}$$

$$\leq p\left\{\frac{1}{4x}(3p-3-\beta+\alpha-y)^2 - (3-x)\gamma^2 + y\gamma\right\}.$$
₂₆

Y.R. Huang et al. / European Journal of Combinatorics xx (xxxx) xxx-xxx

Furthermore, we obtain:

$$_{2} \qquad (4x-9)(p-1)^{2}-2C(p-1)-D\leq 0.$$

- Now, (a)–(c) follow from the above inequality.
- **Remark 1.** If $y_0 = \frac{1}{2} \{ 2\alpha + \beta + 3\sqrt{\gamma(4\alpha + 2\beta + 6 3\gamma) + (\beta + 1)^2} \}$, then $\frac{dF}{dx}(y_0) = 0$
- and $\frac{d^2F}{dy^2}F(y_0) > 0$. This implies that $R(G_1, G_2) \leq F(y_0)$, and this is the formula of [3].
- **Corollary 1.** $R(K_6 e, K_6) \le 116$ and $R(K_6 e, K_7) \le 202$.
- **Proof.** Let $G_1 = K_6 e$, $G_2 = K_6$ in the Theorem 1, by [2] we may assume that $(\alpha, \beta, \gamma) = (20, 35, 54)$. Let $x = \frac{10}{4}$, y = 60 (resp. x = 1.5, y = 162), by the
- formula (a) (resp. (b)), we obtain $R(K_6 e, K_6) \le 116$ (from the formula (b) we
- obtain $R(K_6 e, K_6) \le 116$ or $R(K_6 e, K_6) \ge 170$, however from [2] we know 10
- $R(K_6 e, K_6) < 119$, thus $R(K_6 e, K_6) < 116$). 11
- Let $G_1 = K_6 e$, $G_2 = K_7$, and $(\alpha, \beta, \gamma) = (33, 66, 87)$. Assume x = 1.5, y = 300, 12
- by the formula (b), $R(K_6 e, K_7) \le 202$ or $R(K_6 e, K_7) \ge 334$, however we know 13
- $R(K_6 e, K_7) \le 204$, thus $R(K_6 e, K_7) \le 202$. 14
- **Remark 2.** (a) Let $G_1 = K_6 e$, $G_2 = K_6$, from [2], we may assume $(\alpha, \beta, \gamma) =$ 15
- (20, 35, 54). Let $x = \frac{1}{4}$, y = 299.095, now from the formula (b), $R(K_6 e, K_6) \ge 118$ or 16
- $R(K_6 e, K_6) \le 117$, certainly this can not tell us anything, however, from the Corollary 17
- above, the formula (b) of the Theorem 1 is useful for some cases. 18
- (b) The right hand of the formula (a) is a function of degression on the variable 19
- γ , thus if we know the smaller value of γ , we can obtain better the upper bound of 20
- $R(G_1, G_2)$. For example, if we assume that $\gamma = 50$ in (2) of the Corollary above, we 21
- obtain $R(K_6 e, K_6) \le 115$. 22

References 23

- [1] A.W. Goodman, On sets of acquaintances and strangers at any party, Amer. Math. Monthly 66 (1959) 24 778-783. 25
- [2] S.P. Radziszowski, Small Ramsey number, Electron. J. Combin. DS1 (2002) 1–36. 26
- [3] Y.R. Huang, K.M. Zhang, New upper bounds for Ramsey numbers, European J. Combin. 19 (1998) 391–394. 27