A NEW SUFFICIENT CONDITION FOR D-CIRCUITS'

Ye Miaolin
(Dept. of Math., Anging Normal
Institute, Angin 246011, P. R. C.)

Zhang Kemin (Dept. of Math., Nanjing University, Nanjing 210093, P. R. C.)

Abstract A Benhocine et al^[1] proved that G contains a D-circuit if G is a connected, almost bridgeless graph of order $n \ge 3$ and $\deg(u) + \deg(v) \ge \frac{2n+1}{3}$ for every pair of nonadjacent vertices u and v. We generalize this result, and obtain that, if G is a connected, almost bridgeless graph of order n > 3 and $\deg(x) + \deg(y) + \deg(x) > n$ for every triple independent set $\{x, y, z\}$, then G contains a D-circuit.

Key words: bridgeless: circuit. D-circuit.

AMS(1991) subject classifications 05C38.05C45.

1 Introduction

We use [2] for basic terminology and notation. If H is a subgraph of G, the neighborhood of u on H is $N_H(u) = \{v \in V(H) \mid uv \in E(G)\}$, and $N_H(G') = \bigcup_{u \in V(G)} N_H(u)$. Sometimes, we simplify $N(u) = :N_H(u)$, $N(G') = :N_H(G')$. $d_H(u,v)$ denotes the distance of u and v in H. In [4] a circuit was defined as a nontrivial closed trail. C is a circuit if and only if C is a nontrivial connected subgraph such that every vertex of C has even degree in C. A dominating circuit, short say D-circuit, of C is a circuit such that every edge of C is incident with at least one vertex of the circuit. We say C is almost bridgeless, if every bridge of C is incident with a vertex of degree one.

In [1] A. Benhocine, L. Clark, N. Köhler, H. J. Veleman proved the following theroem.

Theorem 1^[1] Let G be a connected, almost bridgeless graph of order $n \ge 3$. If deg (u) $+ \deg(v) \ge (2n+1)/3$ for every pair of nonadjacent vertices u and v, then G contains a D-circuit

In this note, we get that:

[•] 收稿日期:1995-11-15.

The Project Supported by NSFC.

Main Theorem Let G be a connected, almost bridgeless graph of order n>3. If $\deg(u) + \deg(v) + \deg(w) > n$ for every triple independent set $\{u, v, w\}$ of G, then G contains a D-circuit.

It is obviously that the condition of Theorem 1 satisfies the condition of Main Theorem and G (see Fig. 1) is satisfied the later but is not satisfied the former.

Fig. 1

2 Preliminary Lemmas

In order to prove the main theorem, we must establish some lemmas.

Lemma $1^{(1)}$ Let G be a connected graph and C a circuit of G with maximum number vertices. Then G contains no circuit C' satisfying

$$V(C') \cap V(C) \neq \emptyset \neq V(C') \cap (V(G) - V(C))$$
 and $|E(C') \cap E(C)| \leq 1$.

Lemma 2 Let G be a connected graph and C a circuit with maximum number of vertices, K a nontrivial compoinent of G-V(C). If there are $u_1, u_2 \in N_r(K)$ such that for any $u \neq v \in N_r(K)$, $2=d_{C-V(K)}(u_1,u_2) \leq d_{C-V(K)}(u,v)$, then

- 2.1 For any $w \in N_c(u_1) \cap N_c(u_2)$, we have $\{u_1w, wu_2\} \subset E(C)$;
- 2. 2 There is no cycle $C_1 \subseteq C$ such that C_1 contains exactly one of the edges u_1w and u_2w . And $P_0 = u_1wu_2$ is contained in a shortest cycle $C_2 \subseteq C_3$
 - 2.3 In 2.2, let $C_1 = wx_0x_1 \cdots x_rx_{r+1}w(x_0 = u_1, x_{r+1} = u_2)$. then
 - 2.3.1

$$\{x_1w, x_iw\} \cap E(G) = \emptyset$$

$$N(x_1) \cap N(w) \subset \{u_1, x_2\}$$

$$N(x_i) \cap N(w) \subset \{u_2, x_{i-1}\}_1$$

2. 3. 2 For any $v \in V(K)$, we have

$$\{vw, x_1v\} \cap E(G) = \emptyset$$

$$N(x_1) \cap N(v) \subset \{u_1, x_2\}$$

$$N(x_i) \cap N(v) \subset \{u_1, x_{i-1}\}.$$

Proof Let P be an u_1-u_2 path with $\Phi\neq V(P)-\{u_1,u_2\}\subset V(K)$ such that |V(P)| is minimum.

2. 1 If $\{u_1w_1wu_2\}\not\subset E(C)$, let $C'=\{u_1w_1wu_2\}\bigcup P$ then both C' and C contradict Lemma 1.

2. 2 If there is a cycle $C_1 \subset C$, which contains exactly one of edges u_1w and u_2w , and let $C' = C - \{u_1w, u_2w\} + P$, then C' is a circuit with |V(C')| > |V(C)|, a contradiction. since C is a circuit, there is a shortest cycle $C_2 \supset P_0$.

2. 3.1 If $x_1w \in E(G)$, then $x_1w \notin E(C)$ by 2. 2 thus there is $C' = C - \{x_1u_1, wu_2\} + \{x_1w\} + P$ with |V(C')| > |V(C)|, a contradiction. So $x_1w \notin E(G)$. Similarly, $x_2w \notin E(G)$.

Suppose that $w' \in \{u_1, x_2\}$ and $w' \in N(x_1) \cap N(w)$, we have

Case 1 If $w' \in V(C_2) - \{u_1, x_2\}$, then $w'x_1, w'w \notin E(C)$, otherwise contradicting 2. 2. Thus we have $C' = C - \{x_1u_1, wu_2\} + \{x_1w', w'w\} + P$ with |V(C')| > |V(C)|, a contradiction.

Case 2 If $w' \in V(G) - V(C_1)$, by 2. 2, $\{w'x_1, w'w\} \not\subset E(C)$. Thus there exists a circuit C':

$$C' = \begin{cases} C - \{x_1u_1, wu_2\} + \{x_1w', w'w\} + P & \text{if } \{w'x_1, w'w\} \cap E(C) = \Phi \\ C - \{x_1u_1, x_1w', wu_2\} + \{ww'\} + P & \text{if } x_1w' \in E(C), ww' \notin E(C) \\ C - \{x_1u_1, w'w, wu_2\} + \{x_1w'\} + P & \text{if } x_1w' \notin E(C), ww' \in E(C) \end{cases}$$

with |V(C')| > |V(C)|, a contradiction. Similarly, we have $N(x_i) \cap N(w) \subset \{u_i, x_{i-1}\}$.

2.3.2 For any $v \in V(K)$, we have $\{vw, x_1v\} \cap E(G) = \Phi$ by Lemma 1.

If $v' \in N(x_1) \cap N(v) \cap (V(G) - \{u_1, x_2\} \neq \emptyset$, then $v' \notin V(C_1) \cup V(K)$ by Lemma 1. and $x_1v' \in E(C)$ by 2. 1. Let $C' = C - \{u_1x_1, x_1v'\} + P'$, with |V(C')| > |V(C)|, a contradiction, where P' is a $u_1 - v'$ path with $\emptyset \neq (V(P') - \{u_1v'\}) \subset V(K)$. Similarly, we have $N(x_1) \cap N(v) \subset \{u_1, x_{i-1}\}$.

Lemma 3 Let G be a connected graph and C a circuit of with maximum number of vertices, K a nontrivial component of G-V(C). And there are $u_1, u_2 \in N_C(K)$ such that for any $u \neq v \in N_C(K)$, $3 = d_{G-V(K)}(u_1, u_2) \leq d_{G-V(K)}(u, v)$. The shortest $u_1 - u_2$ path in G-V(K) is denoted by $u_1w_2u_3$, then $N(u_1) \cap N(w_2) = \{w_1\}$ or $N(u_1) \cap N(w_1) = \{w_2\}$.

Proof Let P be a u_1-u_2 path with $\emptyset \neq V(P)-\langle u_1,u_2\rangle \subset V(K)$ such that |V(P)| is minimum. If

$$v_1 \in N(u_1) \cap N(w_2) \cap (V(G) - \{w_1\}) \neq \emptyset$$

and

$$v_i \in N(u_i) \cap N(w_i) \cap (V(G) - \{w_i\}) \neq \emptyset$$

then $v_i \neq v_i$, $v_i \notin V(K)$, i=1,2, by the definition of u_i and $w_i \in V(C)$, i=1,2, and Lemma $|\{u_1w_1, w_1w_2, w_2u_i\} \cap E(C)| \geq 2$. In the following, using symbol $ab \pm xy$ to denote

$$ab \pm xy = \begin{cases} ab + xy & \text{if } xy \in E(C) \\ ab - xy & \text{if } xy \in E(C), \end{cases}$$

we divide the proof into three cases.

Case 1 $\{u_1w_1, w_1w_2, w_2u_2\} \subseteq E(C)$.

We have

$$C' = \begin{cases} C + P \pm u_1 v_1 \pm v_1 w_2 - w_2 u_2 & \text{if } \{u_1 v_1, v_1 w_2\} \not\subset E(C) \\ C + P - u_1 w_1 \pm w_1 v_2 \pm v_2 u_2 & \text{if } (w_1 v_2, v_2 u_2) \not\subset E(C) \\ C + P - u_1 w_1 - w_1 w_2 - w_2 u_1 & \text{if } \{u_1 v_1, v_1 w_2\} \bigcup \{w_1 v_2, v_2 u_2\} \subset E(C) \end{cases}$$

with |V(C')| > |V(C)|, a contradiction.

Case 2 $|\{u_1w_1,u_2w_2\} \cap E(C)| = 1.$

Without loss of generality, we assume $u_1w_1 \notin E(C)$, then $\{w_1w_2, w_2u_1, w_1v_2, v_2u_2\} \subset E(C)$ by Lemma 1. Thus we have

$$C' = \begin{cases} C + P + u_1w_1 - w_1w_2 - w_2u_2 & \text{if } \{u_1v_1, v_1w_2\} \subset E(C) \\ C + P \pm u_1v_1 \pm v_1w_2 - w_2u_2 & \text{if } \{u_1v_1, v_1w_2\} \not\subset E(C) \end{cases}$$

with |V(C')| > |V(C)|, a contradiction.

Case 3 $w_1w_2 \in E(C)$.

We have

$$C' = \begin{cases} C + P - u_1 w_1 + w_1 w_2 - w_2 u_1 & \text{if } \{u_1 v_1, v_1 w_2\} \text{ or } \{w_1 v_2, v_2 u_2\} \subset E(C) \\ C + P \pm u_1 v_1 \pm v_1 w_2 + w_1 w_2 \pm w_1 v_2 \pm v_2 u_2 & \text{otherwise} \end{cases}$$
with $|V(C')| > |V(C)|$, a contradiction.

3 The Proof of the Main Theorem

Suppose that G contains no D-circuit, we will find a triple independent set $\{u,v,w\}$ of G such that $\deg(u) + \deg(v) + \deg(w) \leq n$. Obviously, $G \neq K_{1,n-1}$, G contains a circuit. Let G be a circuit of G such that |V(G)| is maximum. Since G is not a D-circuit, G - V(G) has a non-trivial component K. Since G is almost bridgeless, K has at least two neighbors on G. Let $N_*(K) = \{u_1, u_2, \cdots, u_i\}$. By Lemma 1 we have $d_{G - V(E)}(u_i, u_j) \geqslant 2$ $(i \neq j)$. We take $u_1, u_2 \in N_*(K)$ with $d_{G - V(K)}(u_1, u_2) \leq d_{G - V(K)}(u_i, u_j)$ $(i \neq j)$. Now the following three cases must be considered:

Case 1 $d_{G-V(K)}(u_1,u_2) = 2$.

Let P and $\{w, x_0, x_1, \dots, x_{r+1}\}$ as in Lemma 2, $v_1 \in N_P(u_1)$, $v'_1 \in N_R(v_1)$. By Lemma 1 and 2, we have $v'_1w \notin E(G)$, $v'_1x_1 \notin E(G)$ and $x_1w \notin E(G)$. Thus there is a triple independent set $\{v'_1, x_1, w\}$. First, we have

$$N(v_1) \cap N(w) \subset \{u_1\} \tag{1}$$

In fact, w has no neighbors in V(K) and v'_1 no neighbors in $V(G) - (V(K) \bigcup V(C))$. If $w' \in V(C)$ with $u_1 \neq w' \in N(v'_1) \cap N(w)$, we have

$$C' = \begin{cases} C - u_1 w + \{u_1 v_1, v_1 v'_1, v'_1 w', ww'\} & \text{if } ww' \in E(C) \\ C - \{u_1 w, ww'\} + \{u_1 v_1, v_1 v'_1, v'_1 w'\} & \text{if } ww' \in E(C) \end{cases}$$

with |V(C')| > |V(C)|, a contradiction. (1) follows. And then, by Lemma 2 and $v'_1 u_1 \in E(G)$, we have

$$N(x_1) \cap N(w) \subset \{x_2, u_1\} \tag{2}$$

$$N(v_1) \cap N(x_1) \subset \{x_2\} \tag{3}$$

1996年5月

From (1), (2) and (3), we obtain

$$\deg(v'_1) + \deg(x_1) + \deg(w) \leqslant n - 3 + 4 = n + 1.$$

If $\deg(v'_1) + \deg(x_1) + \deg(w) = n+1$, then all equalities of (1), (2) and (3) hold and $P = u_1v_1v'_1u_2$.

Case 1.1 $x_2 + u_2$. $x_2 w \notin E(C)$ by Lemma 2. Thus there is a $C' = u_1 v_1 v'_1 x_2 w u_{11}$ ich contradicts Lemma 1.

Case 1. 2 $x_2 \cdots$ In this case,

$$\deg(v'_1) + \deg(x_1) + \deg(w) \leqslant n - 5 + 5 = n.$$

Thus, in case 1. we always have $\deg(v_1) + \deg(x_1) + \deg(w) \le n$.

Case 2. $d_{G-Y(K)}(u_1,u_1)=3$.

Let P be a shortest u_1-u_2 path with $\emptyset \neq V(P)-\{u_1,u_2\}\subset V(K)$, $v_1\in N_P(u_1)$.

Case 2.1 There exist $v'_1 \in N_K(v_1)$ and $v'_1 \notin V(P)$ or $v'_1 \in N_K(v_1)$, $v'_1 \in V(P)$ and $|V(P)| \ge 5$. In this case, $\{v'_1, u_1, u_2\}$ is a triple independent set, and $N(v'_1) \cap N(u_1) = \{v_1\}$, $N(v'_1) \cap N(u_2) \subset \{v_2\} = N_K(u_2)$ and $N(u_1) \cap N(u_2) \subset V(K)$; ith $|N(u_1) \cap N(u_2)| \le 1$. Then

$$\deg(v'_1) + \deg(u_1) + \deg(u_2) \leqslant n - 3 + 3 = n.$$

By the symmetry of u_1 and u_2 , the remains is that:

Case 2. 2 $K=K_1=v_1v_1'$ and $P=u_1v_1v_1'u_2$. Let $u_1w_1w_2u_1$ be a shortest u_1-u_2 path in G-V(K), by Lemma 3, we have

$$N(u_1) \cap N(w_1) = \{w_1\} \tag{4}$$

or

$$N(u_t) \cap N(w_t) = \{w_t\} \tag{5}$$

without loss of generality, we assume that (4) holds. Thus there is a triple independent set $\{v'_1, u_1, w_2\}$. Furthermore, we have

$$N(v_1) \cap N(u_1) = \{v_1\}$$
 (6)

$$N(w_t) \cap N(v_1') = \{u_t\} \tag{7}$$

In fact, $N(v'_1) \subset V(K) \cup V(C)$, $N(u_1) \cap (V(K) - \{v_1\}) = \emptyset$. If $x \in N(v'_1) \cap N(u_1)$, $x \neq v_1$, then $x \in N_C(K)$, This contradicts $d_{C-V(K)}(u_1, u_2) = 3$ Similarly, we can get (7). From (4), (6) and (7), we have

$$\deg(v_1) + \deg(u_1) + \deg(w_2) \leqslant n - 3 + 3 = n.$$

Case 3 $d_{G-V(K)}(u_1,u_1) \ge 4$.

Suppose the shortest u_1-u_2 path in G-V(K) is $P_1=u_1w_1w_2\cdots u_2$. P is defined as case 1.

Case . 1 $P=u_1v_1u_1$. In is case, $\{v'_1,u_1,u_1\}$ is a triple independ at set, where $v'_1 \in K$ with $v_1v'_1 \in E(G)$. And $N(u_1) \cap N(v'_1) = N(u_2) \cap N(v'_1) = \{v_1\}$, $N(u_1) \cap N(u_2) = \{v_1\}$. Thus we have:

$$\deg(v'_1) + \deg(u_1) + \deg(u_2) \le n - 3 + 3 = n.$$

 $P = u_1 v_1 v_2 \cdots u_2$. In this case, $\{v_1, w_1, u_2\}$ is a triple independent set, and by $d_{C-V(K)}(u_1,u_2)\geqslant 4$, we have $N(w_1)\cap N(u_2)=\emptyset$, $N(v_1)\cap N(w_1)=\{u_1\}$, $N(v_1)\cap N(u_2)\subset$ $\{v_2\}$. Thus we get:

$$\deg(u_1) + \deg(w_1) + \deg(u_2) \leqslant n - 3 + 2 = n - 1,$$

Up to now, we exhaust all cases. They always contradict the hypothesis of Main Theorem. Therefore the proof is completed.

From a result of Harary and Nash-William^[3], A line graph L(G) of a graph G is Hamiltonian if and only if G contains a D-circuit or $G=K_{1,s}$ ($s \ge 3$). So we have

Corollary A connected, almost bridgeless graph G of order $n \ge 3$. If $\deg(u) + \deg(z) + \deg(z) = 1$ $\deg(w) > n$ for every triple independent set $\{u, v, w\}$ of G, then L(G) is Hamiltonian.

References

- 1 Benhocine, A., Clark, L., Köhler, N. and Veldman, H. J., On circuits and pancyclic line graph, J. Graph Theory 10(1986), 411-425.
- 2 Harary. F., Graph Theory, Addison-Wesley Reading, Mass, (1969).
- 3 Harary, F, and Nash-Williams, C. St. J. A. On culerian and hamiltonian graphs and line graphs, Canad. Math. Bull 8(1965) 701-710.
- 4 Veldman. H. J. Existence of spanning and dominating trails and circuits. J. Graph Theory 10(1986) 23 - 31.

关于 D-闭迹的一个新充分条件

0157.5

叶森林

(安庆师范学院数学系,安庆 246011)

(南京大学数学系,南京 210093)

要 A. Benhocine 等人证明了当 G 为几乎无桥的阶≥3 的连通图且对任意不相邻 的两点u,v有 $deg(u)+deg(v) \ge (2n+1)/3$ 时,有 D-闭迹存在. 我们推广了这一结果,并得 到:若G为走通的几乎无桥的阶 n > 3的图且对任意三点独立集 $\{x,y,z\}$ 有 $\deg(x) + \deg(y)$ $+\deg(z)>n, 则 G 含 D-闭迹.$

关键词 无桥、闭迹、D—闭迹。 分类号 O157.5

连通图 元分新