A SUFFICIENT CONDITION FOLAGRAPH TO BE HAMILTONIAN

Song ZengMin (Southeast University)

Zhang Kemin (Nanjing University)

Hamilton 图的一个充分条件

宋增民 (东南大学)

张克民(南京大学)

摘 要

设 G 是 $n(\ge 3)$ 阶的 2-连通无向图.若对任意的 $u,v\in V(G)$ 且 d(u,v)=2均满足条件 $\max\{d(u),d(v)\}\ge \frac{n}{2}$ 或 $|N(u)\bigcup N(v)|\ge \frac{2}{3}(n-1)$,则 G 是 hamiltonian.在类似的条件下,也讨论了图的 hamilton—connected 性质,得到了相应的结果.

Abstract

In this paper we prove that a 2-connected graph G of order $n \ge 3$ is hamiltonian if for all distinct vertices u and v, d(u,v) = 2 implies that $\max\{d(u),d(v)\} \ge n+2$ or $|N(u)| \bigcup |N(v)| \ge (2n-2)/3$. We also demonstrate hamilton-connected property in graphs under similar conditions.

Introduction

This paper uses terms and notations of [2]. Throughout this paper G denotes an undirected 2-connected simple graph of order $n(\ge 3)$ with connectivity k and

^{* 1991}年3月18日收到初稿,1992年4月22日收到修改稿;国家自然科学基金资助项目:The project supported by NSFC.

independence number α . Let L be a subset of V(G), F a subgraph of G and V a vertex in G. Define $N_L(\nu) = \{u \in L | u \nu \in E(G)\}$, $N_L(F) = \bigcup_{v \in V(F)} N_L(\nu)$. Specifically, if L = V(G), we simple write them as $N(\nu)$ and N(F). If no ambiguity can arise we sometimes write F instead of V(F).

The following results are the inspiration for the work in this paper.

Theorem A^[3] Let G be a 2-connected graph on n vertices. If for all distinct vertices u, v, d(u, v) = 2 implies that $\max\{d(u), d(v)\} \ge n/2$, then G is hamiltonian.

Theorem B^[4] Let G be a 2-connected graph of order n. If for all distinct vertices u, v, d(u, v) = 2 implies that $|N(u)| |N(v)| \ge (2n - 1)/3$, then G is hamiltonian.

In this paper, we shall prove a stronger result. Theorem A and B are corollaries of our result.

Main results

Theorem 1 Let G be a 2-connected graph of order $n \ge 3$. If for all distinct vertices u, v, d(u, v) = 2 implies that $\max\{d(u), d(v)\} \ge n/2$ or $|N(u) \bigcup N(v)| \ge (2n-2)/3$, then G is hamiltonian.

Proof It is trivial for $n \le 4$, so we assume that $n \ge 5$. Let $A = \{u \in V(G) \mid d(u) \ge n/2\}$, $E' = \{xy \mid x, y \in A, xy \notin E(G)\}$ and H = G + E'. Then H[A] is complete and there exists a cycle containing A in H. By Bondy and Chvatal's Closure Theorem^[1], G is hamiltonian if and only if H is hamiltonian. Thus, we only need to prove that H is hamiltonian. Let $C = v_1 v_2 \cdots v_i v_1$ (simply, $12 \cdots t1$) be a longest cycle containing A in H. If H is not hamiltonian, let B be any component of $H \setminus V(C)$. Let $N_C(B) = \{i_1, i_2, \cdots, i_m\}$, $N^- = \{i_1 - 1, i_2 - 1, \cdots, i_m - 1\}$ and $N^+ = \{i_1 + 1, i_2 + 1, \cdots, i_m + 1\}$ where $i_1 < i_2 < \cdots i_m$, and where and later on $i \pm j$ is taken modulo t. Since $\chi(H) \ge \chi(G) = k$, we have

Assertion 1. $m \ge k \ge 2$

Let x_i be some vertex in B which is adjacent to i_j , It is possible that $x_i = x_j$ for $x \neq j$.

Assertion 2. For any j with $1 \le j \le m$, $d_H(x_j, i_j \pm 1) = 2$, and if $d_H(i_j \pm 1) < n/2$, then $d_G(x_j, i_j \pm 1) = 2$.

Assertion 3. For any j with $1 \le j \le m$, we have

(1)
$$d(i_j-1) \leq n - |N(i_{j+1}-1) \bigcup N(x_{j+1})| - \varepsilon$$
,

(2)
$$d(i_{j+1}) \leq n - |N(i_{j-1} + 1) \bigcup N(x_{j-1})| - \varepsilon$$
,

where $\varepsilon = 0$, if $(i_j - 1)(i_j + 1) \in E(H)$, and $\varepsilon = 1$, if $(i_j - 1)(i_j + 1) \notin E(H)$. Let $u \in N(i_{j+1} - 1) \bigcup N(x_{j+1})$. A bijection f is defined by:

$$f(u) = \begin{cases} u & \text{if } u \notin V(C). \\ i-1 & \text{if } u = i \in V(C) \text{ and } i_{j+1} \le i \le i_j - 1, \\ i+1 & \text{if } u = i \in V(C) \text{ and } i_j + 1 \le i < i_{j+1} - 2, \\ i_j - 1 & \text{if } u = i_j \in V(C), \\ x_{j+1} & \text{if } u = i_{j+1} - 2 \in V(C) \text{ and } i_{j+1} - 2 \ne i_j. \end{cases}$$

Since C is a longest cycle in H, it is easy to check that $N(i_j-1) \bigcap f(N(i_{j+1}-1) \bigcup N(x_{j+1})) = \emptyset$ (For example, see [4]). So $d(i_j-1) \le n - |N(i_{j+1}-1) \bigcup N(x_{j+1})|$. And note that when $(i_j-1)(i_j+1) \notin E(H)$, $x_{j+1} \notin f(N(i_{j+1}-1) \bigcup N(x_{j+1}))$ if $i_{j+1}-2 = i_j$ and $i_j+1 \notin f(N(i_{j+1}-1) \bigcup N(x_{j+1}))$ if $i_{j+1}-2 > i_j$. Hence (1) is true. Similarly, (2) is true too.

Assertion 4. For any $u, v \in N^+$ or $u, v \in N^-, d(u) + d(v) < n$.

Let u=i, v=j(i< j) and $i,j\in N^-$. At most one of $\{ik,(k-1)j\}$ belongs to E(H), if i< k< j. So does $\{ik,(k+1)j\}$, if j< k< i. So $d_c(i)+d_c(j)\leqslant |C|$. On the other hand $N(i)\bigcap N(j)\subseteq V(C)$. Hence d(i)+d(j)=d(u)+d(v)< n. Similarly, we have that d(u)+d(v)< n for any $u,v\in N^+$.

Assertion 5. For any $u \in N^- \bigcup N^+, d(u) < n/2$.

If not, there is $u \in N^- \bigcup N^+$ such that $d(u) \ge n/2$, without loss of generality, we assume that $d(i_1 - 1) \ge n/2$. By assertion 4 for any $2 \le j \le m$, $d(i_j - 1) < n/2$. Hence, by assertion 2, $d_G(i_j - 1, x_j) = 2$. And then by the hypothesis of Theorem and assertion 1, $|N(i_2 - 1) \bigcup N(x_2)| \ge (2n - 2)/3$. Hence by assertion 3, $d(i_1 - 1) \le (n + 2)/3 < n/2$, a contradiction.

By assertions 1,2,5 and the hypothesis of Theorem, we have:

Assertion 6. For any j with $1 \le j \le m$, $|N(i_j \pm 1) \bigcup N(x_j)| \ge (2n-2)/3$.

If there exists an integer j, $1 \le j \le m$, with $(i_j - 1)(i_j + 1) \notin E(H)$, then $d_G((i_j - 1)(i_j + 1)) = 2$ and, by assertions 3, 6, $d(i_j - 1) \le (n - 1)/3$, $d(i_j + 1) \le (n - 1)/3$. This contradicts the hypothesis of the Theorem. Therefore,

Assertion 7. $(i_j - 1)(i_j + 1) \in E(H)$ $(1 \le j \le m)$.

There exists a vertex h, $i_2 + 1 \le h \le i_3 - 1$ if $m \ge 3$ or $i_2 + 1 \le h \le i_1 - 1$ if m = 2 such that $h(i_2 - 1) \notin E(H)$, $i(i_2 - 1) \in E(H)$ for all $i_2 \le i \le h - 1$. This is true since $(i_2 - 1)(i_3 - 1) \notin E(H)$. or a cycle longer than C exists. Assertion 7 implies that $h \ge i_2 + 2$. Let $u \in N(i_1 + 1) \bigcup N(x_1)$. It is easy to prove that $u \notin \{i_2 + 1, i_2 + 2, \dots, h\}$. A bijection g is defined by:

$$g(u) = \begin{cases} u & \text{if } u \notin V(C), \\ i-1 & \text{if } u = i \in V(C) \text{ and } i_1 + 3 \le i \le i_2, \\ i+1 & \text{if } u = i \in V(C) \text{ and } h+1 \le i < i_1, \\ h & \text{if } u = i_1 + 2, \end{cases}$$

since C is a longest cycle in H, $g(N(i_1 + 1) \bigcup N(x_1)) \cap N(h) = \emptyset$. Note that $x_1 \notin g(N(i_1 + 1) \bigcup N(x_1)) \bigcup N(h)$. Thus by assertions 6, 7 and the hypothesis of Theorem, $d(h) \le n - 2 - |N(i_1 + 1) \bigcup N(x_1)| \le (n - 4)/3$, if $i_2 h \notin E(H)$; $d(h) \le n - 1 - |N(i_1 + 1) \bigcup N(x_1)| \le (n - 1)/3$ and $|N(i_2 - 1) \cap N(h)| \ge 2$, if $i_2 h \in E(H)$. On the other hand, by assertion 3, $d(i_2 - 1) \le (n + 2)/3$. Hence we have: (a) $\max \{d(i_2 - 1), d(h)\} \le n/2$; (b) $|N(i_2 - 1) \bigcup N(h)| \le (n - 4)/3 + (n + 2)/3 - 1 = (2n - 5)/3$ if $i_2 h \in E(H)$; or $|N(i_2 - 1) \bigcup N(h)| \le (n - 1)/3 + (n + 2)/3 - 2 = (2n - 5)/3$ if $i_2 h \in E(H)$. This is contrary to the hypothesis of Theorem.

Consider the graph G_0 , which consists of three copies of K_r graphs G_1, G_2, G_3 and the set edges $\{x_1x_2, x_2x_3, x_3x_1, y_1y_2, y_2y_3, y_3y_1\}$, where $x_i, y_i \in V(G_i)$ for any $i, 1 \le i \le 3$. If $r \ge 3$, then it is easy to check that for any $u, v \in V(G_0)$ with d(u, v) = 2, $\max\{d(u), d(v)\} < n/2$, $|N(u) \bigcup N(v)| \ge (2n-3)/3$ and G_0 is nonhamiltonian. So the conditions of Theorem 1 is the best possible in a sense.

We now consider hamilton-connected property. The graph G being 3-connected must be necessary, since there does not exist any u-v hamiltonian path for any vertex cut $\{u,v\}$ in G.

Theorem 2 Let G be a 3-connected graph of order $n(\ge 3)$, and let u and v be distinct vertices of G. If d(u,v) = 2 implies that $\max\{d(u),d(v)\} \ge (n+1)/2$ or $|N(u)| |N(v)| \ge 2n/3$, then G is hamilton-connected.

Proof It is trivial for $n \le 4$. So we assume that $n \ge 5$. Let $A = \{u \in V(G) | d(u) \ge (n + 1)/2\}$, $E' = \{xy|x,y \in A,xy \notin E(G)\}$ and H = G + E'. Then H[A] is complete. It is easy to prove that there exists a u - v path containing A for any $u,v \in V(G)$ in H. By Bondy and Chvatal's Closure Theorem^[1], G is hamilton-connected if and only if H is hamilton-connected. Thus, we only need to prove that H is hamilton-connected. Suppose that H is not hamilton-connected. Then there exists a pair of vertices u and v such that no hamiltonian u-v path exists in H. Consider a longest u-v path P containing A, denoted $P=v_1v_2\cdots v_r$ (simply, $1 \ge \cdots t$) in H, where $v=u,v_r=v$. let B be any component of $H \setminus V(P)$. Let $N_p(B)=\{i_1,i_2,\cdots,i_m\}, N^{-1}=\{i_1,\ldots,i_m-1\}$ and $N^+=\{i_1+1,i_2+1,\cdots,i_m+1\}$, where $i_1 < i_2 < \cdots < i_m$. We can use an analogous arguments of Theorem 1 and have several assertions as follows:

Assertion 1. $m \ge k \ge 3$.

Let x_j be some vertex in B which is adjacent to i_j . It is possible that $x_i = x_j$ for $i \neq j$.

Assertion 2. For any j with $1 \le j \le m$, $d_H(x_j, i_j \pm 1) = 2$, and if $d_H(i_j \pm 1) \le n/2$, then $d_G(x_j, i_j \pm 1) = 2$.

Assertion 3. For any j with $1 \le j \le m$, we have

- (1) $d(i_j-1) \le n+1-|N(i_{j+1}-1)\bigcup N(x_{j+1})|-\epsilon$, where $i_{j+1}=i_2$ when j=m and $i_1=1$; and $i_{j+1}=i_1$ when j=m and $i_1>1$;
- (2) $d(i_j + 1) \le n + 1 |N(i_{j-1} + 1) \bigcup N(x_{j-1})| \varepsilon$, where $i_{j-1} = i_{m-1}$ when j = 1 and $i_m = t$ and $i_{j-1} = i_m$ when j = 1 and $i_m < t$, where $\varepsilon = 1$ for $2 \le j \le m-1$ and $(i_j 1)(i_j + 1) \notin E(H)$, and $\varepsilon = 0$ for other cases,

Assertion 4. For any $u, v \in N^+$ or $u, v \in N^-, d(u) + d(v) \le n$.

Assertion 5. For any $u \in N^{-1}(N^+, d(u) \le n/2$.

Assertion 6. For any j with $1 \le j \le m$, $|N(i + 1) \bigcup N(x)| \ge 2n/3$, if $i + 1 \in P$.

Assertion 7. For any j with $2 \le j \le m-1$, $(i_j-1)(i_j+1) \in E(H)$.

Thus using assertions 1-7, we can obtain a contradiction by a similar argument of Theorem 1.

Consider 3-connected graph $G = 3K_{\nu} \vee K_{3}$, which is no hamilton-connected. It is easy to check that for all distinct vertices u and v of G with d(u,v) = 2 implies that $\max\{d(u),d(v)\} < (n+1)/2$ and $|N(u) \bigcup N(v)| = 2n/3 - 1$. So, the conditions of Theorem 2 is best possible in a sence.

Corollary 2.1^[3] Let G be a 3-connected graph of order $n(\ge 3)$ and let u and v be distinct vertices of G. If d(u,v)=2 implies that $\max\{d(u),d(v)\}\ge (n+1)/2$, then G is hamilton-connected.

Corollary 2.2^[4] Let G be a 3-connected graph of order $n(\ge 3)$, and let u and v be distinct vertices of G. If d(u,v) = 2 implies that $|N(u)| |N(v)| \ge 2n/3$, then G is hamilton-connected.

References

- 1 J. A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15(1976), 111-135.
- 2 J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. Macmillan, London, 1976.
- 3 Geng-Hua Fan, New sufficient conditions for cycles in graphs, J. Combin, Theory B 37(1984), 221-237.
- 4 T. E. Lindquester, The effects of distance and neighborhood union conditions on hamiltonian properties in graphs, J Graph Theory 13(1989), 335-352.