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Abstract
In this paper we prove that a ?~connected graph G of order n 2> 2 is hamiltonian if
tor ail disunct vertices w and v . Z(w.v} =2 implies that maxidlu).dv)rz 2
r NGi N2 (2n - 2373 We aiso demanswtrate hamilton—connected preperty in
graphs under simiiar conditions.

_ Iatroduction

This paper uses terms and unotations of [2). Throughout this paper G denotes an

undirected Z—connected simple graph of order a( = 3) with connectivity & and

« 19914E3 A 18 H W8 71 78,1992F4 A 22 A i SIS oR; B  15 MB35 & B 4178 B :The project sup-
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'm‘dependepce‘ number «. Let L be a subset of V(G), F a subgraph of G and V a

vertex in G. Define N (v)= {ueL|luveE(G)}, N, (F)= U N, (v). Specifically, if L

reVN)
= V(G), we simple write them as N(v) and N(F). If no ambiguity can arise we some-
umes write F instead of V(F).

The following results are the inspiration for the work in this paper.

Theorem A® Let G be a 2—connected graph on n vertices. If for all distinct vertices
u,v, d(u,v) =2 implies that max{d(u),d(v)} > n/ 2, then G is hamiltonian.

Theorem B¥ Let G be a 2—connected graph of order a. If for all distinct vertices
u,v, d(u,v) = 2 implies that lN(u)UN(v)I 2 (2n—-1)/ 3, then G is hamiltonian.

In this paper, we shall prove a stronger result. Theorem A and B are corollaries of our
result.

Main results

Theorem 1 Let G be a 2—-connected graph of order n=3. If for all distinct vertices'
u,v, d(u,v)=2 implies that max{du),d(¥)}=n/2o0or [NWJNWI=(2n-2)/3
. then G is hamiltonian.

Proof It is trivial for n<4, so we assumethat n=5. Let 4 = {ue V(G)|d(u)
=2>n/2LE ={xylx,yeA,xy¢E(G)} and H =G + E’. Then H[A] is complete and there
exists a cycle containing A4 in H. By Bondy and Chvatal’s Closure Theorem!'!, G is
hamiltonian if and only if H is hamiitonian. Thus, we only need to prove that H is
hamiltonian. Let C=v v v v (simply, 12--- 1) be a longest cycle containing

1 2
A in H.If H is not hamiltonian, let B be any component of H\V(C). LetN . ( B)

={i iy b N o={i, = Vi, —1eei ~1}and N* =i + Li,+ 1emi + 1}
wherei < i <--i_, and where and lateron it/ istaken modulo ¢. Since y(H) = x(G)
=k, we have

Assertionl.m2 k22

Let x, be some vertex in B which is adjacent to i, Ttis possible that x =x for
X # ]

Assertion 2. For any ; with 1<j<m, dH(x],i;.i—l)=2, and if du(i, +1)
<n/?2, then dG(xi,ii +1)=2.

Assertion 3. Forany j with 1 <j<m, wehave
() dG,-D<n=ING,,, ~DUNx,, )~

(2) d(i, +1)<a—ING,_, +DUNK, _)I-e

+1

wheree=0,if (i,— 1)(i, + NeE(H), and e=1, if (i ~1)(i + ¢E(H),
Let ueN(i,, — DUN(x,, ). Abijection f is defined by:
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u if u¢V(C). g
i—1 if u=ieV(C) and ii+l$isii—l,

flu) = i+ 1 if u=ieV(C) and ii+‘<i<ii+|—2’
il.—l if u=ie V(C),
inH if u =i,-+1 —2eV(C) and Lo —2#:’/.

Since Cis a longest cycle in H, it is easy to check that N(i — l)ﬂﬂN(ii+l
— UUN(",-H)) =@ (For example, see (4]). So d(i —1)<n— NG, — l)UN(xI_H)I.
And note that when (i, — (i, + D¢E(H), x, ¢fING , ~DUNK,  Dif i -2
=i, and i +1¢fING,,, — I)UN(xI,”)) if i,,, —2>1i, Hence (1) is true. Similarly,
(2) is true too.

Assertion 4. Forany u,veN ' or u,veN  ,d(u) + d(v) < n.

Let u=iyv=j(i<j) and i,je N . At most one of {ik,(k — 1)j} belongsto E(H),
if i<k<j. So does {ik,(k+ 1)}, if j<k<i. So d ())+d_ () <|C). On the other
hand N(i){( YN(j) € V(C). Hence d(i) + d(j) = d(u) + d(v) < n. Similarly, we have that
d(u) + d(v) < n forany uyveN t

Assertion 5. Forany ueN N ", du)<n/2.

If not, there is ueN ~(JN " such that d(u) > n/ 2, without loss of generality, we
assume that d(i | — 1) 2 n/ 2. By assertion 4 for any 2< i< m, d(il, —~1)<n/2. Hence,
by assertion 2, d c(i; - l,x’,) = 2. And then by the hypothesis of Theorem and assertion 1,
INGi, — DUUN(x ) > (2n—2)/3. Hence by assertion 3, d(i, —1)<(n+2)/3<n/2, a
contradiction.

By assertions 1,2,5 and the hypothesis of Theorem, we have: e

Assertion 6. Forany j with 1<j<m, NG * l)UN(xi)I >(2n-2)/3.

If there exists an integer j, 1 <j<g m, with (ii - l)(il_ + 1)¢ E(H), then dG((iI_ -1
(i’_ + 1)) =2 and, by assertions 3, 6, d(il_ —-1<(h-1)/3, d(il_ +1)<(n-1)/3. this
implies that IN(i — I)UN(i, +DI<2An—=1)/3—1=(2n-5)/3. This contradicts the
hypothesis of the Theorem. Therefore,

Assertion 7. (ij — l)(il_ + DeEH) (1€j<sm).

There exists a vertex h, i,+ l<sh<i ~1 if m>23 or i2+lsh<i‘ —1ifm=2
such that A(i, — 1)¢E(H), i(i: — 1)e E(H) for all i <i<h—1. This is true since
(i2 - 1)(i] — 1)¢ E(H). or a cycle longer than C exists. Assertion 7 implies that h > | .
+2. Let ueN(, + I)UN(xl). It is easy to prove that u¢{i, + Li, + 2k} A
bijection g is defined by:



<166 - HR K F MY FR 1992 £

i—1if u=ieV(C) and i1+3<i<i
i+1if u=ieV(C) and h+1<i<i
h if u=i1+2,

[u if ugV(C),
i

since C is a longest rycle in A, g(N(i, + DN D IN(h) =@ . Note that x,
ég(N(il + l)UN(x J)UN’h) Thus by assertions 6, 7 and the hypothesis of Theorem,
dh) <n--2— NG + x)UN(:c‘)I\(n ~4)/ 3, i hEE(A); dlh)ysa—-1-— N
+DUNx)I<{n-1/3 and ING, — BN 22, if i he E(H). On the other hand.
by assertion 3, d(i2 ~ U (n+2y/3 Hencewe izover{a; max{d{i , — 1 Y.di{k}
<n/2 (b) ING, ~ DUNBMIS(r~873 (2 +2)/3-1={2n—=5/73 if 'Zh
¢E(H); or iN(i, — DUNAISn— 1D /3 v i+ D)/ 3 =2=0n—35)/3 if ( he E{H)
This is contrary to the hypothesis of Theorem:.

Consider the graph Go, which consisie of three copies of K graphs G, .G,0G,
andthesetedges {x X, X x x 0y, v, 00 y,»,}, where x .y eV(G ) forany
i 1 <3.If r 23, then it is easy to check that for any wu,veV(G ) with d(u,v) =2,
max{d(u) d(v)} <n/2, INWUNGI 2{(2n~3)/3 and , is nonhamiltonian. So the
conditions of Theorem 1 is the best possible in a sense.

We now consider hamilton—connected property. The zraph G being 3—connected
must be necessary, since there does not exist any u—v hamiltonian path for any vertex cut
{u,v} in G.

Theorem 2 LetG be a 3—connected graph of order »( = 3), and let u and v be dis-
tinct vertices of G. If d(u,v) =2 implies that max{du),d(w)} 2{(n+1)/2 or
IN(u)\UN(¥)| = 2n/ 3, then G is hamiiton—connected.

Proof Itis trivial for n < 4. So weassume that #25. Let 4 = {ue V{G)id{u) = (n
+1)/2}, E'='xyix yed xy¢E(G)} and H =G + E'. Then H[A] is complete. Tt s
gasy to prove that thers exists 83 wu — v wnh contaiming 4 forany w,»ed (&) n H. By
Bondy and Chvatal’s Closure Theorem!'!!| G is hamilton—connected if and cniy i H s
hamilton—connected. Thus, we only need o prove that A is hamilton—connecied. Sup-
pose that H is not hamilton—connecied. Then there existz a pair of veruces wu and

v such that no hamiltonian w—v path exists in H. Consider a1 longest

u—v path P containing A, denoted P =v v v (sumply, 12 == t)in H, where v

1 2
=u,y =v. let B beanycomponentcf H™ V(P). Let ¥ (B)= {i Jigyemd LN =

m i

. + i. - . . N .
=L, = L~ 1} and N ={i +hi, +1leed +1}, where i <i, <--<i . We

m 4 L.

can use an analogous arguments of Theorem 1 and have several assertions as follows:
Assertion . m2 k> 3.
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Let x, be some vertex in B which is adjacent to i},. It is possible that x =x for
i # ]

Assertion 2. Forany j with 1 €< m, d”(xi,x”_ + 1)==_2‘, and if d”(ii t)<n/2,
then dc(x,_,ii +1)=2.

Assertion 3. Forany j with 1<j<m, we have

(1) di, ~D<n+1~ING,, - l)UN(xm)I—c, where i =i, when j=m
and il=l; and ={ when j=m and i,>1

i+l H
(2) di, +D<n+ 1 (NG, _ + l)UN(x',_‘)I—s, where i _ =i__  when
j=1and i =1« and i,_l =i_ when j=1 and i <t, where ¢=] for 2L ji€m—1

and (i/ - l)(ii + 1)¢ E(H), and ¢=0 for other cases,
Assertion 4. Forany u,veN ' or u,veN ,d(u)+ d(v) € n.
Assertion 5. Forany ueN (N ,du)sn/2.
Assertion 6. Forany j with 1</j<m, IN(i + I)UN(xl)j >2n/3,if i +1eP.
Assertion 7. Forany j with 2<j<m -1, (i/, - 1)(ii + De E(H).
Thus using assertions 1—7, we can obtain a contradiction by a similar argument of
Theorem 1.

Consider 3—connected graph G = 3K’\/ K, which is ne hamilton—connec;gd. It is
easy to check that for all distinct vertices ¥ and v of G with d(u,v)=2 implies that
max{d(u),d(»)} < (n+1)/2 and Nw)JN()|=2n/3 ~ 1. So, the conditions of Theo-
rem 2 is best possible in a sence.

Coiollary 2.1' Lct G be a 3—connected graph of order »(>2) and let u and v be
dissinct vertices of G. If d(u,v) =2 implies that max{4) d(v} > (n+ 1)/ 2, then G is
hamilton—connected.

Corollary 2.2 Let G bea 3~connected graph of order =02 3), andlet u and v he
disiinct veriices of G. If d(u,v) =2 implies that N()! V() >2r/3, then G is

hamilton~connected.
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