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SOME LOCALIZATION CONDITIONS FOR
LONG CYCLE IN GRAPHS'
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Abstract In this note, we give some localization conditions for the existance of long cycle
through any fixed vertex of G. Let G be a 2—connected, triangle—free graph of order 2, and let
s be an integer (3<Cs<(n). If G satisfies one of the following:

(1 YV u€EVIE®). dw=h<5= | {vE€M* )} |d(WI<h) <k~ 1, where
M Gr={vidu,v)<i,vEV(G)};

2) v u.vEV(C),d(u)(é— y duww)=2=>d ()2 M W) |/2,
then, for every vertex 2 &V (G), there exists a cycle C;(/225) of length / through x. Finally, we

give some conjectures about localization conditions of long cycle.
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1 Introduction

41 obtained some results concerning localization conditions for

Hasratian and Khachatrian
a graph to be hamiltonian. Tian Feng and Wang Wenliangm gave two localization conditions
concerning circumference of a graph. In this note, we discuss the long cycle through a fixed
vertex nnder some localization conditions. Non —localization conditions concerning this can be
found in [27] and [51].

We use terminology and notation in [1). Let G=(V(G),E(G)),Y «€V(G) N, ()= {v
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tdGe.v) =i, d(u,v) is the distance of v and v« Nw)=N,(u). du)=|N@) | M (0)={v]
du,vIi}t, vEVIG) ). A vertex set V,CV(G) is called independent, if G[V,] contains no
edge, where G[V,] is an induced subgraph of G by V.

2 Main Results

Lemma Let G be a 2 —connected triangle — free graph of order n. If z is the fixed ver-
tex of V(G), P=ux,x,** 1, Is the longest path through x with d(2,)>=5/2 (3<{s<{n) in G,
then there exists a cycle C,({z2s) through .

Proof Let P=u,x,+ 2, be the longest path through x with d(2,)>=s/2, p=max{;|
212, € E(G) ) vg=min{i| z,0,€ E(G)}. Thus p<t and ¢>>1, otherwise we are done.

Case 1. p>q

Case 1. 1. € {z;,22s**22,—;}. Let q0=max{i{i<p,1,-1,EE(G)v} , then Cr=x2, 2,
2,2+ 1,7, 1s a desired cycle. Indeed since G is triangle—free, N(z,) is independent, for any
€ N(x,) , {xip 2 M NIN@) = and N(z,)CT{x, 2410 3T v TpsTpi1s*** s Xry ) thus !
= | {xysxsse g s Ty Ty s Ty} | 225

Case 1. 2. 7€ {x,,2441*'x,}. In this case, C;= 7,244, ***» 2,2, is a desired cycle as the
proof of case 1. 1.

Case 2. p=q

Case 2. 1. 2€ {z, 2,41+ »2:}. Thecycle (;=x,2,4,°* 2,2, 1s desired.

Case 2.2. € {xy 23,**»x,-,}. Since G is 2—connected, there is a path P,=zu;*- u,x,
with 1<i<<p,q<j<ty {upstgy oo, J NV (PY=&F , Let jo=max {j' | ;' <j, 2;2. € E(G)}.
If x€ {x;s22,**ya;}. then C,=:L‘1.zz"-x.~P117,-x,-+1"'I,,T,-o"'rqr,. And if iE ETEPRTII R
then Cr=xz,2,x )4\ 2,7, o i s desired cycle respectively. '

Case 3. p<<g

Case 3. 1. 2€ {z,, 2401+ 22}, then Cy=1x,24,** 2.2,

Case 3. 2. 2€ {x,11sX,42s "y 2,-1)» Since G is 2 —connected, there are two disjoint
paths P, =wus"* v, . Py =vv; vy with v, % v, u, v, connecting the cycle C,=x,z, " z,z, to
C,=z,744,"*7:x,, We may assume that one of them starts at x,, say P,, for otherwisé we can
walk on the path x,2,,, 1, till we hit either C, or P;(i=1 or 2), and replace an appropriate
piece of P; by this path. Similarly, we may assume that one of P, or P, ends at z,. Let

[V (PLUVPOIN Laprapsrs s rag) = la sy sv oz, by I
j=max (&2 € [V(POUVP) N zerzarrs s oxet vy =2 (1< p)
and

r=max {k|nzx,€E,k<j},And let r, <z<z,_ .

Case 3. 2. 1. uy=z,€ P\. f x,,x; € P, say i=2, otherwise we can use a similar argu-

ment to get a desired cycle (7,=1*,P11,,---1,1',---1,-(=zf/)P'21‘ih+1--'r,-hP":v,(=1‘,-) Tipy ™ Tpe
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where I”';(P”",, resp. ) is a section of P, from v, to x, (x; to v;=uz, resp. ). H x, 2+, be-
long to different P;(i=1,2), say x; € P, 2, 4, € Py thus ‘we have a desired cycle C;=ux;
i Py 2 (= udug—

Case 3.2.2. v,=2,€ P,, We can use an analogous method of Case 3. 2. 1 to get a desired
cycle C,.

Case 3. 3. 2€ {x;.2;,+*.7,}. Using the notation of case 3. 2, We have that.

Case 3.3.1. u,=x,€P,. f 2€ {2,,2,,** 2}, thus there is a desired C,=2,x,** 2.P.x,
ez, P,y U € (a0, 2, ), thus there is a desired Cr=z; a2, Pyx,* 2,2,
2P,

Case 3.3.2. v;=ux,€ P.. We can use similar argument as case 3. 3. 1 to get a desired cy-
cle C.. i

In all cases, ( is a cycle of length 1(/Z==5) through x. The proof of Lemma is completed.

Theorem 1 Let G be a 2—connected triangle —free graph of order n. and let s (3<Ts<C
n) be an integer. If for any vertex u€ V(G),d (u) =k<s/2 implies | {v€ M?(u) |d(v)<k} |
<k—1 then for any fixed vertex x, there is a cycle C.({Z==s) through vertex x .

Proof Suppose x€V(G), G has no cycle Ci(IZ=s) through x . Let A={P|P is a path
with z€V(P)}. Choose a P, € A satisfying; (1) |Py|=max{|P||PE A}; (2) Under (1),
Py=x,x;°**x, such that d(z,)+d(x,) as larger as possible. Then, d(x,)<(s/2 by Lemma,
N(z)CTV(Py) by (1). Let N(x))={z, »x, >+, 2,}, then z,_ € M*(z,) and d(z,-\}<
d(z))=k by (2), thus |{v€ M*(x)) |d()<k} | = {z, ~1»20 -1 »**y 2, -1} | =k, a contradic-
tion,

Theorem 2 Let G be a 2—connected triangle—free graph of order n, and let s (3<{s<C
n) be an integer. If for any u, vEV(G), d(u,v) =2, d(u)<s/2 implying d(x) 2= [M*G) |/
2. Then, for any fixed vertex x, G contains a cycle C;(I==s) through z.

Proof Suppose G satisfies the condition of the theorém , and for some € V(G), there is
no cycle of length / (/Z=s) through x. Obviously, G is not hamiltonian. Let A= {P|P is a
path with 2E€V (P)}. Choose Py=1;***v,*"*7v, € A such that; (1) |V (Py)|=max{|V(P)||P
€ A}; (2) Let f(Py)=m=max{i{vyv; € E(G)}. Under (1), f(P,) is as large as possible.
By Lemma. d(v,)<{s/2. N(v)CV(P) by (1). Furthermore, we have

) ¥ 0,7, € E(G), ther d(v;,)<Is/2 and N (v,;-1) T {01505+ 10 }-

Indeed. if d(v;-)=s/2, then v, ;v;->**v1v;*** 1, is also one of the longest paths through
r. By Lemma G contains a cycle C,({==s) through z. a contradiction. If there is v &V (),
v,,v€ E, then P'=wvv, )+ v,v;***1, is longer than P,. This contradicts the choice of P,. If
0, € E(G)Y m<j<t. thus there is P"=v,_,v._,***vv;**+w, with f(P")>f(P,). This con-
tradicts the choice of P, yet.

(i1) There exists some i, 2<(/<Im. such that v;v,& E(G)}. Otherwise, by (i), we have

m—1
UNWIC{e .vz5yvat. This contradicts the 2 —connectivity of G.
=1
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Let k:max(z'}i<7rz,vlvi§E(G)} , then for every i, 4<i<m, v,v;€
EWG), v,;y & E(G).

(iii)  There is no /(2<<i<Gn) such that vv,4, € E(G) and vvi € E(G).

In fact, if v, ,v,€ E(G), then 2<l/<k by (i) . And by vyv;,_, € E(G) . there is a path P
U Uiy T Ui 0 € A with f(P)=m+1>f(P,)=m, a contradiction.
Now, since d (v, sUnsy) =2, d(v,.1;) =2 and d (v,)<s/2, we have d(vn1)= | M*(v,)1/2,
d)Z M (0)/2, N(u) UN () ) TM (vy) and mume & E(G) by (1), thus d(vestmer)
= 2. We also have d(v,.4,)<I|M*(x;)| —d(x,) by (i). Since d(vni )= M (v)) [/2.d(v,)
<|M*¥w,) /2. Hence, d(Vpny,)>d(v,). Similarly, we have d(v;)>d (v,). Since d(z;)<s/
2 and d(viv0)) =d (v sme1) =2, d(v) = 1M () | /2 and d(vps) = I M (1) | /2. Thus we
have '

d(v) + d(vpiy) > d(v,) + d(vayy) 2 (M3 (v) . ()

On the other hand, since (i}, (i) and v\ vmi & E(G) vvy v, € M (), We have d (1,4 ,)K
IM* (o) | —d () 1.

This contradicts ( * ). Therefore the proof of Theorem is completed. H

Remark Let us to consider the following graphs:

Gi= (V1 E,)+ where V,=U,U (KL;JIU.-)W with Us= {2y, 20+ 022} t3224 Us={usr s,
Zid 1 Zings 1 Xis )y i==102, 0, W={y1,3 s Yot} and E;={2a,,zw:|i=1,2,,t}U

(U (a2 1< L/20, L5 THISASD U (U o 1< 1 <At (/43D
Gy=(V,.E,), where V,=U,UU,UU,UU, with IU,I=[%]-—2,lei‘—-[%A]fl,lUgj
=5, |U,|=s and E2:i91{17i1i+] N o €ULY 20, € Ui}
G,=(V,,E;), where V,= ([:L:J‘IJU.-) UW with U;= {u;, v 20 vi by W= {w; sy, > s | s

[s/4]<h<+ —2 and Ey= {wwiywrisvyi lv=1,2,+,[s/41} U {zaw;, yw; |i=1,2,+,[s/
4],j=1.2,+,h}.Clearly, G,(i=1,2,3) are nonhamiltonian. Using the results of [2],[5],
we can’t judge if there exists a cycle C,({==s) through the fixed vertex z in G;(i==1.2.3) . but
we can do by Theorem 1 for G, or G, and by Theorem 2 for G, or G,.

Finally, we have following conjectures:

Conjecture 1 Let G be a 2—connected graph of order n, and let s(3<{s<(n) be an inte-
ger. 1If for every vertex u € V(G), d(u)=4~<s/2 implies | {v€ M*(u) |d(v)<Ck} <k 1,
then for any fixed vertex x, there is a cycle C,(12>s) through vertex z.

Conjecture 2 Let G be a 2—connected graph of order n, and let s (3<(s<(n) be an inte-
ger, If for every u, v€EV(G), du,v)=2, d(u)<s/2 implyies d(v)==|M*(«)|/2, then for
any fixed vertex x in G there is a cycle C, (< s) through .

Conjecture 3  Let G be a 2—connected graph of order », and let s (3<{s<{n) be an inte-
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ger, I for every € V(G), d(u)}min{%—. [M3Cu)|/2}, then for any fixed vertex x in G

there is a cycle of length ! through z.

Conjectures 1.2 and 3 are supported by the results of Theorems 1 and 2.
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BE FXAUIEGCHELERNKBEEEENILANREBLAEG. G 2-%8
KEZAE B, Q<N EBY . ECAWR T EEZ—:

(OVY u€ VWG, d(u)=k<—;—="]{UGMZ(tt)|d(v)<k}|<k—1,f@§ M2 (u) = {vid(u,
Wi, veV(G)};

()Y u,veVG), d(u)<%,d(u,v)=2=>d(v)2]Ma(u)|/2.
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