SOME LOCALIZATION CONDITIONS FOR LONG CYCLE IN GRAPHS

Ye Miao zin
(Dept. of Math., Anqing Normal Institute, Anqing 246001, P. R. C.)

Zhang Kemn
(Dept. of Math., Nanjing University, Nanjing, 210093, P. R. C.)

Abstract In this note, we give some localization conditions for the existence of long cycle through any fixed vertex of G. Let G be a \n-connected, triangle-free graph of order n, and let m be an integer $0 \leq m \leq n - 2$. If G satisfies one of the following:

1. $\forall u \in V(G), d(u) = \frac{m}{2} = \frac{2m}{n} \in \{d(v) : v \in M'(u)\}$, where $M'(u) = \{v : d(v) = m, v \in V(G)\}$;

2. $\forall x \in V(G), d(x) = \frac{m}{2}, d(x) = \frac{2m}{n} \in \{d(v) : v \in M'(u)\}$, then, for every vertex $x \in V(G)$, there exists a cycle $C(x, 2)$ of length 2 through x. Finally, we give some conjectures about localization conditions of long cycle.

AMS (1991) Subject classification 05C38.

1 Introduction

Herzog and Khachatrian \cite{1,2} obtained some results concerning localization conditions for a graph to be hamiltonian. Tian Peng and Wang Wenliang \cite{3} gave two localization conditions concerning circumference of a graph. In this note, we discuss the long cycle through a fixed vertex under some localization conditions. Non-localization conditions concerning this can be found in \cite{4} and \cite{5}.

We use terminology and notation in \cite{1}. Let $G = (V(G), E(G))$, $Y \in V(G), N_{G}(y) = \{v \in V(G) : v \sim y, v \neq y\}$. If $m \in \mathbb{Z}$, then $y \in V(G)$, $d(v) = m, v \in N_{G}(y)$, then $y \in V(G)$, $d(v) = m, v \in N_{G}(y)$.

* The project supported by NSF of China and NSF of Jiangsu.

95.5—96.7 分解大國內在論學者.

Received date: 1996.07.01.
Main Results

Lemma Let G be a 2-connected triangle-free graph of order n. If x is the fixed vertex of V(G), P = x, P, . . . , x, is the longest path through x with d(x) ≥ 2 (3 ≤ k ≤ n) in G, then there exists a cycle C(G) through x.

Proof Let P = x, x, . . . , x, be the longest path through x with d(x) ≥ 2. Let max (i; x, ∈ E(G)) = q = min (i; x, ∈ E(G)). Thus p > t and q > 1, otherwise we are done.

Case 1. p > q

Case 1. 1. x ∈ {x, x, . . . , x}. Since G is a triangle-free, N(x) is independent, for any x, ∈ N(x) \ {x, x, . . . , x} \ {x, x, . . . , x, x, . . . , x}, l = |{x, x, . . . , x, x, . . . , x, x, . . . , x}| ≥ 2.

Case 1. 2. x ∈ {x, x, . . . , x}. In this case, C = x, x, . . . , x is a desired cycle as the proof of case 1. 1.

Case 2. p = q

Case 2. 1. x ∈ {x, x, . . . , x}. The cycle C = x, x, . . . , x is desired.

Case 2. 2. x ∈ {x, x, . . . , x}. Since G is 2-connected, there is a path P = x, x, . . . , x, with l ≤ 1 + p − q < l(G) = l(x, x, . . . , x). If P = \O, let j = − max (j; x, ∈ E(G)). If x ∈ {x, x, . . . , x}, then C = x, x, . . . , x is a desired cycle respectively.

Case 3. p < q

Case 3. 1. x ∈ {x, x, . . . , x}, then C = x, x, . . . , x, x, x, .

Case 3. 2. x ∈ {x, x, . . . , x}. Since G is 2-connected, there are two disjoint paths P = u, u, . . . , u, P = v, v, . . . , v connecting the cycle C = x, x, . . . , x, to C = x, x, . . . , x, x, . . . , x. We may assume that one of them starts at x, say P., for otherwise we can walk on the path x, . . . , x till we hit either C or P, (i = 1 or 2), and replace an appropriate piece of P by this path. Similarly, we may assume that one of P or P ends at x. Let \{V(P), V(P)\} \ [x, x, . . . , x] = [x, x, . . . , x], j = max (i; x, ∈ E(G)) \ [x, x, . . . , x] \ [x, x, . . . , x], x = q (1 ≤ q)p and r = max (i; x, ∈ E(G)) \ [x, x, . . . , x] \ [x, x, . . . , x]. And let x < x < x.
where $P(P_r)$, resp.) is a section of P from v_i to x_{n_i}, $(x_i$ to v_i, resp.). If x_i, x_{n_i} belong to different P_t's, let x_i, x_{n_i} be P_t's, say $x_i \in P_t$, $x_{n_i} \in P_t$, thus we have a desired cycle $C_i = x_{n_i}x_{i-1}x_{i-2}\ldots x_{n}x_{i+1}x_{i+2}\ldots x_{n-1}$.

Case 3.2. 2, $v_i = x_{n_i} \in P_t$. We can use an analogous method of Case 3.2.1 to get a desired cycle C_i.

Case 3.3. \(x \in \{x_1, x_2, \ldots, x_n\} \). Using the notation of case 3.2, We have that:

Case 3.3.1. $u_i = x_i \in P_t$. If there is a desired cycle $C_i = x_{n_i}x_{i-1}x_{i-2}\ldots x_{n}x_{i+1}x_{i+2}\ldots x_{n-1}x_i$, thus there is a desired cycle $C_i = x_{n_i}x_{i-1}x_{i-2}\ldots x_{n}x_{i+1}x_{i+2}\ldots x_{n-1}x_i$.

Case 3.3.2. $v_i = x_{n_i} \in P_t$. We can use similar arguments as case 3.3.1 to get a desired cycle C_i.

In all cases, G is a cycle of length $l(V(G))$ through x. The proof of Lemma is completed.

Theorem 1
Let G be a 2-connected triangle-free graph of order n, and let $1 \leq k \leq n$ be an integer. If for any vertex $x \in V(G)$, $d(x) = k \leq l(x)$ then G contains a cycle $C_i \subseteq V(G)$ through vertex x.

Proof
Suppose $x \in V(G)$, G has no cycle $C_i \subseteq V(G)$ through x. Let $A = \{P \mid P$ is a path with $x \in V(P)\}$. Choose a $P_i \in A$ satisfying: (1) $|P_i| = \max\{|P| : P \in A\}$; (2) Under (1), $P_i = x_{1}, x_{2}, \ldots, x_{n}$, such that $d(x_i) = d(x_{i-1}) = k$ as large as possible. Then, by Lemma, $N(x_{i}) \subseteq C(V(P_i)) \subseteq N(x_{i})$.

Let $N(x_{i}) = \{x_{n}, x_{n-1}, \ldots, x_{i}\}$ then $x_{n-i} \in \mathbb{M}(x_{i})$ and $d(x_{n-i}) \leq d(x_{i}) = k$ by (2), thus: $\{v \in \mathbb{M}(x_{i}) : d(v) \geq k\} \supseteq \{x_{n-i+1}, \ldots, x_{n-1}\} = k$, a contradiction.

Theorem 2
Let G be a 2-connected triangle-free graph of order n, and let $1 \leq k \leq n$ be an integer. If for any $v \in V(G)$, $d(v) = 2$, then G contains a cycle $C_i \subseteq V(G)$ through x.

Proof
Suppose G satisfies the condition of the theorem, and for some $x \in V(G)$, there is no cycle of length $l(G)$ through x. Obviously, G is not Hamiltonian. Let $A = \{P \mid P$ is a path with $x \in V(P)\}$. Choose $P_i = x_{1}, x_{2}, \ldots, x_{n} \in A$ such that $1 \leq |P_i| = \max\{|P| : P \in A\}$; (1) $P_i = x_{1}, x_{2}, \ldots, x_{n}$, such that $d(x_i) = d(x_{i-1}) = k$ as large as possible. Then, by Lemma, $d(x_{i}) \geq 2$, $N(x_{i}) \subseteq C(V(P_i)) \subseteq N(x_{i})$.

Then, for $P_i \in A$, $\{v \in V(G) : d(v) = k\}$, there is no cycle of length $l(G)$ through x. Otherwise, G is not Hamiltonian. Let $A = \{P \mid P$ is a path with $x \in V(P)\}$. Choose $P_i = x_{1}, x_{2}, \ldots, x_{n} \in A$ such that $1 \leq |P_i| = \max\{|P| : P \in A\}$; (1) $P_i = x_{1}, x_{2}, \ldots, x_{n}$, such that $d(x_i) = d(x_{i-1}) = k$ as large as possible. Then, by Lemma, $d(x_{i}) \geq 2$, $N(x_{i}) \subseteq C(V(P_i)) \subseteq N(x_{i})$.

Indeed, if $d(v_{i+1}) = d(v_{i+2}) = \ldots = d(v_{n})$, then $P_{i} = v_{i+1}, v_{i+2}, \ldots, v_{n}$ is also one of the longest paths through x. By Lemma B, G contains a cycle $C_i \subseteq V(G)$ through x. By contradiction, there is no cycle $C_i \subseteq V(G)$ through x.

Hence, G satisfies the condition of the theorem, and for some $x \in V(G)$, there is no cycle of length $l(G)$ through x. Otherwise, G is not Hamiltonian. Let $A = \{P \mid P$ is a path with $x \in V(P)\}$. Choose $P_i = x_{1}, x_{2}, \ldots, x_{n} \in A$ such that $1 \leq |P_i| = \max\{|P| : P \in A\}$; (1) $P_i = x_{1}, x_{2}, \ldots, x_{n}$, such that $d(x_i) = d(x_{i-1}) = k$ as large as possible. Then, by Lemma, $d(x_{i}) \geq 2$, $N(x_{i}) \subseteq C(V(P_i)) \subseteq N(x_{i})$.
Let \(d = \max(i | i \in [m, n], v_i \in E(G) \}) \); then for every \(i \), \(1 \leq i \leq m \), \(v_i \in E(G) \), \(v_i \in E(G) \).

(iii) There is \(\exists k \in [m, n] \) such that \(v_k \) \(v_{k+1} \in E(G) \) and \(v_k \) \(v_{k+1} \in E(G) \).

In fact, if \(v_k \) \(v_{k+1} \in E(G) \) then \(2 \leq k < n \). And by \(v_k \) \(v_{k+1} \in E(G) \), there is a path \(P = v_1 \rightarrow \ldots \rightarrow v_k \rightarrow \ldots \rightarrow v_n \in E \). Without loss of generality, let \(\ell(P) = m + 1 \geq 3 \). A contradiction.

Now, since \(d(v_{k+1}) = 2 \), \(d(v_k) = 2 \) and \(d(v_i) \leq 3 \), we have \(d(v_{k+1}) \geq |M(v_{k+1})|/2 \), \(d(v_k) \geq |M(v_k)|/2 \), \(N(v_{k+1}) \cup N(v_k) \subseteq M(v_{k+1}) \) and \(v_k \in E(G) \) by (iii), then \(d(v_k) \leq 2 \).

We also have \(d(v_{k+1}) \geq |M(v_{k+1})| - d(v_{k+1}) \) by (ii). Since \(d(v_{k+1}) \geq |M(v_{k+1})|/2 \), \(N(v_{k+1}) \subseteq M(v_{k+1}) \), we have \(d(v_{k+1}) \geq |M(v_{k+1})|/2 \).

Thus, \(d(v_k) \geq |M(v_k)|/2 \), \(N(v_k) \subseteq M(v_k) \), \(d(v_k) \geq |M(v_k)|/2 \) and \(d(v_{k+1}) \geq |M(v_{k+1})|/2 \). Thus we have \(d(v_i) \geq |M(v_i)|/2 \).

On the other hand, \(d(v_{k+1}) \geq |M(v_{k+1})|/2 \).

This contradicts (iii). Therefore the proof of Theorem 1 is completed.

Remark

Let us consider the following graphs:

\[G = (V_1, E_1) \]

where \(V_1 = U_1 \cup \{ u \} \) with \(U_1 = \{ x \} \), \(U_2 = \{ u \} \) and \(E_1 = \{(x, x), (x, u) \} \) with \(\ell(G) = |x| \).

Next, we consider the following graphs:

\[G = (V_2, E_2) \]

where \(V_2 = U_1 \cup \{ u \} \) with \(U_1 = \{ x \} \), \(U_2 = \{ u \} \) and \(E_2 = \{(x, x), (x, u) \} \) with \(\ell(G) = |x| \).

Clearly, \(G \) is connected. Using the results of [23, 24], we can conclude that there exists a cycle \(C \) in \(G \), \(C \) has length \(2 \).

Finally, we have the following conjectures.

Conjecture 1

Let \(G \) be a \(2 \)-connected graph of order \(n \) and let \(n \geq 5 \) be an integer. If for every vertex \(u \in V(G) \), \(d(u) = 2 \), then \(G \) is connected.

Conjecture 2

Let \(G \) be a \(2 \)-connected graph of order \(n \) and let \(n \geq 5 \) be an integer. If for every \(u \in V(G) \), \(d(u) = 2 \), then \(G \) is connected.

Conjecture 3

Let \(G \) be a \(2 \)-connected graph of order \(n \) and let \(n \geq 5 \) be an integer.
ger. If for every \(u \in V(G) \), \(d(u) \geq \min\left(\frac{k}{2}, \left\lfloor \frac{1}{2} M^*(u) \right\rfloor / 2 \right) \), then for any fixed vertex \(x \in G \) there is a cycle of length \(l \) through \(x \).

Conjectures 1, 2 and 3 are supported by the results of Theorems 1 and 2.

References

图中长圈的几个局部化条件

叶森林 (安庆师范学院, 安庆 246011) 张克民 (南京大学数学系, 南京 210093)

摘要: 本文给出了图G中任意点的长圈存在性的几个局部化条件。设\(G \)是\(n \)阶无三角形的\(n \)阶图，\(d(v) \geq \frac{n}{2} \)为正整数，且\(G \)还满足下列条件之一：

(1) \(\forall u \in V(G), \ d(u) = k \geq \frac{5}{2} \Rightarrow \exists v \in N^*(u) \) \(d(v) \leq k - 1 \), 其中 \(M^*(u) = \min\{d(u), \ d(v) \} \) \(\forall u, v \in V(G) \);

(2) \(\forall u, v \in V(G), \ d(u) < \frac{k}{2} \Rightarrow d(u, v) = 2 \Rightarrow d(v) \leq M^*(u) / 2 \).

则\(x \in V(G) \), 存在长为\((\left\lfloor \frac{1}{2} M^*(x) \right\rfloor / 2) \)的圈\(C \)过\(x \)。最后我们给出几个关于长圈的局部化条件的猜想。

关键词: 长圈, 局部化条件, 无三角形图。

分类号: 0157.5.