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Abstract Let G be a graph of order n>>3. We show that if G is a 2-connected graph and

3
Zd(z.-) + E |N(x;) {J N(z:)| = 3n — 3{or any 3-independent set {x,x;,z:} with a pair
i1 1<)

of vertices z,, z, at distance two (1<(s7:2< 3), then G is Hamiltonian or G.—’}_Gu_;; Vv I$ (n=1

mod 2) or G=(K,UK,UK.)VG;, where G, is a simple graph of order m, I.is an independent
set of order m . ' '
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1 Introduction

We use [1] for terminologies and notations and consider only simple graphs. If G has a
cycle containing every vertex of G, then G is called Hamiltonian. The set of vertices adjacent
to vertex v is denoted by N (v);d(v)=|N(v)| is the degree of the vertex v. If A,B are sub-
graphs of G and UV (G), we define N(A)-——pELVJ(A)N('U) y Ns(A)=N(A)NV(B) and

AWU)=max{d(u) |lu€U}. The distance, denoted by d (u,v), between two verticés u and v
of a connected graph is the minimum length of all paths joining # and v. Let I, be a k-indepen-
dent set, if min{d(u,v) |u,vE€IL;}=r, then I,is called (%,7)-independent set, denoted by I..

If C is a cycle of graph G, we let C denote the cycle C with a given orientation. If u,v€
V(C), then uCv denotes the consecutive vertices on C from u to v. The same vertices, in re-
verse order, are given by vCu. We use «* for the successor of « on C and « for its predeces-
sor; utt=GD andu "= )", f ASV(C), then At = {07 |v€ A}. The set A is de-
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fined analogously.

The development of the theory on Hamiltonian graphs has seen a series of results based on
controlling the degrees of the vertices of G. In this paper, we improve Theorem 2 in [1] to ob
tain a stronger result.

Theorem 1 [2] Let G be a graph of order n>23 such that for each pair of nonadjacent
vertices x and v, d(x)+d(y)=n, then G is Hamiltonian.

Theorem 2 [3] Let G be a 2-connected graph of order n2>23. If for each pair of nonadja-

2:%:“}’ then G is Hamiltonian,
Theorem 3 [4] Let G be a 2-connected graph of order n2>3. If for any 3-independent

cent vertices x and y.

set {o;y 15,24}, Zd(r) + 2/ IN(z;) U N(z)| > 3n — 3, then G is Hamiltonian,

A3

Theorem 4 Let G be a 2—connected graph of order n>3. I for any (3,2)-independent
set {x, ,rz,ra Zd(r ) + Z [IN(x;) U N(z)| = 3n— 3, then G is Hamiltonian or G

i=1 1S5~ <3
%G,%l V Ipz:;(nEl mod 2) oerE(K,,UKqUK,) V G,, where G, is a simple graph of order
m. 1, is an independent set of order m.
It is easy to find Hamiltonian graphs that satisfy the conditions of Theorem 4, but not the
conditions of Theorem 3. One such graph is G,V (I, Ue), where m=>4,G, is a graph of or-

der m,I,,,is an (m+1)-independet set, ¢ is an edge with two vertices in [,,,,.
2 Proof of Theorem 4

Let G be a graph satisfying the condition of Theorem 4, and let C be a longest cycle of G
with a fixed orientation. Assume C is not an Hamilton cycle of G. Then G—V (C) has a con-
nected component B. Let v;,v;,** v, be the elements of N¢(B) occuring on C in consecutive .
order. Since G is 2-connected, we have m=22. For each i%j, let v/, v; be a path of length at
least 2 which joins v, and v, with all internal vertices of the path in B. Let z; be a vertex of B
which is adjacent to v, (for i7 j, possibly x;=x;). The indices are taken modulo m in the
proof. Let N7={v{ 05 ,***sv, | NT={0] 0], 0] }.

Lemma | (5] Let x be any vertex of B. For u,v& N U {z}, there exists no (u,v)-
path with all internal vertex disjoint from C, particularly, uv & E.

For any j(1<{j<(m) Lemma 1 implies v, & N(v} ). So there is a vertex w;€ {v} ,v] ",
+, 07} such that w,& N(v; ) and v€ N(v]) for any v€ {v; &) o] *v+eye0; ). Let H;=
{vfr mj++ vsw; by H={u;uy+u,, 1+ where u; is a vertex of H,.

Lemma 2 [5] Let &€ B and u,v€ HU {x}. then there exists no (x.v)-path with all
internal vertices disjoint from C, particularly, zv& E,

Lemma 3 [5] If w,.e,€ H(;<(;). then for any vertex v€u'Cu; , we have nv& E or
uy” & E; for v€ uf’(_,"u{ . we have wv& E or uv* & E.
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Lemma 4 [5] For € B and u,,u;€ H(i%j),d(z2)+ |N @) UN (u;) |[<n—1. The e-
quality holds iff V(C)=Nc () UNc(u;) U {uy sy sunts V(B)=Np(z) U {z};Nc(z) =
{01509 »Um } s VIR)=Ngr(u;) UNg(2;), where R=G—~V(B)—V(C).

Proof We easily obtain

Ny(x) S V(B) — {z},

Ne(@) & {v),v555Un}

Ne(u) U Ne(u)) S VC) — {uy,uyymsu,}y

Nr(u) U Ne(u)) S V(R).
Therefore, d(z)+ INw)UN @) IS |VB) | —14+m+|V(C) | —m+ |[V(R)|=n—1. The
equality holds iff the above sets are equal.

Using Lemma 1—3, We now derive an upper bound for d(u)+ | N (¢;_ )UN(x)|. Let

R (y) = {veE u,eu,.__l luvt € E},
S(u,_) = {v € uCu,|v € N(u,_)) UN()},
R,()) = {v € u_._lffu,-_ lu;v € E},
S(u_) = {v € u,_,Cui lu,_v*€ ET,
S,(u;)) = Ry(u)) = (v €V —V(O)|uv € E}.
By Lemma 2 and 3, R;(u;) NS;(u;,_) =4 for j=1,2 and 3. Let
5 {1, fvzrx € Eand vu,_, & E,

0, otherwise
and
3-—{1, fd,=1and uv; € E,
0, otherwise, .

We get that d(u.)+ IN @  DUN @) | =R (u) | + 18, (e ) |+ 1Ry (u) | + 1S, (D |
F 1R () |+ Sy () | + [ Np(2) | +& <R () US, (e DU R, () U S, (g ) | 4 (n—
VO | = VB + Ng(x) |+ ,=n— |V(C)— (R, (u) U S, (e, ) U R, () U S, () |
— {V(B)—=N3(@) [+&<n—1—|V(C)— (R () US; (i) UR, () U S: (;_ ) | +8 <n
—1+6.

Note that the last inequality follows since v] & R; (u) U S; (x,_)) if ;=1 and &;=0.
Thus we have

Lemma 5[6] (1) For z€B and ;€ H,d(u)+ |[N(u,_DUN (@) |<n—1+6. If
d@w)+|N(u,_)UN()|=n, then 2v;€ E,u;v7 €E and Ng(z)=V(B)—{z}, V(O)=
R US, (u_ DUR () US: (w,_ ).

(2) If w7 &E, then d(u)+ |N(x,_)UN(2) [<<n—1. When the equality holds, we
have Np(z)=V(B)—{z} and V(C)=R, () US,(,_ ) UR, (u) U S, (,_)).

We prove Theorem 4 for two cases.

Case 1 m=3.
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Subcase 1.1 There is 7, (1<{7,<{m) such that d(v,-;_l) =p— IN(v,-;) UN(J:,-O) {. Then by
Lemma 5(1), we have v,-:_lv,.:_,EE.

We consider (3,2)-independent set {-u,-:v,-zﬂ,r;o} in two cases.

Subcase 1.1.1 d(v,  )=n—1~|N(v) UN(I,-O) I

By Lemma 5(2), for any va,-OHC’v,-:_ » we have v€ N(v; )UN(z;) or vt EN(v ;).
Particularly , since v; _, & N(v; JUN(z, ), we have v, ., € N(v;;,). Thus the cycle

-— + - p=4 . Y., . .
'U-'o+1P-'0+1,‘ _‘l'v,-o_,'v,.o+1(::'0,-0_,-0,-0_1C'v,.°+1 is longer than C; a contradiction.
0

Subcase 1. 1. 2 d(vizﬂ)én—Z— IN(v,-;)UN(xfo) .

By Lemmas 4 and 5, we have
d(v.) + NGz, ) U N )| <n,
d(z;) + lN(‘U,-:) U N Dl<n— 1

By the conditions of Theorem 4, we have 3n—3<d(x,-o)+d(v,-:)-+—d(v,.;+,)+ |N(v,-:) U
N@ )|+ ING@  DUNG@) |+ NGO UN @, ) |[<3n—3.

Hence we have ]N(v,-:) UNC, ) [=n—1—d(z;). By Lemma 4, we have N(v, ) U
N('v,-:H) =V(G)—V(B) —{uysuzr***sun}. So - EN(v,-:)or vio_IEN(v,-:H). If v;o_lé
N(v; ), the cycle 'Uiono.io—l"’io—1"’-':5":—17&:—15 v, is longer than C, a contradiction. If v, _, €
N(v; ;) then cycle 'u,-OHP,-OH‘,-0_lv,-o-,v,-zﬂév,.:_,,v,-:_,év,-ﬁl is longer than C, a contradiction.

By the analogous proof of subcase 1.1, we can prove d (v} )<\n—1- [N(v" DU
N(.f,._l) | (i=1,2,+++ym). Hence

Subcase 1.2 For any :(G=1,2,*+,m),d(v_)<n—1— [N )UN(z) | and d(v])
<n—1— |N('u,.+_1) UN(_DI.

In the following, we will get 14 claims.

By Lemma 4,5(2) and the conditions of Theorem. 4, we can easily obtain

0 :
d@7) + IN@w_) UN@)|=n—1,
d@ )+ INGH UNG@,_Di=n—1, G=1,2,+,m),
dz) + IN@ ) UNG@_)DI=n—1,
dz_) + IN@H) UNG@_ Dl =n—~1

By Lemmas 5(2) and (1), we have

(2) For any va;év,.—_: ,» we have vE N (v, DUN(z) or v* € N(v); for any v€
-u,._lév;_— ,vE€ N(v,_ D) UN(z) or v~ € N(vi ). Symmetrically, for any va:”Lév,._l RIS
N@HUN(z,_) or v~ € N(w} ); for any va:Tévi,vEN(v.*) UN(z,_)orv* €
NG@rD.

Noting that v, , & N(v_ ) UN(z;), and by (2) we have

(3) For any i(¢=1,2,++,m), v v, € E. Symmetrically, u,_v} € E.

1Y
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@ jviB)|=1.

Proof  First we prove that ©7 v * € E for any /€ {1,2,+*,m}. Since v}, & Nz} )U
N(z,_,), we have 7. 2 €Eby (2). Butz) v, €F and v] v}, € F give the cycle 'u;(i%'v,»ﬂ
vi’:lév,-—zﬂlév,._ll’,._l‘iv;, which is longer than C. Thus v, v}, & E implies v}, & N(z7)U
N(z_,), furthermore vy vt € E by (2). Suppose {V(B)|>=2, then we may assume 1<s
<t<m. U s+ l#t,v since v, v & E we haye viu, € E by (2). The cycle 'u;ufé-u,P,‘,v, is
longer than C, a contradiction. If s+1=t¢, since v_, v, & E we have v, v,€ E by (2). The cy-
cle v, Cuf *v7 Cu.P, v, is longer than C, a contradiction. So we have |V(B)|=1.

(5) (VO |=n—1.

Proof Assume |V(C)|<(n—1, then there is another connected component B' € G—
V(C) by (4). Let w€ B’ then we have v,_,w€ E or v; w& E by the proof of Lemma 5.
Since m = 3, there exist s, t (s #¢) such that v;w € E and v;w € E. The cycle
v,Co wo, Cu,P, v, is longer than C, a contradiction. Therefore |V(C) |=n—1.

(6) For any i(i=1,2.+ym) -,v:’: =7

Proof Assume (6) is not true, then there is 7 such that v T 5v,. Let S={v; ,u5 ,,
Um X2 }. By (2) and m==3, we may suppose d (x;) =A(S)(f d{(x,)<<A(S), we consider an-
other longest cycle. By (1) and Leinma 4, we have d(a;)+ |N(v; YUN(vy) | =n-1, and
Ne(ap)={v,,v24*** yva). Hence by (3) and the conditions of Theorem 4 we have

3n — 3<d(x;) + INw;) UN@)| +d@) + [N@) U N(xy)|
+d(v;) + [IN@) UN@)|<Kin—1+ 248 + 248 — D),

e, A(S)?%.

So there exists k(lgkg;ﬁ) such that u;* =v;. From the above discussion we may sup-
pose vy T FE vy,

First we verify that there is a cycle longer than C in G when m>24. Since d(v{_,,2,) =2,
{vi.;svi_ 22} is a (3,2)-independent set. We can easily obtain {N(v;_,) UN (i) [+
d{x;)=n—1 by Lemma 4,5 and the conditions of Theorem 4. Hence we have 'u,++év,+1_C_
N (v} DUN(},) by Lemma 4 which implies v;_,v;,, € E by Lemma 1 and v; v, € E by
(3). The cycle v,,~ZP‘_Z.,,_l'u,_fvf,zvfﬂfva,ﬂ@v,_z is longer than C, a contradiction.

Now we verify that there is a cycle longer than C in G when m=3. From the above, we
may suppose v; T =v, and v; " #v;. Since d (vi ,x,) =2, {v{ ,vi,x,} is a (3,2)-independent
set. We can easily obtain [N (z{) UN @) |{+d(x;,)=n—1 by Lemma 4,5 and the conditions
of Theorem 4. Hence we have v; € N (v ) UN (vi) by Lemma 4 which implies v; € N (o)
by Lemma 1. But v,v; EiE by (33. Thus the cycle v3P3_gv2€'v;'v;r-C"vf’v3 is longer than C, a
contradiction.

We can derive G==Gr—2 V ID:J by (2) and (6).

£y

Case 2 m=2,
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Considering (3, 2)-independent set {v; ,v; +2,}, by Lemma 4,5 and the conditions of
Theroem 4, we can derive that:
d(vy) + IN@y) UN(@)| =n—1.
dv) + IN@ey) UN(@) )| =n—1,
d(x)) + IN@wr)Y UN@) | =n— 1.
Since d(v7 )+ [Ny ) UN{(x;) | =n—1, by Lemma 5(2) we have

(7) For any v€ v,Cv; ", vE N7 YUN(z) or v” € N(v7); for any vE€ v,Co] " v E
N )YUN(xy) or vt € N(v;). Symmetrically, for any v6v1++avz,v€N(v2+) UN () or
vt € N(vf); for any v€ vi ¥ Cryyv€ N(wF)UN(z,) or v~ €N ().

Since d(z;)+ |N(vy )+N(v; )| =n—1, by Lemma 4 we have

(8) VIOS N UN@w; YU {vy vvi }H,VIOOEN @ YUN ) U {vf vof } yNela) =
{v1,v,} yNpz)) =V (B)—{x,}, V(R)=Ng0i Y)UNg(v; ), V(R) =Ng(v{ ) UNg(v;)

(9 v?é’uf" U {v ) SN (o7 ), 07 Co; ~ U {w,}) SN (v )3 07 HCoy U {0, ) SN (),

F+Cor U o )EN ).

Proof First if a,év.«*’év,-],l with aqv'* € E and a'' v & E, then aw’,, €E by (7) (i=1,
2). Applying Lemma 3.and (8) we have v; *Ca; =N (v}") and a.Cv,p, &N (v ). Thus there
is a vertex a,€ v Cv], such that v++6a,§.N(v+) and ait Cu, SN (v}, (i=1,2). Similarly,
there is a vertex ;€ v Cov;, such that vCh7 SN (v7) and va;;QN(v,-ll)(i=1 »2).

If 5,7 v, then vv; & E, so that v7v] Y € E by (7). But viv; " €E and vi v "Y€ E
give a cycle longer than C. Thus v7 v ** & E implies a, € v} **Cu; and the cycle v, P, ,
v,Ca; v Co;y vi  Cayvitv, is longer than C, a contradiction. Hence b, =v; . Similarly, b,=v;,
a,=v; sa;=v;. Hence (9) holds.

(9) implies (10).

(10) [‘U++6v~ i TC T )=, [uf v Z‘m 1=, [v, vor tCor ]= &, [
ot Co;"]=@, [v7 wf *Cor ]=@.

an v =V(C) Uva.

Proof Assume (11) is not true. then there is another connected component B’ in G—
Vo). ’ '

If v "=v,and v; " =wv,, then |B|=1 and |B |{=1. Let the vertex of B' be /. By
Lemma 2 and (8). we have &/ EN(z7) or ¥ € N(v7 ), without loss of generality, say &' €
N(vy). Since G is 2-connected, ' is adjacent to a vertex of C except v; . But this produces a
cycle longer than C, a contradiction. Therefore v} " 5 v, or v; ¥ %v,. In the following, we
suppose v; | #Fuv,.

By Lemma 2 and (8), we have V(B )CN (v ) or V(B Y& N (v; ), without loss of gen-
erality, say V(B YEN (vy ). We have v; v: & E by (10) and v,z, €EE by (8), so that
{v1 ",27 ,x,) is a (3,2)-independent set. Since v; “v; & E, we have | No(v; 7)Y UNc(z;) |
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< [C|—2. Clearly, d(x))|V(B) [+ 1, [INeCoy I)UN@HKIVG) ~VC)—V(B) -V~
(B |, where R=G—V(B)~—(C). Thus d(z )+ {N@; D)UN@;) | =d(x))+ | N (v77)
U Ne(i 3 |+ INeCor D UNGED IKIVB  F1+ VO | =24+ V(G — VO~V (B —
VBHIKIVG) | — V(B | —1<<n—2. Similarly, d(x; )+ IN@@; YUNE&@) I<n—2,d
(v; )+ INCu7 YUN(z) |<n—2. Thus d(x;)+d(vi )+d@;)+ | N@ HYUN@) |+
NG )UN@) |+ N Y)UN{(z,) |<3n—6. This contradicts the condition of Theorem
4,

We prove case 2 for the following three subcases.

Subcase 2.1 v v €E and v; vf €E.

Since C is the longest cycle in G, we can derive v; +6‘Uz- "%, of +*Cor " # . Let w €
vfu“(_fv{— , then v7u, & E by (10). Thus {v] yu;»x,} is a (3,2)-independent set. Since v; vy
€ E,v;vi € E and C is the longest cycle in G, we have N(vf)gv?avf" Ul{vsof } s NS
v Co; —{w}, and N(2))S V(B U {v1»v:}) — {z;} by (10). Thus d(u;)+ | N(x)U
N < 1vfCoy | =1+ 193 Coy ™ U oot HUV B U fo7 yup} | —1= | (V(©) — (o7 DU
VB |+ {v}|—2=n—2. Similarly, d(z7)+ IN@)UN)|<n—2, d(2)+ | N(u)
UN @) |<n—2. Therefore d(x;)+d vy )+d )+ [INw) UN @) |+ [ N@)U
N(x) |+ [IN(w7)UN(z,) |<<3n—6. This contradicts the condition of Theorem 4.

Subcase 2.2 vvi €FE and v;vf &€ E or v7 v & E and v; v €E.

We discuss the latter, so do the former. Since v vi & E, {vy ,v{ .} is a (3,2)-indepen-
~dent set. Since v;v; € E and C is the longest cycle, we have v; v, & E and v{v, & E. By
(10), we have N(v; )Svf Coy ~ U {0, }» N (@) Soi *Coy U {2y}, N(@) SV B U (o)) —
{z,}. Thus d(v7 )+ |N (2 )UN(xl) |<|vFCor~ U ln |+ o *Cor Ul DU VB U
{o1,0) = (@D | = lof Coi " 1414 |67 *Co, U o} [+ VB | —1= V(O [ =2+ |V(B) | =
n—2. Similarly, d(v§)+ IN@T)UN@) ($<n—2, d(x))+ ING@D)OUNG@H) [<n—2.
Therefore d(x,) +d(v7 ) +d @)+ |{N@)UN@H) [+ IN@))UNG@) [+ ING@HU
N{(x;)|<3n—6. This contradicts the condition of Theorem 4.

Subcase 2.3 v v} &E, v;vi & E.

(12) vt v, € Eyoiv, € Eyvf v, €E, and v; v, €E.

Proof Since d(v;y)+ |N@;)UN(x,)|=n—1 and (10), we have

n—1=d() + [N(v;) UN(x)|
= |[Nc(o{)| + [Ne(wi)| + |Nc(vi) U Ne(x) | + [Na(wi) | + [ Ng(a) |
= |Nc(v7) U Nc(vz) U Ne(x) | + [Ne(oy) N (Ne(oz) U Nela)))
+ [Ne(vy) U Ne(v) | + [Np(x) |
< V) — {orop H + Hopud | + VR + [VB) — {z}]
=n—1,
where R=G—V(C)—V(B).
Thus Nc(v7) N (Nc(vs Y UNc(x,)) = {vy,v,} implies v1 v, € E. Similarly, we have vz,
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€E,viv,€E and v; v, € E.
(13) For any a,€ v} Cv,, we have N(a)U{a} =0l (i=1.2).
Proof By (10) and (11). we have N(u) U (4, ) EN.Co visr. Thus
d(x;) + [N ) U N@)| < |IVG) = {v7 a0t + ool =n—1,
d(v7) 4+ |Na) U N | < VG — (v sa;ex, )] + Hvsu ) =0 — 1,
d(a;) + [N@™) U N@)| < IVG) — {v7apa b + [{o,o) ] =2 — 1
Since {v; ,a;,2,} is a (3,2)-independent set, the above three equalities hold by the conditions
of Theorem 4. Therefore N(a;) U {a,v}zvﬁv,-ﬂ(iul,Z).

(14) For any x €V (B), we have N(z)=V(B)U {v;,1,} ~— {z}.

Proof Since N (v; )_C_'Ugé'l}]_ {o7 },N (v} Y Z0,Co,— {07 } and N(2)S(V(B)U {v;,
v, }—{x}), we have (7 )+ | N YUN (@) |<l2,Cor— {o7 } |+ | (0,Co,— {0 1)U (V(B)
U ooy} —{a D ISSIVO) — (o o+ T oo} [+ VB —{z} [ =n—1.

Similarly, we have:

dv) + [N UN®@ | <n—1,

dz) + IN@GTY UNG@H | <n— 1.
Since {vy svy sz} is a (3, 2)-independent set, the conditions of Theorem 4 imply that the
above three equalities hold. Thus N(2)=V(B)U {v,v,} — {x}.

For (13) and (14) it is readily seen that G=(K,U K, UK,) V G;. This completes the
proof of Theorem 4.

Corollary 1(Tian [8]) 1f G is a 2-connected graph of order n satisfying | N (x) U
N@ i+ |NWUN @) |+ [N UN (w) | 222n—1 for any independent set {«,v,w} in G,
then G is Hamiltonian.

Cox;ollary 2(Chen {7]) Let G be 2-connected graph of order n. If 2| N(W)UN @) |+
d(u)+d(v)=2n—1 for each pair of nonadjacent vertices u,v € V(G), then G is Hamiltonian.
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