A SUFFICIENT CONDITION FOR 2-CONNECTED HAMILTON GRAPHS

Pan Lingiang

Zhang Kemin

(Dept. of Math., Nanjing University, Nanjing 210093, P. R. C.)

Abstract Let G be a graph of order $n \ge 3$. We show that if G is a 2-connected graph and $\sum_{i=1}^{3} d(x_i) + \sum_{1 \le i < 3} |N(x_i) \cup N(x_k)| \ge 3n - 3 \text{ for any 3-independent set } \{x_1, x_2, x_3\} \text{ with a pair of vertices } x_i, x_i \text{ at distance two } (1 \le s \ne t \le 3), \text{ then } G \text{ is Hamiltonian or } G \cong G_{\frac{n-1}{2}} \vee I_{\frac{n+1}{2}} (n = 1 \mod 2) \text{ or } G \cong (K_p \cup K_q \cup K_r) \vee G_2, \text{ where } G_m \text{ is a simple graph of order } m$. In is an independent set of order m.

Key words Neighborhood, Hamiltonian cycle.

AMS(1991) subject classifications 05C38, 05C45

1 Introduction

We use [1] for terminologies and notations and consider only simple graphs. If G has a cycle containing every vertex of G, then G is called Hamiltonian. The set of vertices adjacent to vertex v is denoted by N(v); d(v) = |N(v)| is the degree of the vertex v. If A, B are subgraphs of G and $U \subseteq V(G)$, we define $N(A) = \bigcup_{v \in V(A)} N(v)$, $N_B(A) = N(A) \cap V(B)$ and $\Delta(U) = \max\{d(u) | u \in U\}$. The distance, denoted by d(u,v), between two vertices u and v of a connected graph is the minimum length of all paths joining u and v. Let I_k be a k-independent set, if $\min\{d(u,v) | u,v \in I_k\} = r$, then I_k is called (k,r)-independent set, denoted by I_k .

If C is a cycle of graph G, we let \vec{C} denote the cycle C with a given orientation. If $u,v \in V(C)$, then $u\vec{C}v$ denotes the consecutive vertices on C from u to v. The same vertices, in reverse order, are given by $v\vec{C}u$. We use u^+ for the successor of u on \vec{C} and u^- for its predecessor; $u^{++} = (u^+)^+$ and $u^{--} = (u^-)^-$, If $A \subseteq V(C)$, then $A^+ = \{v^+ | v \in A\}$. The set A^- is de-

[◆] 收稿日期:1996-11-08.

The project supported by NSFC and NSFJS.

fined analogously.

The development of the theory on Hamiltonian graphs has seen a series of results based on controlling the degrees of the vertices of G. In this paper, we improve Theorem 3 in [4] to obtain a stronger result.

Theorem 1 [2] Let G be a graph of order $n \ge 3$ such that for each pair of nonadjacent vertices x and y, $d(x) + d(y) \ge n$, then G is Hamiltonian.

Theorem 2 [3] Let G be a 2-connected graph of order $n \ge 3$. If for each pair of nonadjacent vertices x and y, $|N(x) \bigcup N(y)| \ge \frac{2n-1}{3}$, then G is Hamiltonian.

Theorem 3 [4] Let G be a 2-connected graph of order $n \ge 3$. If for any 3-independent set $\{x_1, x_2, x_3\}$, $\sum_{i=1}^{3} d(x_i) + \sum_{1 \le i \le 3} |N(x_i)| > 3n - 3$, then G is Hamiltonian.

Theorem 4 Let G be a 2-connected graph of order $n \geqslant 3$. If for any (3,2)-independent set $\{x_1, x_2, x_3\}$, $\sum_{i=1}^3 d(x_i) + \sum_{1 \leqslant j < k \leqslant 3} |N(x_j) \cup N(x_k)| \geqslant 3n-3$, then G is Hamiltonian or $G \cong G_{\frac{n-1}{2}} \vee I_{\frac{n+1}{2}} (n \equiv 1 \mod 2)$ or $G \cong (K_p \cup K_q \cup K_r) \vee G_2$, where G_m is a simple graph of order m, I_m is an independent set of order m.

It is easy to find Hamiltonian graphs that satisfy the conditions of Theorem 4, but not the conditions of Theorem 3. One such graph is $G_m \vee (I_{m+1} \cup e)$, where $m \ge 4$, G_m is a graph of order m, I_{m+1} is an (m+1)-independent set, e is an edge with two vertices in I_{m+1} .

2 Proof of Theorem 4

Let G be a graph satisfying the condition of Theorem 4, and let C be a longest cycle of G with a fixed orientation. Assume C is not an Hamilton cycle of G. Then G-V(C) has a connected component B. Let v_1, v_2, \cdots, v_m be the elements of $N_C(B)$ occurring on \vec{C} in consecutive order. Since G is 2-connected, we have $m \ge 2$. For each $i \ne j$, let $v_i P_{i,j} v_j$ be a path of length at least 2 which joins v_i and v_j with all internal vertices of the path in B. Let x_j be a vertex of B which is adjacent to v_j (for $i \ne j$, possibly $x_i = x_j$). The indices are taken modulo m in the proof. Let $N^- = \{v_1^-, v_2^-, \cdots, v_m^-\}$, $N^+ = \{v_1^+, v_2^+, \cdots, v_m^+\}$.

Lemma 1 [5] Let x be any vertex of B. For $u,v \in N^- \cup \{x\}$, there exists no (u,v)-path with all internal vertex disjoint from C, particularly, $uv \notin E$.

For any $j(1 \le j \le m)$ Lemma 1 implies $v_{j+1}^- \in N(v_j^-)$. So there is a vertex $w_j \in \{v_j^+, v_j^{++}, \cdots, v_{j+1}^-\}$ such that $w_j \in N(v_j^-)$ and $v \in N(v_j^-)$ for any $v \in \{v_j, \hat{\boldsymbol{y}}_j^+, v_j^{++}, \cdots, w_j^-\}$. Let $H_j = \{v_j^+, v_j^{++}, \cdots, w_j\}$, $H = \{u_1, u_2, \cdots, u_m\}$, where u_j is a vertex of H_j .

Lemma 2 [5] Let $x \in B$ and $u, v \in H \cup \{x\}$, then there exists no (u, v)-path with all internal vertices disjoint from C, particularly, $uv \notin E$.

Lemma 3 [5] If $u_i, u_j \in H(i < j)$, then for any vertex $v \in u_i^+ \vec{C} u_j^-$, we have $u_i v \notin E$ or $u_j v^- \notin E$; for $v \in u_j^+ \vec{C} u_i^-$, we have $u_i v \notin E$ or $u_j v^+ \notin E$.

Lemma 4 [5] For $x \in B$ and $u_i, u_j \in H(i \neq j), d(x) + |N(u_i) \cup N(u_j)| \leq n-1$. The equality holds iff $V(C) = N_C(u_i) \cup N_C(u_j) \cup \{u_1, u_2, \dots, u_m\}$; $V(B) = N_B(x) \cup \{x\}$; $N_C(x) = \{v_1, v_2, \dots, v_m\}$; $V(R) = N_R(u_i) \cup N_R(u_j)$, where R = G - V(B) - V(C).

Proof We easily obtain

$$N_B(x) \subseteq V(B) - \{x\},$$

$$N_C(x) \subseteq \{v_1, v_2, \dots, v_m\},$$

$$N_C(u_i) \bigcup N_C(u_j) \subseteq V(C) - \{u_1, u_2, \dots, u_m\},$$

$$N_R(u_i) \bigcup N_R(u_j) \subseteq V(R).$$

Therefore, $d(x) + |N(u_i)| \le |V(B)| - 1 + m + |V(C)| - m + |V(R)| = n - 1$. The equality holds iff the above sets are equal.

Using Lemma 1-3, We now derive an upper bound for $d(u_i) + |N(u_{i-1}) \bigcup N(x)|$. Let

By Lemma 2 and 3, $R_i(u_i) \cap S_i(u_{i-1}) = \emptyset$ for j=1,2 and 3. Let

$$\delta'_{i} = \begin{cases} 1, & \text{if } v_{i}x \in E \text{ and } v_{i}u_{i-1} \notin E, \\ 0, & \text{otherwise} \end{cases}$$

and

$$\delta_i = egin{cases} 1 \,, & ext{if } \delta'_i = 1 ext{ and } u_i v_i^- \in E \,, \ 0 \,, & ext{otherwise.} \end{cases}$$

We get that $d(u_i) + |N(u_{i-1}) \cup N(x)| = |R_1(u_i)| + |S_1(u_{i-1})| + |R_2(u_i)| + |S_2(u_{i-1})| + |R_3(u_i)| + |S_3(u_{i-1})| + |N_B(x)| + \delta'_i \leq |R_1(u_i) \cup S_1(u_{i-1}) \cup R_2(u_i) \cup S_2(u_{i-1})| + (n-|V(C)| - |V(B)|) + |N_B(x)| + \delta'_i = n - |V(C) - (R_1(u_1) \cup S_1(u_{i-1}) \cup R_2(u_i) \cup S_2(u_{i-1}))| - |V(B) - N_B(x)| + \delta'_i \leq n - 1 - |V(C) - (R_1(u_i) \cup S_1(u_{i-1}) \cup R_2(u_i) \cup S_2(u_{i-1}))| + \delta'_i \leq n - 1 + \delta_i.$

Note that the last inequality follows since $v_i^- \notin R_2(u_i) \cup S_2(u_{i-1})$ if $\delta'_i = 1$ and $\delta_i = 0$. Thus we have:

Lemma 5[6] (1) For $x \in B$ and $u_i \in H$, $d(u_i) + |N(u_{i-1}) \bigcup N(x)| \le n-1+\delta_i$. If $d(u_i) + |N(u_{i-1}) \bigcup N(x)| = n$, then $xv_i \in E$, $u_iv_i^- \in E$ and $N_B(x) = V(B) - \{x\}$, $V(C) = R_1(u_i) \bigcup S_1(u_{i-1}) \bigcup R_2(u_i) \bigcup S_2(u_{i-1})$.

(2) If $u_i v_i^- \notin E$, then $d(u_i) + |N(u_{i-1}) \bigcup N(x)| \leq n-1$. When the equality holds, we have $N_B(x) = V(B) - \langle x \rangle$ and $V(C) = R_1(u_i) \bigcup S_1(u_{i-1}) \bigcup R_2(u_i) \bigcup S_2(u_{i-1})$.

We prove Theorem 4 for two cases.

Case 1 $m \ge 3$.

Subcase 1.1 There is $i_0(1 \le i_0 \le m)$ such that $d(v_{i_0-1}) = n - |N(v_{i_0})| \setminus N(x_{i_0})|$. Then by Lemma 5(1), we have $v_{i_0-1}^- v_{i_0-1}^+ \in E$.

We consider (3,2)-independent set $\{v_{i_k}^-v_{i_k+1}^-, x_{i_k}\}$ in two cases.

Subcase 1.1.1 $d(v_{i_0+1}^-)=n-1-|N(v_{i_0}^-)\bigcup N(x_{i_0})|$.

By Lemma 5(2), for any $v \in v_{i_0+1} \vec{C} v_{i_0}^{--}$, we have $v \in N(v_{i_0}^-) \cup N(x_{i_0})$ or $v^+ \in N(v_{i_0+1}^-)$.

Particularly, since $v_{i_0-1}^- \not\in N(v_{i_0}^-) \bigcup N(x_{i_0})$, we have $v_{i_0-1} \in N(v_{i_0+1}^-)$. Thus the cycle $v_{i_0+1}P_{i_0+1,_{i_0-1}}v_{i_0+1}v_{i_0+1}^- \not\subset v_{i_0+1}v_{i_0+1}^- \not\subset v_{i_0+1}$ is longer than C; a contradiction.

Subcase 1.1.2 $d(v_{i,+1}^-) \le n-2-|N(v_{i,-1}^-) \bigcup N(x_{i,-1})|$.

By Lemmas 4 and 5, we have

$$\begin{split} d(v_{i_0}^-) + & |N(v_{i_0+1}^-) \bigcup N(x_{i_0})| \leqslant n, \\ d(x_{i_0}) + & |N(v_{i_0}^-) \bigcup N(v_{i_0+1}^-)| \leqslant n-1. \end{split}$$

By the conditions of Theorem 4, we have $3n-3 \le d(x_{i_0})+d(v_{i_0}^-)+d(v_{i_0+1}^-)+|N(v_{i_0}^-)\bigcup N(x_{i_0})|+|N(v_{i_0}^-)\bigcup N(v_{i_0+1}^-)\bigcup N(v_{i_0+1}^-)| \le 3n-3.$

Hence we have $|N(v_{i_0}^-) \bigcup N(v_{i_0+1}^-)| = n-1-d(x_{i_0})$. By Lemma 4, we have $N(v_{i_0}^-) \bigcup N(v_{i_0+1}^-) = V(G) - V(B) - \{u_1, u_2, \cdots, u_m\}$. So $v_{i_0-1} \in N(v_{i_0}^-)$ or $v_{i_0-1} \in N(v_{i_0+1}^-)$. If $v_{i_0-1} \in N(v_{i_0-1}^-)$, the cycle $v_{i_0} P_{i_0, i_0-1} v_{i_0-1} v_{i_0}^- \bar{C} v_{i_0-1}^+ v_{i_0-1}^- \bar{C} v_{i_0}$ is longer than C, a contradiction. If $v_{i_0-1} \in N(v_{i_0+1}^-)$, then cycle $v_{i_0+1} P_{i_0+1, i_0-1} v_{i_0-1}^- v_{i_0+1}^- \bar{C} v_{i_0+1}^+ v_{i_0-1}^- \bar{C} v_{i_0+1}^-$ is longer than C, a contradiction.

By the analogous proof of subcase 1.1, we can prove $d(v_i^+) \leq n-1-|N(v_{i-1}^+)|$ $N(x_{i-1})|(i=1,2,\cdots,m)$. Hence

Subcase 1.2 For any $i(i=1,2,\cdots,m)$, $d(v_{i-1}^-) \le n-1-|N(v_i^-) \cup N(x_i)|$ and $d(v_i^+) \le n-1-|N(v_{i-1}^+) \cup N(x_{i-1})|$.

In the following, we will get 14 claims.

By Lemma 4,5(2) and the conditions of Theorem 4, we can easily obtain

(1)

$$\begin{aligned} d(v_{i-}^{-}) + |N(v_{i-1}^{-}) \bigcup N(x_i)| &= n - 1, \\ d(v_{i-1}^{+}) + |N(v_{i}^{+}) \bigcup N(x_{i-1})| &= n - 1, \quad (i = 1, 2, \dots, m), \\ d(x_i) + |N(v_{i-}^{-}) \bigcup N(v_{i-1}^{-})| &= n - 1, \\ d(x_{i-}) + |N(v_{i}^{+}) \bigcup N(v_{i-1}^{-})| &= n - 1. \end{aligned}$$

By Lemmas 5(2) and (1), we have

(2) For any $v \in v_i \vec{C} v_{i-1}^-$, we have $v \in N(v_{i-1}^-) \bigcup N(x_i)$ or $v^+ \in N(v_i^-)$; for any $v \in v_{i-1} \vec{C} v_i^{--}$, $v \in N(v_{i-1}^-) \bigcup N(x_i)$ or $v^- \in N(v_i^-)$. Symmetrically, for any $v \in v_i^{++} \vec{C} v_{i-1}$, $v \in N(v_i^+) \bigcup N(x_{i-1})$ or $v^- \in N(v_{i-1}^+)$; for any $v \in v_{i-1}^{++} \vec{C} v_i$, $v \in N(v_i^+) \bigcup N(x_{i-1})$ or $v^+ \in N(v_{i-1}^+)$.

Noting that $v_{i+1}^- \notin N(v_{i-1}^-) \bigcup N(x_i)$, and by (2) we have

(3) For any $i(i=1,2,\dots,m)$, $v_i^-v_{i+1} \in E$. Symmetrically, $v_{i-1}v_i^+ \in E$.

(4) |V(B)| = 1.

Proof First we prove that $v_i^-v_i^{++} \in E$ for any $i \in \{1,2,\cdots,m\}$. Since $v_{i+1}^+ \notin N(v_i^+) \cup N(x_{i-1})$, we have $v_{i-1}^+v_{i+1} \in E$ by (2). But $v_{i-1}^+v_{i+1} \in E$ and $v_i^-v_{i+1}^+ \in E$ give the cycle $v_i \vec{C} v_{i+1} v_{i+1}^+ \vec{C} v_i^-v_{i+1}^+ \vec{C} v_{i-1} P_{i-1,i} v_i$, which is longer than C. Thus $v_i^-v_{i+1}^+ \notin E$ implies $v_{i+1}^+ \notin N(v_i^-) \cup N(x_{i-1})$, furthermore $v_{i+1}^-v_{i+1}^+ \in E$ by (2). Suppose $|V(B)| \geqslant 2$, then we may assume $1 \leqslant s < t \leqslant m$. If $s+1 \neq t$, since $v_{i+1}^+v_i^+ \notin E$ we have $v_i^+v_i \in E$ by (2). The cycle $v_iv_i^+\vec{C} v_iP_{i,i}v_i$ is longer than C, a contradiction. If s+1=t, since $v_{i-1}^-v_i^- \notin E$ we have $v_i^-v_i \in E$ by (2). The cycle $v_iv_i^+\vec{C} v_iP_{i,i}v_i$ is longer than C, a contradiction. So we have |V(B)|=1.

(5)
$$|V(C)| = n-1$$
.

Proof Assume |V(C)| < n-1, then there is another connected component $B' \in G - V(C)$ by (4). Let $w \in B'$, then we have $v_{i-1}^- w \in E$ or $v_i^- w \in E$ by the proof of Lemma 5. Since $m \ge 3$, there exist s, t ($s \ne t$) such that $v_i^- w \in E$ and $v_i^- w \in E$. The cycle $v_i \vec{C} v_i^- w v_i^- \vec{C} v_i P_{t,i} v_i$ is longer than C, a contradiction. Therefore |V(C)| = n-1.

(6) For any $i(i=1,2,\dots,m), v_{i-1}^{++}=v_i$.

Proof Assume (6) is not true, then there is i such that $v_{i-1}^{++} \neq v_i$. Let $S = \{v_1^-, v_2^-, \cdots, v_m^-, x_2\}$. By (2) and $m \geqslant 3$, we may suppose $d(x_2) = \Delta(S)$ (if $d(x_2) < \Delta(S)$, we consider another longest cycle. By (1) and Lemma 4, we have $d(x_2) + |N(v_2^-) \cup N(v_1^-)| = n-1$, and $N_C(x_2) = \{v_1, v_2, \cdots, v_m\}$. Hence by (3) and the conditions of Theorem 4 we have

$$3n-3 \leqslant d(x_2) + |N(v_2^-) \bigcup N(v_1^-)| + d(v_1^-) + |N(v_2^-) \bigcup N(x_2)| + d(v_2^-) + |N(v_1^-) \bigcup N(x_2)| \leqslant n-1 + 2(\Delta(S) + 2\Delta(S) - 1),$$
 i. e. , $\Delta(S) \geqslant \frac{n}{3}$.

So there exists $k(1 \le k \le m)$ such that $v_{k-1}^{++} = v_k$. From the above discussion we may suppose $v_k^{++} \ne v_{k+1}$.

First we verify that there is a cycle longer than C in G when $m \geqslant 4$. Since $d(v_{k-2}^+, x_2) = 2$, $\{v_{k-2}^+, v_{k-1}^+, x_2\}$ is a (3,2)-independent set. We can easily obtain $|N(v_{k-2}^+) \cup N(v_{k-1}^+)| + d(x_2) = n-1$ by Lemma 4,5 and the conditions of Theorem 4. Hence we have $v_k^{++} \vec{C} v_{k+1} \subseteq N(v_{k-1}^+) \cup N(v_{k-2}^+)$ by Lemma 4 which implies $v_{k-2}^+ v_{k+1}^- \in E$ by Lemma 1 and $v_k^- v_{k+1} \in E$ by (3). The cycle $v_{k-2} P_{k-2,k-1} v_{k-1} \vec{C} v_{k-2}^+ v_{k+1}^- \vec{C} v_{k-2}^-$ is longer than C, a contradiction.

Now we verify that there is a cycle longer than C in G when m=3. From the above, we may suppose $v_1^{++}=v_2$ and $v_2^{++}\neq v_3$. Since $d(v_1^+,x_2)=2$, $\{v_1^+,v_3^+,x_2\}$ is a (3,2)-independent set. We can easily obtain $|N(v_1^+) \cup N(v_3^+)| + d(x_2) = n-1$ by Lemma 4,5 and the conditions of Theorem 4. Hence we have $v_3^- \in N(v_1^+) \cup N(v_3^+)$ by Lemma 4 which implies $v_3^- \in N(v_3^+)$ by Lemma 1. But $v_3v_1^+ \in E$ by (3). Thus the cycle $v_3P_{3,2}v_2\vec{C}v_3^-v_3^+\vec{C}v_1^+v_3$ is longer than C, a contradiction.

We can derive $G \cong G_{\frac{n-1}{2}} \vee I_{\frac{n+1}{2}}$ by (2) and (6).

Case 2 m=2.

Considering (3,2)-independent set $\{v_1^-, v_2^-, x_1\}$, by Lemma 4,5 and the conditions of Theroem 4, we can derive that:

$$d(v_{2}^{-}) + |N(v_{1}^{-}) \bigcup N(x_{1})| = n - 1.$$

$$d(v_{1}^{-}) + |N(v_{2}^{-}) \bigcup N(x_{1})| = n - 1,$$

$$d(x_{1}) + |N(v_{1}^{-}) \bigcup N(v_{2}^{-})| = n - 1.$$

Since $d(v_2^+) + |N(v_1^+) \bigcup N(x_1)| = n-1$, by Lemma 5(2) we have

(7) For any $v \in v_1 \vec{C} v_2^-$, $v \in N(v_1^-) \bigcup N(x_1)$ or $v^- \in N(v_2^-)$; for any $v \in v_2 \vec{C} v_1^-$, $v \in N(v_1^-) \bigcup N(x_1)$ or $v^+ \in N(v_2^-)$. Symmetrically, for any $v \in v_1^{++} \vec{C} v_2$, $v \in N(v_2^+) \bigcup N(x_1)$ or $v^+ \in N(v_1^+)$; for any $v \in v_2^{++} \vec{C} v_1$, $v \in N(v_2^+) \bigcup N(x_1)$ or $v^- \in N(v_1^+)$.

Since $d(x_1) + |N(v_1^-) + N(v_2^-)| = n-1$, by Lemma 4 we have

 $(8) \ V(C) \subseteq N(v_1^-) \cup N(v_2^-) \cup \{v_1^-, v_2^-\}, V(C) \subseteq N(v_1^+) \cup N(v_2^+) \cup \{v_1^+, v_2^+\}, N_C(x_1) = \{v_1, v_2\}, N_B(x_1) = V(B) - \{x_1\}, V(R) = N_B(v_1^-) \cup N_B(v_2^-), V(R) = N_B(v_1^+) \cup N_B(v_2^+).$

 $(9) \ v_{2}^{+} \vec{C} v_{1}^{--} \bigcup \{v_{1}\} \subseteq N(v_{1}^{--}), v_{1}^{+} \vec{C} v_{2}^{--} \bigcup \{v_{2}\} \subseteq N(v_{2}^{--}); v_{1}^{++} \vec{C} v_{2}^{--} \bigcup \{v_{1}\} \subseteq N(v_{1}^{+}), v_{2}^{++} \vec{C} v_{1}^{--} \bigcup \{v_{2}\} \subseteq N(v_{2}^{+}).$

Proof First if $a_i \in v_i^+ \vec{C} v_{i+1}^-$ with $a_i v_i^+ \in E$ and $a_i^+ v_i^+ \notin E$, then $a_i v_{i+1}^+ \in E$ by (7) (i=1, 2). Applying Lemma 3 and (8) we have $v_i^{++} \vec{C} a_i \subseteq N(v_i^+)$ and $a_i \vec{C} v_{i+1} \subseteq N(v_{i+1}^+)$. Thus there is a vertex $a_i \in v_i^+ \vec{C} v_{i+1}^-$ such that $v_i^{++} \vec{C} a_i \subseteq N(v_i^+)$ and $a_i^+ \vec{C} v_{i+1} \subseteq N(v_{i+1}^+)$ (i=1,2). Similarly, there is a vertex $b_i \in v_i^+ \vec{C} v_{i+1}^-$ such that $v_i \vec{C} b_i^- \subseteq N(v_i^-)$ and $b_i \vec{C} v_{i+1}^- \subseteq N(v_{i+1}^-)$ (i=1,2).

If $b_1 \neq v_1^+$, then $v_1^+ v_2^- \notin E$, so that $v_1^- v_1^{++} \in E$ by (7). But $v_1^- v_1^{++} \in E$ and $v_2^+ v_1^{+++} \in E$ give a cycle longer than C. Thus $v_2^+ v_1^{+++} \notin E$ implies $a_1 \in v_1^{+++} \vec{C} v_2^-$ and the cycle $v_1 P_{1,2}$ $v_2 \vec{C} a_1^+ v_2^+ \vec{C} v_1^- v_2^{++} \vec{C} a_1 v_1^+ v_1$ is longer than C, a contradiction. Hence $b_1 = v_1^+$. Similarly, $b_2 = v_2^+$, $a_1 = v_2^-$, $a_2 = v_1^-$. Hence (9) holds.

(9) implies (10).

 $(10) \ [v_1^{++}\vec{C}v_2^{--}, v_2^{++}\vec{C}v_2^{--}] = \varnothing, \ [v_1^{+}, v_2^{+}\vec{C}v_1^{--}] = \varnothing, \ [v_1^{-}, v_1^{++}\vec{C}v_2^{--}] = \varnothing, [v_2^{+}, v_2^{++}\vec{C}v_2^{--}] = \varnothing, [v_2^{-}, v_2^{++}\vec{C}v_2^{--}] = \varnothing, [v_2^{-}, v_2^{++}\vec{C}v_1^{--}] = \varnothing.$

(11) $V(G) = V(C) \bigcup V(B)$.

Proof Assume (11) is not true, then there is another connected component B' in G-V(C).

If $v_1^{++} = v_2$ and $v_2^{++} = v_1$, then |B| = 1 and |B'| = 1. Let the vertex of B' be b'. By Lemma 2 and (8), we have $b' \in N(v_1^-)$ or $b' \in N(v_2^-)$, without loss of generality, say $b' \in N(v_1^-)$. Since G is 2-connected, b' is adjacent to a vertex of C except v_1^- . But this produces a cycle longer than C, a contradiction. Therefore $v_1^{++} \neq v_2$ or $v_2^{++} \neq v_1$. In the following, we suppose $v_2^{++} \neq v_1$.

By Lemma 2 and (8), we have $V(B')\subseteq N(v_1^-)$ or $V(B')\subseteq N(v_2^-)$, without loss of generality, say $V(B')\subseteq N(v_1^-)$. We have $v_1^-v_2^-\notin E$ by (10) and $v_2x_1\in E$ by (8), so that $\{v_1^{--},v_2^-,x_1\}$ is a (3,2)-independent set. Since $v_1^{--}v_2^-\notin E$, we have $|N_C(v_1^{--})\bigcup N_C(v_2^-)|$

 $\leqslant |C| - 2. \text{ Clearly, } d(x_1) \leqslant |V(B)| + 1, |N_R(v_1^{--}) \bigcup N_R(v_2^{--})| \leqslant |V(G) - V(C) - V(B) - V(B) - V(B')|, \text{ where } R = G - V(B) - (C). \text{ Thus } d(x_1) + |N(v_1^{--}) \bigcup N(v_2^{--})| = d(x_1) + |N_C(v_1^{--}) \bigcup N_C(v_2^{--})| + |N_R(v_1^{--}) \bigcup N_R(v_2^{--})| \leqslant |V(B)| + 1 + |V(C)| - 2 + |V(G) - V(C) - V(B)| - V(B')| \leqslant |V(G)| - |V(B')| - 1 \leqslant n - 2. \text{ Similarly, } d(v_2^{--}) + |N(v_1^{--}) \bigcup N(x_1)| \leqslant n - 2, d
(v_1^{--}) + |N(v_2^{--}) \bigcup N(x_1)| \leqslant n - 2. \text{ Thus } d(x_1) + d(v_1^{--}) + d(v_2^{--}) + |N(v_1^{--}) \bigcup N(v_2^{--})| + |N(v_2^{--}) \bigcup N(x_1)| \leqslant n - 2. \text{ This contradicts the condition of Theorem } 4.$

We prove case 2 for the following three subcases.

Subcase 2. 1 $v_1^-v_1^+ \in E$ and $v_2^-v_2^+ \in E$.

Since C is the longest cycle in G, we can derive $v_1^{++}\vec{C}v_2^{--} \neq \emptyset$, $v_2^{++}\vec{C}v_1^{--} \neq \emptyset$. Let $u_1 \in v_1^{++}\vec{C}v_2^{--}$, then $v_1^-u_1 \notin E$ by (10). Thus $\{v_1^-, u_1, x_1\}$ is a (3,2)-independent set. Since $v_1^-v_1^+ \in E$, $v_2^-v_2^+ \in E$ and C is the longest cycle in G, we have $N(v_1^-) \subseteq v_2^+ \vec{C}v_1^{--} \cup \{v_1, v_1^+\}$, $N(u_1) \subseteq v_1^+ \vec{C}v_2^- - \{u_1\}$, and $N(x_1) \subseteq (V(B) \cup \{v_1, v_2\}) - \{x_1\}$ by (10). Thus $d(u_1) + |N(v_1^-) \cup N(x_1)| \leq |v_1^+ \vec{C}v_2^-| -1 + |v_2^+ \vec{C}v_1^{--} \cup \{v_1, v_1^+\} \cup V(B) \cup \{v_1^-, v_2\}| -1 = |(V(C) - \{v_1^-\}) \cup V(B)| + |\{v_1^+\}| -2 = n - 2$. Similarly, $d(v_1^-) + |N(u_1) \cup N(x_1)| \leq n - 2$, $d(x_1) + |N(u_1) \cup N(v_1^-)| \leq n - 2$. Therefore $d(x_1) + d(v_1^-) + d(u_1) + |N(u_1) \cup N(v_1^-)| + |N(u_1) \cup N(x_1^-)| \leq n - 2$. Therefore $d(x_1) + d(v_1^-) + d(u_1) + |N(u_1) \cup N(v_1^-)| + |N(u_1) \cup N(v_1^-)| \leq n - 2$. This contradicts the condition of Theorem 4.

Subcase 2. 2 $v_1^-v_1^+ \in E$ and $v_2^-v_2^+ \notin E$ or $v_1^-v_1^+ \notin E$ and $v_2^-v_2^+ \in E$.

We discuss the latter, so do the former. Since $v_1^-v_1^+ \notin E$, $\{v_1^-, v_1^+, x_1\}$ is a (3,2)-independent set. Since $v_2^-v_2^+ \in E$ and C is the longest cycle, we have $v_1^-v_2 \notin E$ and $v_1^+v_2 \notin E$. By (10), we have $N(v_1^-) \subseteq v_2^+ \vec{C} v_1^- \cup \{v_1\}$, $N(v_1^+) \subseteq v_1^{++} \vec{C} v_2^- \cup \{v_1\}$, $N(x_1) \subseteq V(B) \cup \{v_1, v_2\} - \{x_1\}$. Thus $d(v_1^-) + |N(v_1^+) \cup N(x_1)| \le |v_2^+ \vec{C} v_1^{--} \cup \{v_1\}| + |(v_1^{++} \vec{C} v_2^- \cup \{v_1\}) \cup (V(B) \cup \{v_1, v_2\} - \{x_1\})| = |v_2^+ \vec{C} v_1^{--}| + 1 + |v_1^{++} \vec{C} v_2 \cup \{v_1\}| + |V(B)| - 1 = |V(C)| - 2 + |V(B)| = n - 2$. Similarly, $d(v_1^+) + |N(v_1^-) \cup N(x_1)| \le n - 2$, $d(x_1) + |N(v_1^-) \cup N(v_1^+)| \le n - 2$. Therefore $d(x_1) + d(v_1^-) + d(v_1^+) + |N(v_1^-) \cup N(v_1^+)| + |N(v_1^-) \cup N(x_1)| + |$

Subcase 2. 3 $v_1^-v_1^+ \not\in E$, $v_2^-v_2^+ \not\in E$.

(12) $v_1^+v_2 \in E, v_1^-v_2 \in E, v_2^+v_1 \in E$, and $v_2^-v_1 \in E$.

Proof Since $d(v_1^-) + |N(v_2^-) \bigcup N(x_1)| = n-1$ and (10), we have $n-1 = d(v_1^-) + |N(v_2^-) \bigcup N(x_1)|$

 $= |N_{C}(v_{1}^{-})| + |N_{R}(v_{1}^{-})| + |N_{C}(v_{2}^{-}) \bigcup N_{C}(x_{1})| + |N_{R}(v_{2}^{-})| + |N_{B}(x_{1})|$ $= |N_{C}(v_{1}^{-}) \bigcup N_{C}(v_{2}^{-}) \bigcup N_{C}(x_{1})| + |N_{C}(v_{1}^{-}) \cap (N_{C}(v_{2}^{-}) \bigcup N_{C}(x_{1}))|$

 $+ |N_R(v_1^-) \cup N_R(v_2^-)| + |N_B(x_1)|$ $\leq |V(C) - \{v_1^-, v_2^-\}| + |\{v_1, v_2\}| + |V(R)| + |V(B) - \{x\}|$

 $\leq |V(C) - \{v_1^-, v_2^-\}| + |\{v_1, v_2\}| + |V(R)| + |V(B) - \{x\}|$ = n - 1,

where R = G - V(C) - V(B).

Thus $N_c(v_1^-) \cap (N_c(v_2^-) \cup N_c(x_1)) = \{v_1, v_2\}$ implies $v_1^- v_2 \in E$. Similarly, we have $v_1^+ v_2$

 $\in E, v_2^+v_1 \in E$ and $v_2^-v_1 \in E$.

(13) For any $a_i \in v_i^+ \vec{C} v_{i+1}^-$, we have $N(a_i) \bigcup \{a_i\} = v_i \vec{C} v_{i+1}, (i=1,2)$.

Proof By (10) and (11), we have $N(a_i) \bigcup \{a_i\} \subseteq N_i \vec{C}v_{i+1}$. Thus

$$d(x_1) + |N(v_i^-) \bigcup N(a_i)| \leq |V(G) - \{v_i^-, a_i, x_1\}| + |\{v_1, v_2\}| = n - 1,$$

$$|d(v_i^-) + |N(a_i) \cup N(x_1)| \leq |V(G) - \{v_i^-, a_i, x_1\}| + |\{v_1, v_2\}| = n - 1,$$

$$|d(a_i) + |N(v_i^-)| |N(x_1)| \le |V(G) - \{v_i^-, a_i, x_1\}| + |\{v_1, v_2\}| = n - 1,$$

Since $\{v_i^+, a_i, x_1\}$ is a (3,2)-independent set, the above three equalities hold by the conditions of Theorem 4. Therefore $N(a_i) \bigcup \{a_i\} = v_i \vec{C} v_{i+1} (i=1,2)$.

(14) For any $x \in V(B)$, we have $N(x) = V(B) \bigcup \{v_1, v_2\} - \{x\}$.

Proof Since $N(v_1^-) \subseteq v_2 \vec{C} v_1 - \{v_1^-\}$, $N(v_1^+) \subseteq v_1 \vec{C} v_2 - \{v_1^+\}$ and $N(x) \subseteq (V(B) \bigcup \{v_1, v_2\} - \{x\})$, we have $d(v_1^-) + |N(v_1^+) \bigcup N(x)| \le |v_2 \vec{C} v_1 - \{v_1^-\}| + |(v_1 \vec{C} v_2 - \{v_1^+\}) \bigcup (V(B) \cup \{v_1, v_2\} - \{x\})| \le |V(C) - \{v_1^-, v_1^+\}| + |\{v_1, v_2\}| + |V(B) - \{x\}| = n - 1$.

Similarly, we have:

$$d(v_1^+) + |N(v_1^-) \bigcup N(x)| \leq n - 1,$$

$$d(x) + |N(v_1^-) \bigcup N(v_1^+)| \leq n - 1.$$

Since $\{v_1^-, v_1^+, x\}$ is a (3, 2)-independent set, the conditions of Theorem 4 imply that the above three equalities hold. Thus $N(x) = V(B) \bigcup \{v_1, v_2\} - \{x\}$.

For (13) and (14) it is readily seen that $G \cong (K_p \cup K_q \cup K_r) \vee G_2$. This completes the proof of Theorem 4.

Corollary 1 (Tian [8]) If G is a 2-connected graph of order n satisfying $|N(u) \cup N(v)| + |N(u) \cup N(w)| + |N(v) \cup N(w)| \ge 2n-1$ for any independent set $\{u,v,w\}$ in G, then G is Hamiltonian.

Corollary 2(Chen [7]) Let G be 2-connected graph of order n. If $2|N(u) \bigcup N(v)| + d(u) + d(v) \ge 2n - 1$ for each pair of nonadjacent vertices $u, v \in V(G)$, then G is Hamiltonian.

References

- 1 Bondy, J. A. and Murty, U. S. R., Graph Theory with Applications, Macmillan, London and Elsevier, New York (1976).
- 2 Ore, O., Notes on Hamiltonian circuts, Amer. Math. Monthly 67(1960), 55-56.
- Faudree, R. J., Gould, R. J., Jacobson, M. S. and Schelp, R. H., Neighborhood unions and Hamiltonian properties in graphs, J. Combinat. Theory B47(1989), 1-9.
- 4 Shi Ronghua, A sufficient condition for Hamiltonian graphs, J. of East China Institute of Technology 4(1992), 23-27.
- 5 Song Zengmin, Graph Theory and Network Optimization, Southeast University, 1990.
- 6 Chen Guantao, Hamiltonian graphs involving distances, J. Graph Theory. 16(1992), 121-129.
- 7 Chen Guantao. One sufficient condition for Hamiltonian graphs, J. Graph Theory. 14(1990), 501 -508.
- 8 Tian, F., A note on the paper "A New Sufficient Conditions for Hamiltonian Graphs", J. Sys. Sci.

& Math. Scis. 5(1990), 81-83.

一个二连通 Hamilton 图的充分条件

潘林强

张克民

(南京大学数学系,南京 210093)

摘要 设 G 是 $n(\geqslant 3)$ 阶的 2-连通图 . 本文证明如果对于 G 中任一其中有两顶点距离为 2 的 3-独立集 $\{x_1,x_2,x_3\}$ 成立 $\sum_{i=1}^3 d(x_i) + \sum_{1\leqslant j \leqslant k \leqslant 3} |N(x_j) \bigcup N(x_k)| \geqslant 3n-3$,则G 是 Hamilton 图,除非 $G \cong G_{n-1} VI_{n+1 \choose 2}$ $(n=1 \mod 2)$ 或者 $G \cong (K_p \bigcup K_q \bigcup K_r) \dot{V}G_2$. 这里 G_m 表示 m 阶的简单图, I_m 表示 m 阶的独立集 . **关键词** 邻域,Hamilton 图 .

分类号 O157.5