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ON THE EXPONENT SET OF PRIMITIVE
LOCALLY SEMICOMPLETE DIGRAPHS’

ZHANG KEMIN AND Bu YUreHUA

Abstract. A locally semicomplete digraph is a digraph D = (V, A) satisfying the following condi-
tion: for every vertex r € V the D[O(x)] and D[I(x)] are semicomplete digraphs. In this paper.
we get some properties of cycles and determine the exponent set of primitive locally semicomplete

digraphs.

1. lntroductionv

A digraph D is primitive if there exists an integer 2 > 0 such that for all ordered pairs of
vertices #,v € V(D) (not necessarily distinct), there is a walk from « to v with length 4. The
least such #is called the exponent of the digraph D, denoted by ¥ (D).

The exponent from vertex u to vertex v, denoted by ¥(u,v), is the least integer ¥ such
that there exists a walk of length m fromutovfor allm = 7. Let L(D) = {r,.7,,...,7,}) be
the set of distinct lengths of the cycles of D and we say that L(D) is the cycle length set of D.
The following two results are well-known.

Lemma 1. 1. ([3]) A digraph D is primitive iff D is strong connected and gcd(r;srys. .. +7))
=1,where LID)={r 175+ +. +73}-
Lemma 1. 2. If D is a primitive digraph, then

s Y(D) = max{Y(u,v) |u,v € V(D)}.
Let D be a primitve digraph and R = {r; ,7, ,... »7.} & L(D) such that ged (7 o7 seee s
r,) = 1. For any ordered pair of vertices u,v of D , we define that the relative distance with R

from u tov , denoted by d(u,v), is the length of the shortest walk from u to v which meets at
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least one cycle of length ; for j = 1.2.... .t

Suppose {7,s7,5. .. .7;} is a set of distinct positive integers with ged (ry .7, ... o7} = 1.
Then we define ¢(r,.7,,. .. ,7,) to be the least integer mn such that every integer £ == m can be
expressed in the formk=cr +¢,7,+... + ¢, wherec,.c,,.. . ,c,are some nonnegative in-

tegers. A result due to Schur shows that ¢(r,,7,,. .. ,7,) is well defined if ged (7| v7,,. .. ,7)
= 1. When A = 2.9(r,,7,) = (r, — 1)(r, — 1). where gcd (r,,7,) = 1. Roberts [7] has
shown that if a; == a, + jd,j = 0,1.2.... .5,a, 2> 2, then

a, — 2
s

Paysa .. .. a,) = [ + 1Ja, + (d — 1)(a, — 1), 1.D

where [x] denotes the greatest integer << x.

The following result is well-known.
Lemma 1. 3 ([8]) Let D be a primitive digraph and R= {r,—I TR &) YEL(D)Y={r,,
Taeeoo o7y with gedGr, o7, oo v sri)=1. Then Sfor all ordered pairs of u,vEV (D), we have

Y(u,v) < dp(u,v) + ?(r,-l,r,z,. e o?;)

t

and

Y(D) < max di(u,v) + ¢’(ri,*rr2*~ e 8T )

0w € VD) !

[3

Lemma 1. 4. Let x and y be any ordered pair of vertices of primitive digraph D. If there ex-
ist walks P,(zx.y) and P,(x,y) with [(P,(x,y))—I(P,(z,y))=1 (mod 2) where [(P(x,
v)) is the length of P(x.y)» and P,(x.y) meets at least a 2-cycle for i=1,2,then

7(x»y) < max{l(Pl(x’y))91(P2(x9y))} - ]-'

Proof. Leta = I(P,(x,y)),b = I(P,(x,y)) or{ = max{a,b} — 1, then{ —aorl{ — bis an
l—a

2

even integer, say { — a. We add the 2-cycle to P,(x,y) by times and get a new walk of

length  from x to y. Hence
Y(x,y) < max{{(P,(x,y)),{(P,(x,y))} — 1.(]

Corollary 1. 5. Let x and vy be any ordered pair of vertices of primitive digraph D. There ex-
ist walks P.(x,y), of length t+i from xtoy for i=0,1,2,... ,m, where m=2. I1f there are
two integers ay b, € {tst+1,... st+m} such that a;—b,=1 (mod 2) and both Pao_,(x.y),

P, _ (x.y) meet 2-cycle,and if there does not exist any walk of length t—1 from x to y. then
we have

y(xay) =1
The proof of this corollary is obvious. []

A semicom plete digraph is a digraph without nonadjacent vertices. A Locally semicom-
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plete digraph is a digraph D satisfying the following condition: for every vertex x € V(D).
D[O(x)] and D[I(x)] are semicomplete digraphs. We shall sometimes use the abbreviation
Lsd to denote a locally semicomplete digraph. A local tournament is a locally semicomplete di-
graph without 2-cycles and loops.

Locally semicomplete digraphs were first introduced by Bang Jensen [1]. They are gener-
alization of semicomplete digraphs and tournaments.  Many of the classic theorems of tourna-
ments have been generalized to Lsd. For example:

Lemma 1. 6. ([1]) Every connected Lsd has a directed Hamilton path and every strong Lsd
has a Hamilton cycle. )

The properties of arc-pancyclicity and completely strong path-connectivity have been gen-
eralized to Lsd (see [2],[4]and [5]). Hence it is clear that Lsds form a new and interesting
class. In this paper, we get some properties of cycles and determine the exponent set of primi-

tive Lsds.

2. The Distribution of the Length of Cycles on LSDS

In the following we always suppose D = (V,A) is a strong Lsd and L(D) = {r|.7,,. ..,
r,} is a cycle length set of D where r, <{r, <{... <{r,. We say that a cycle C is semicom plete
if D[V (C)]is a semicomplete digraph. If (z,3) € A(D), then we say that £ dominates y and
we will use the notation £ — y to denote this. If S& V(D) such that x— v (resp. , y—x ) for
every y € S we will use the notation z = S (resp. , S— z ) to denote this. For a walk P(x,,
u,) = ugutty. o U .. uy (resp.  cycle C = (uguy. .. wu,)) » we will use the notation u.P(u,,
u)u, (resp. » u,Cu;) to denote a walk along P(u,.u,) (resp. , C) from «, to u;, and [m,n]° to
denote a set of integers {m,m + 1,... ,n).
Lemma 2. 1. ([1]) Let D be a strong Lsd on n vertices. 1f D*C, and has no loop . then there
exists a vertex x of D such that D— x is strong. V
Corollary 2. 2. Let D be a strong Lsd on nz=23 vertices. then D is a primitive Lsd iff | A(D) |
>n.
Proof. If Dis a primitive Lsd, then D contains an n -cycle and there exists a 7 -cycle where » <C
nby Lemma 1. 6 and Lemma 1. 1, therefore | A(D) | > n. Otherwise let |A(D) | > n, thus D
24 C,. 1f D contains a loop, then L(D) = {1,7,.... ,7,_;+n}. So that ged (1,754+. .. y7,_,s7)
= 1 and D is primitive by Lemma 1. 1. Supposer, >> 1 , there exists an x € V(D) such that D
— zis strong by Lemma 2. 1. By the definition of Lsd, D — zis a Lsd, thus we haver,_, =
n — 1 and ged (ry47,s. .. s7,_1»sn) = 1. So Dis a primitive of Lsd. [
Lemma 2. 3. Let D be a strong Lsd on n==3 vertices and C,= (ugu,- - - u,_ u,) is a non-semicom-
plete k-cycle (3<k<<n). Then

(1) there exists an iy, 1531, <<k such that u yx—>u; for any x€ VD)\V(C,) . where u,

=uw,. Particularly, if C,is a shortest cycle of D and k=5, there are at most three arcs between
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x and C,;
(2) there exists a r-cycle C, such that V(C,)CV(C,) for r=~k+1,... sn;
(3) for all ordered pairs of vertices x.y& V(D). there is a path P(x,y) from x to y
with length at most k+1 which meets at least one cycle of length r for r=Fk, k+1.... ,n and
V(P(zoy))—{x. 3} EVC.
Proof. (1) Let x, € V(D)\V(C,). If there is at least one arc between x,and C, . without loss
of generality.let x, — u; for some j,.0 << j, << # — 1. Suppose (1) is false for x,- By w >

u; and the definition of Lsd, z,and «; _, are adjacent. 1f u; y—=x, s (1) is true. this is a con-

tradiction. So x,—u; _,. Similarly, we can get that x,—~>u; ;... .2, u; > where the sub-
script is module £, That is z, = C,, thus C, is semicomplete by the definition of Lsd. This con-
tradicts the assumption of C,. So there exists a 0 <{ 7, <{ # — 1 such that U T, U in D.

Now, we suppose there is no arc between x,and C,. Let P = x,x,. . . x,be a shortest path
from z, to Cywhere 2, = u,,0<{ j<Ck— land ¢ 2> 2. Then x,_, does not dominate , for 7 =
0,1,...,&£ — 1. Hence there is no arc between z,_, and C, : otherwise there is an #,, 0 << 7, <<
k— 1, such thatu, _, = x,_, = u, , a contradiction.. On the other hand, since z,_, = u;. we
can get 0 <4, <k — lsuch thatw, _, —,_, = u, as above. Thus we have that z,_,and », _,
are adjacent by r,_, >z, _, RN g and the definition of Lsd, a ‘contradiction. Hence there
is no vertex zin V(D) — V(C,) such that there is no arc between x and C,. So the first part of
(1) is true.

Suppose C, is a shortest cycle of D and there are at least four arcs between x and C, for
some x € V(D) — V(C,). Then we easily get a r- cycle for a certain » < % . This is a contra-
diction. This completes the proof of (1).

(2) and (3) easily follow from (1). ]

Theorem 2. 4. Let D be a primitive Lsd on n vertices without loop. L(D)={r +7,se.. 7,} is
the cycle length set of D, where r\<<r,<<...<r,. Then the structure of L(D) is only one of
the following cases :

(1) LD)={s.s+1,...n}, where 3=s<n—1;

(2) L(D)={2.5ys+1y... 0}, where 3 s<n-1;

(3) LID) = {susLov o stokoktLoe s on) o where 0<s<3, 30| "t | and 142k
<n—t+1.
Proof.

Case 1. r, = s == 4.

Let C, be an s- cycle, then C, is non-semicomplete. By Lemma 2. 3 (2), there exists a r-
cyclein Dforr =s,s+ 1,...,n. Hence L(D) = {s,s + 1,... ,n}.

Case 2. r, =5 =3

U L(D)# {3,4,...,n} , lett = max {/| there exists 7-cycle in Dforr = 3,4,... ./} and
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k = max{/|/>>t and there is a /- cycle in D}.

Obviously, {3,... ,t,k} S L(D),t+1& L(D)and 2>t + 2. Let C,be a k- cycle, then
C, is non-semicomplete since.# — 1 & L(D). By Lemma 2. 3 (2), D contains (¢ + 1)-,(k +
2)-....,n-cycle. So L(D) = {3,...,t,k.k + 1....,n}. Now, we shall show that ¢+ <

[n;l]andkgn—t—l—l.

Let C, be at-cycle, by Lemma 2. 3 (2) and¢ + 1 & L(D),C,is semicomplete. Since D is
strong . there exist zand yin D—V(C,) such that x is dominated by a vertex on C, and y domi-
nates a vertex on C,. By the definition of Lsd and ¢t + 1 & L(D), we haveC,—» xand y — C,.
Let z,,y, € V(D)\V(C,) such that

d(xy.v,) = min{d(z, )|y —=>C,—~z.z,y € V(ID)\V(C)}.
Let P(x,,5,) = x,x,. - - T, be a shortest path from z,to v, , where z,, = v,, and d(z,,%,)
=m. Then V(P(x,,¥,)) N V(C,) = &. Otherwise, we suppose {x,,I;,- .- "Ifo} Nnv,) =

& and z, 4, € V(C,), we may substitute z; for v, , a contradiction to the choice of y,. Now,

by y, = C, = z,and V(P(x,,5,)) N V(C,) = &, we can get r~cycle in Dforr = m + 2,m

+ 3,....m+t+1. Hencet + 2 < km+ 2and m + 1 + ¢t < n, that istg[n-; 1:|emd
En—t+1.

Case 3. r, = 2.

As shown above, we can prove that L(D) will be the case (2) or (3).

This completes the proof of Theorem. [ ]

In the following, we always suppose that the digraph has no loop.
Corollary 2. 5. Let D be a primitive Lsd on n=>4 vertices. Then |L(D)|<2iff Dis D, or
D, ,_, (see Fig. 1). ‘

Proof. Clearly, if Dis D, ,_,or D, ,_,. then |L(D)| = 2. Otherwise, suppose |L(D) | < 2.
Since D is a primitive Lsd, |L(D)}| = 2 and D contains a Hamiltonian cycle, that is L(D) =
{r,»n} with 7, <n. So L(D) = {n— 1,n} by Theorem 2. 4. Thus Dmust be D, ,_, or D
This completes the proof. []

nen— n.n—

non— n.n—1°
Theorem 2. 6. Let D be a primitive Lsd on n vertices, L{D)=/{r,sr;s. .. yr,}. Then

(1) ¢(Sv5+1y--- yn).:S[’:l____z]y 4<S<7l_1;

2) 92 +1>—{s’ siseven, e <nm 1)
s H D=\ ifsisedd, FSESTD:

3, If ”;59

(3) 3y4y---y )=
¢( " {Gy l.fn:4;
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2l L. N
O

Dn.n—-l Dnu’—l
Fig. 1
(4) ¢(2,3,4,...,n)=2;
3, if t=5,
_J 6 if t=4,
(5) @(34.e stoksk+1,...,0n)= b1, if t—3 and k=1 (mod 3).
%, if t=3 and #Z£1 (mod 3),

where k<n—2;

(6) (2,34 .. stsksk+1,...,2)=2, t=3.
Proof. By (1.1), we can easily get that (1),(3) and (4) are true and check that (2), (5)
and (6) are true too. [ ]

3. The Gaps of Primitive LSDS

Theorem 3. 1. Let D be a primitive Lsd on n vertices, L(D)={s.s+1,...,n}, where 3

s<in—1. Thus
(1) If s=4, then 7(D)<s+1+s[2:f] and there is a primitive Lsd D, such that

7(D, ) =s+1+ 222
n—s

(2) 1f s=3,n=5, then Y(D)<n+4.
Proof. (1) Let C_ be an s- cycle of D. Since s is a shortest length of cycle, C, is non-semicom-
plete. By Lemma 2.3 (3), for any ordered pair of vertices x,y € V (D), there exists a path
P(x,y) from x to y with length at most s + 1 which meets at least one C, forr = s,s+ 1,...,

n. Then
dipy(x,3) <IUP(x,¥)) s+ 1.

So
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Y(D) < max dyip(2.3) + 9lsos + Lovoo o) s+ 14 2= 2}.

I.yEVID) n—s

We denote D, | to be the digraph with V(D, ) = {z,.z,,... ,z,_,} and the arc set as fol-
lows: A(D, ) = {(z,,2,4)1=0.1,...,n— 1} U {{z;»2):1=0,1s....n—s—1,j=1
+2,....,n— s+ 1}, where z, = z,.

We easily see that D, | is a primitive Lsd with

L(D,)={s,s+ 1,....,n} and d,‘(l)m)(x"__‘,xl) =d(x,_x) =s+ 1.

Since there is a single path from z,_, to =, , we

can easily check that

Y(x,_»x)) =s+ 1+ @lsss+1,....m)

=5+ 144 2=£].

Hence

Y(D,) =Yz poz) = s+ 1+ o 2]

s

and

YD, ) =s+1+ s[" - 2].

n—s

2)HUs=3,L(D)=1{3,4,...,n}) , let R={3,4,5} & L(D). xand yare any ordered
pair of vertices. Let P(x,y) be a shortest (x,y) -path and let C, be a maximal cycle which is
semicomplete. Without loss of generality, we assume thatt<Cn — 1, then D(V(C,)) is a semi-
complete digraph and is vertex-pancyclic. Furthermore, any 7- cycle is non-semicomplete with
r=t—+ 1.

H d(x,v) Z=n—t, then P(x,y) meets C,and at least one cycle of lengthrforr =1¢+41,
t+ 2,...,n. Hence

de(x,y) = (P(z.y)) < n— 1.

Hd(x,y) =n—1t— 1,P(x,y) meets a (t + 1) -cycle C,,,. Since C,,, is non-semicom-
plete, by Lemma 2. 3, we can extend C,, to (¢ + 2)- cycle C,, containing a vertex « of C, (if
V(ICH S VI(C,,), wetakeu € V(D) —V(C,)). ThenC,, ,meets at least one cycle of length
rforr =3,4,...,t + 1and P(z,y). Hence

dpelz,y) < I(P(z, ) +IC )=n—t—1+t+2=n+1.

Now, we assume d(x,y) =n—k<n—t— 2. Sincek—1=>=¢t+ 1, every (k—1)-cycle
in D is non-semicomplete, we can get a (¢ — 1)-cycle C,_, such that V(C,_ ) S V(C,_)) by

Lemma 2. 3. Hence C,_, meets at least one cycle of length rforr = ¢+ 1,... ,n.
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Case 1. C,_, does not meet any ¢- cycle.
By Lemma 2. 3, we can extend C,_; to a k- cycle C, containing a vertex of C,. Then C,

meets at least one cycle of length » for r = 3,4,... ,nand P(x.y). Hence
dR(Ivy) gl(P(Iu’y)) + Z(Ck) = n.

Case 2. C,_, meets at-cycle C, .

By Lemma 2. 3, we can extend C,_, to 4- cycle C, containing x, thus
dp(x,y) < UP(x,y)) + I(C) = n.
Hence for any ordered pair of vertices x and y, we have d,(x,y) <<n + 1, that is
Y(z, ) <dp(z,3) + ¢9(3,4,5) <n+ 4.
Thus
YD) <<n+ 4.

This completes the proof of Theorem. [ ]
Theorem 3. 2. Let D be a primitive Lsd on n vertices with L(D)=1{2,s,s+1,... ,n}, where n
=26 and 3<s<n—1.
(1) When s=>4, then Y(D)<2n—A4. Furthermore, there is a primitive Lsd D, such that
(@) if s<n—4.,then Y(D, )=2s5+1;
b) if s=n—i, then Y(D,,))=n+s—3 for i=1,2,3.
(2) When s=3, then Y(D)<n-+4.
Proof. (1) Let C, be an s- cycle in D. Sinces — 1 & L(D).C, is non-semicomplete.
If s=n—1, then Dmust be D, ,_, (see Fig. 3). Itis
easily to check ¥(D, ,_,) = 2n — 4.
fs<{n— 2, by Lemma 2. 3, there are two cycles
C,,, and C,, which meet 2-cycle and V(C)) & (C, ) for i
= 1,2. For any ordered pair of vertices x and v, let Pz, . "
) be an (x,¥)- path as mentioned in Lemma 2. 3 (3) on

C,. Then P(x,y) meet C,, for i = 0,1,2, and {(P(x,
) <s+ 1. Let

P(z,y) = P(z,y) UC,_,, fori = 0,1,2.

Then P,(x,y)is an (x.y) -walk of length {(P(x,¥)) +s
+ ifori = 0,1,2, and P,(x,3).P,(x,¥y) meet at least

non—1

Fig. 3 D,
one cycle of length 2. By Corllary 1. 5.

Y(x,y) < U(P(x,3)) = I(P(x,y)) + 5. (3.1

Since {(P(x,y) < s+ 1, we have Y(z,y) < 25 + 1.
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Hence Y(D) < 25 + 1.

Case 1. s<<n— 3. Then?’(D) 2n— 5 << 2n— 4.

Case 2. s = n — 2. We shall show that ¥(z,y) << 25 — 1 for all ordered pairs of vertices
.y € V(D). Infact. if {I(P(x.y)) <s— 1, then Y (x,y) < I(P(x,¥)) +5< 25 — 1 by the
form (3.1).

Hence, in the following we suppose [(P(x.y) =5

When z,y € V(C,) , then x = y. By Lemma 2. 3 and Corollary 1. 5, we easily check
that

Y(x,y) =s<2s— 1.

Hence, without loss of generality, we assume that x & V(C,), then there exists 7,(1 <7,
< s) such thatw, , -z —«, by Lemma 2. 3.

Subcase 2. 1. C, does not meet a cycle of length 2.

Let C, = (uwu) be a cycle of length 2 in D. Without loss of generality, we assume that
u,_, = u—>u,, then u,_, = v—>u, by the definition of Lsd and 3 & L(D). Since x & V(C,)and

x € {u,v} , we easily obtain a walk P, (x,y) from z to y of length /(P(x,3)) + 1. By Lemma
1.4 '
Y(z,y) <U(P(z,y)) <s+1<<25— 1.

Subcase 2. 2. C, meets a cycle of length 2.

Let C, = (uvu) be a cycle of length 2 and meets.C,. Without loss of generality, we assume
u == u,. then u,_, = v— u, by the definition of Lsd and 3 & L(D).

fx=vory=vorx =y, we easily get that a walk P,(x,y) of length {(P(z,y)) + 1
meets a cycle C, = (uvu). Thus by Lemma 1. 4, we have

Y(z,y) <I(P(x,y)) <s+ 1.

Ifx7#v,y#vand x % y, theny E V(C,). Since {(P(x,y)) = s,y = U and P(x,y)

=zu;t; oo -y Put that if 4,720, 1. P (x0y) =z, u, 4« - wovsy - -y 5 if1,=1,P (7,

¥) = xuU U, .. U,_ | vity, Where u, = yor if i, = 0, P (x,y) = zuyvuuty*++u,_,, whereu,_, = y.

Thus P,(x,y) meets a cycle C, = (uvu) with {(P(x,y)) = {(P(z,y)) + 1. So by Lem-

ma 1.4, we have
V() <UP(z,y)) <s+1<25— 1.
Hence, for all ordered pairs of vertices x,y € V(D) we have
Y(zx.y) < 25— 1= 2n—5.
Thus
Y(D) < 2n — 5.
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So the first part of (1) is true.
When s << n — 4, let D, , be the resulting digraph of D, , in Fig. 2 with an adding arc (z,,
x,)» then D,  is a primitive Lsd with L(D, ) = {2,s.s + 1,... ,n}. By Corollary 1. 5, it is

easy to check that
Y(z,_,,x)) =25+ 1inD, .

Hence Y(D,)>=2s+ land (D, ) = 25 + 1.
Whens =n—30orn—2, D, ,,i = 2,3, are described in Fig. 4. By Corollary 1.5, it is
easy to check that

7(Ivy) < 7(10':)/0) =2n—1— 3,

'

for any ordered pair of vertices x,y € V(D,,_,),i = 2,3. Hence by Lemma 1. 2 ¥(D,,_,) =

ZA

74

D, D,
| Fig. 4

(2) When s = 3, the proof is similar to the proof of Theorem 3.1 (2).

This completes the proof of Theprem. [ ]

In order to consider the exponent of D with the structure of L(D) of Theorem 2.4 (3).
we need the following Lemma 3. 3.
Lemma 3. 3. Let D be a primitive digraph with a 3-cycle. For x,y€V (D), there exist (x.
y)-walks P(x+y) such that I{P(x.y))=r,+i for i=0,1,...,t and r,>0. If t=22 and P,

(x,y) meet at least one 3-cycle for i==t—2,t—1,t, then

Y(x,y) <1(Po(x'y)) = 7y

Proof. For any integer m 22 r,, D has an (x,y)- walk of lengthmasm<Ct+r,. fm>r, +
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t. let
m— (r,+t—2)=3k+ 0,
where 0 <6< 2, that is |
m=3k+ (ro+t—2+0b)."
Now, adding a 3-cycle C,to P,_,,,(z,y) by ktimes, we get a new walk of length  from x to
y- So |

Vzy) <ry = UP,(x.3)). ]

ke

Theorem 3. 4.. Let D be a primitive Lsd on n vertices, L{D)={s,s+1,...st,k,k+1,...,n},
where 2<s<3 3<t<[ 5 ] t+2<kn—t+1 and n=6, then
] ‘ 7(D) < 2n — 4.

Furthermore, when k+i‘7—n— 1, there is a primitive Lsd D,,, such that L(D,,,)=

{3,... t,kk+1,...,n} and
' 7(D,,.) = 2k
Proof. First we consider s =3.

Let C, = (uyu,. . . u,_,u,), and let xand y be any ordered pair of vertices in D. P(x,y) is
an (x,y) -path as mentioned in Lemma 2. 3 on C,, Then P(x,yx) meets at least one cycle of
length r forr = &,k + 1,...,nand d, = I(P(x,y)) <k + 1.

Case 1. C, does not meet any 3-cycle.

Let C, = (ayx,x,x,) be a 3-cycle. Since C, in non-semicomplete, by Lemma 2. 3 we can
extend C,,,_, to a (k + 1)- cycle C,,; containing z; for i = 1,2,3. Thus

Pl.(x,y) = P(I,y) U Ck+;

is an (x,y)- Walk"of lengthd, +%+ifori=0,1,2,3. Clearly, P,(z,y),P,(x,y) and P,(x,
) meet the 3-cycle C,. By Lemma 3,3

V(z,) <do + k< 2k + 1.

Case 2. C, meets at least one 3-cycle.

Since # <C n — 2 and C, is non-semicomplete, similarly‘, we can prove that
Yiz,y) <d, + -2+ 1.
Hence
YD) < 2k+ 1.

Whenk<{n ~ 3, then V(D) << 264+ 1< 2n — 5.
In the following we shall show that (D) <{ 2n — 4 when £ = n — 2.

We first prove that;



278 Appl. Math. -JCU Vol. 12, Ser. B

there is no chord on C . (3.2)
Since # = n — 2,t = 3. If there is a chord on C, ,without loss of generality, let u, _, — u,.
where 3<<r<Ck— 1. Since L(D) = {3.n— 2,n— 1,n},7r = 3and u, = 1,. By the definition
of Lsd, u, and #,_, »u, and u; are adjacent in D, it must be u,_, = u, and u, — u; since 4 &
L(D). Thus the length of cycle (ugusu,++us. ,u,u,) is & — 1 , this contradicts £ — 1 & L(D).
Hence there is no chord in C,. Thus every arc in C,does not lie on 3-cycle. Otherwise, there is
aC, = (uu,, ,uu,), thus u & C,. By (3. 2) and the definition of Lsd. u,,u € A(D). Thus we
get aC, = (uu, u, uu;) a contradiction. Since £

= n — 2, without loss of generality, we may as-

sume that a 3-cycle is C, = (y,vwn,). Thusu, ,— " v 1
wor #,_, = w—> u;_, (similarly, v = u, oru; ~ v \/
—u,) by (3.2). Huy,—~w—u,_,, thenu,_,and /"A\
v are adjacent and v — u,_, by (3. 2). Thus
(ugvuy_ 4, 14y) is a 4-cycle in D . This contradicts
4 & L(D). Therefore u_, = w. Similarly, we
have that v—u, ,u4_, > v,w—>u,and D =2 D" (see
Fig. 5). We easily check that
YD) K Y(D" =2k — 2 = 2n — 6.
‘ When s = 2. Let T(D) be a maximal local :
Fig.5 D"

tournament as a subdigraph of D. then L(T(D))
= L(D)\{2} = {3,4,...,t.ksk+ 1,....n} and
YD) <Y(T D)) <2n— 4

So the first part of Theorem is true.

Whenk +¢t=n—1.D,,, (see Fig. 6) is de- ,’ \

fined to be the digraph with the veretx set

To
V(Dn.!,k) = {ul,uzyn . ’u,’xo’xl" . e ,.1‘,,) and th( '/
Zi—t

following set of arcs; x

(a) Let D, ,[u; .u;,... ,u,] be a strong tour-
nament 1,;
) x;, > x;,, fori = 0,1,...,k— 1;
(c) x, = {ustyy. . u,15,x,) and {u,,
Ugye oo stt,) > {Xy0 2y ) -
Clearly, D, ,,is a primitive Lsd and Fig. 6 D,
L(D,, ) = {3v...:tsksk + 1,... \u).
By Lemma 3. 3, we easily check that
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‘

Y(z.y) < V(xp,a) = 2k
for any ordered pair of vertices x.y € V(D,,,). Hence

Y(Dn.l‘k) = Zk‘ D

Lemma 3. 5. Let D be a primitive Lsd on n==6 vertices. If |L(D)|223, then

YD) <n— 1+ (= D[ 2E].

Proof. By Theorems 3.1, 3.2 and 3.4, we easily check that Lemma 3. 5 is true. []

. 0
Theorem 3. 6. For any primitive Lsd D on n==6 vertices, ¥ (D) & [[%w,]-f—l.w,,—Z] ,
where w,= (n—1)*-+1.
Proof. Let D be a primitive Lsd on n vertices, then |L(D)| = 2. If |L(D)| = 3, by Lemma
3.5,

rDOY<n—14+ (n— 2)[" ; 2]< [-l—w.]-

Hence, by Corollary 2.5, for any primitive Lsd D, we have

YD) & [[é—w,] + 1,0, — 2]0- U

4. The Exponent Set of Primitive Locally Semicomplete Digraphs

Let LE, be the exponent set of primitive Lsds on n vertices, and let E,(s) be the set of all

primitive Lsds on n vertices with the length s(Z= 4) of the shortest cycle.

Theorem 4.1. For n=26, [2,2n—41°U {w,—1,w,} <LE,, where w,=(n—1)*+1.
Proof. By Corollary 2.5, we easily get w, — 1,w, € LE,. Since tournaments are Lsds, we
have [3,n + 2]°C LE,by [6]. Let K, be a complete symmetric digraph with » vertices, then
Y(K;})=2,thatis2 € LE,.

From Theorems 3. 2 and 3. 4 we can get [n + 3,22 — 4]° C LE,.

Hence

[2,2n — 47" U {w, — 1,w,}) < LE,.[]]

Lemma 4. 2. Let D be a primitive Lsd on n (Z=8) vertices. I1f L(D)#{s.s+1,...,n} or
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LDY={sss41,... o} with z<s<’%§, then ¥ (D)< 2n— 4.

Proof. W L(D) #* {s,s+ 1,...,n) + then Y(D) << 2n — 4 by Theorems 3.1, 3.2 and 3. 4.
LD = {s,s+1,....n} with 2 <s< + 2 . by Theorems 3.1 and 3. 2,

V(D)<max{s+1+S[Z:s:|,n+4}=n+4.

Hence
YD)y n+ 4 2n— 4. []
By Lemma 4. 2 and Corollary 2.5, we only need to c-onsider the exponent of a primitive
Lsd D with L(D) = {s,5+ 1o.-.on) and 232 <5< — 2.

2
n_;_2<s<n—23ndN,= {a;s + a,(s + 1) + - +

1@ s@y5. -« sa,_,,, are nonnegative integers }. And let ¢, = ¢(s,5 + 1,...,n);
s—2=kn—3s)+r,where0r,<<n—:s
n=rbyn—3s)+r,, where0<r,<<n—3s,

thenn —s=(k —k)(n—s)+r,—r — 2. Hencer,=r, + 20rr,=r, +2 — (n — 5).

In the following, let n == 6,

a

Lemma 4. 3. For any n and s satisfying the above condition, we have

(D {g—s,g—s+1,... Jp,—s-}-[ :‘(n—S)}CN”

(2 ¢,—s+[ :'(n—s)—}-z&N fori=1,2,... ,r,+1—s—[ ](n—s)—l

s e — 2 e s — - _—}____2

Proof. (1) First, ¢, s-—sl:n_sj‘ shs[n__sj‘é N, since s = T

For any integer 7,1 < z< [i__ i:l‘(n — 5), there exists j,»1 < jo < [;
=(j,— D@m—35)+ j, where 0 << j<{n —s. Then

— 2:' such that 7
)

¢:~—s+i=([ ZJ—JO)5+(10“1)"+(5+])6N

Hence

i](n—s)} C N

(%—sy%—s—k’l’,’...,gp,-—s_k{:::

s— 2

n-—s

(2) Tf there exists an integer 7, with 1 <{ 4, <s — l: j|(n —5) — 1such that g — s+

[S __ z:l(n —~s)+i, = [;__ zsjln + i, € N,, then there are nonnegative integers @, ,a,:- . - »

n

a,_,,, such thatl: }n i, =as+ a4+ 1)+ = +a,_,n

n—s
n—s+1

ny ,=21 ajg[;:i], then[i

]n-}—zo (q, -}—az-f— +a"_,+1)n<[n s]n This
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n—s+1
contradicts i, 2> 1. Hence Z a; = l:s 2:{+ 1, thus
! n—s
se~s+[; 2]("—5)+10 (ay +a, + = +a,_ . )s

S PO P PO
On the other hand,

o—s+[=E]—9 +i,

<p—s+[=E -9 +s— [ §]<n—s)—1=go,—1.

This is a contradiction. So (2) is true.[ |

Lemma 4. 4. Let DE E (s) and let x,y be any ordered pair of wvertices. Then we have:
(1) If there exist walks P;, P, ,... 1 ST from x to v of length [,{+1,...,0+r,
and l+r,+1 respectively, and P, meets at least one s-cycle for i={,l+1,...,{+r+1, then

Vi, ) <@g —s+ 1L

(2) Let Lp(x,3)={l{(P(x.y))|P(x,y) is a path from x to y in D} and d=d(.r,y).
If Lp(x,y)Edd+1,...,d+r,} and D has a path P,(x,y) of length d which meets at

least one s-cycle, then
Y(z.,y) = ¢+ d.

Proof. (1) By Lemma 2.3, P, meets at least one - cycle forr =s,s+ 1,... ,nandi =1,/ 4+
1s...3/+ r; + 1. Thus D has a walk from x to y of length 7 + m for any m € N,and i = {,
{+1,....047r + 1. By Lemma 4.3 (1), D has walks from x to y of lengthg, —s -+ 1,9 —

sHIHLeg—st i+l g—s+ [ a— +i+r+1=g—1+

I, respectively. On the other hand, for: > 1,¢ — 1 4+ 7 € N,,D has a walk from x to y of
lengthg —1+:i+1.50

Yz, y) <g—s+ L
(3) By the condition of (2) and Lemma 2. 3, we have
Y(x,y) < ¢+ d.

If Y(x,y) <@+ d. then there exists a walk from x ta y of length ¢ +d — 1. By the as-
sumption of (2), there exist integers i,,0 <{ i, < r,and m € N, such thatg +d — 1= (d+
7,) +m. Thatis, ¢ — 1 — i, =m € N,. By Lemma 4. 3, we have
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— 2

S
n—s

p—1-i<g-s+[ =2 |a—9=g- ¢, +2.

Sor,.+ 1< i,, this contradicts i, <X r,. Hence ¥Y(z.,y) = ¢ + d. []

For n == 6 and

1 _;— 2 <s<Kn—2,letC, = (x,,x,,. - .x“.xl)‘ be a cycle with the length
sinD € E (s). By Lemma 2. 3 (1), forany« € V' (C,) = V(D)\V(C,) ,uis adjacent to C,on-
ly in following three cases: there exists an i,,1<Ci,<{s, such that T, ~u—>z,_or {Ifo—l .x,.o}
—u—>z, orx, >~u—>{x; T )} satisfying that the subscript is taken modulo s. For con-
venience, the vertices, which are adjacent to u, are called the root vertices of u. Especially,
z; »; 4, are called the main root vertices of 4. Since C,is the minimal cycle in D,D[V'(C,) Jis
an acyclic digraph. Thus by the definition of Lsd. the arcs of D[V’ (C,) ] must be in the same
direction as with C..

Let E'(s) == {D|D € E,(s) and for any u € V(D)\V(C,) ,u has exactly three root vertices
onC,} . Note that if D € E,(s) and D & E’,(s) , we can change D for D' € E (s) by adding
some arcs to D. Clearly, Y(D) = 7(D'). So min{Y(D)|D € E,(s)}-= min{¥(D)|D €
E,(s)} . Hence it is enough to consider D € E,(s) if we only consider the minimal exponent
problem in E,(s).

In the following. we always assume that D € E_ (s). If a pair of {z,y} does not lie on a
common s-cycle in D, then x and y are adjacent with d(x.y) = s, and there is an s-cycle C,
such thatx & V(C) and y € V(C)orx € V(C) and y & V(C,) (see Fig. 7).

When r, = n —' s — 1,thus {x,y}
satisfies the condition of Lemma 4. 4
(2), and then Y(z,y) = ¢ + s, i. e. ' . y
YD) = ¢ + s. By Lemma 4. 5, this
kind of graph is impossible to have the
minimal exponent. So, we set them
aside. For the remaining cases between x or
and v , they satisfy Lemma 4. 4 (1) with
I = 5. Hence we only need to consider
Y(x,y) , satisfying that the pair of {x.
)} lies on a common s-cycle C, .

Now, let z,y € V(C,), thus the
length of x C, y = d{(x,y) = d;pp,(x,¥) Fig. 7
by C, being a shortest cycle in D. Let A’
= {{x,y}|x,y € D,x,ysatisfy the condition of Lemma 4.4 (2) or the condition of Lemma
4.4 (1) with the least{>>s5+ 2} , and let d,(D) = max ’{d(x,y) }. Thus there is a {z,,,}

{r.y}EA

€ A withd(xy,5,) = d (D). If {x,,y,} satisfies the condition of Lemma 4.4 (2), then we
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have ¥Y(xy,5,) = @ + d(x5,3,). Otherwise, {x,,y,} satisfies the condition of Lemma 4. 4
(1) with the least { == s + 2. If there is a (x,,y,) -walk with the length ¢ + d(x,.3,) —1,
then there exist a m € N and a (xz,,y,)- walk P(x,,y,) such that ¢ + d(x,,y,) — 1 =
I(P(xysy5)) + m. Let L{P(xy,3,)) = d(xy>y,) + 1, » thus

¢ —1—i, &N, 4. D

By Lemma 4. 3, we have i, > r,. Since {x,,y,} € A" and d(x,,y,) = d,(D) , the number of
vertices of V' (C,) , whose main root vertices lie on x,C,y, » is no more than ¥, . Hence ¢, must
be the length of some (y,,y,)- closed walk. Thus we havei, € N, . By (4.1), we also have ¢,
—1=¢—1—1i +i, € N,, acontradiction. So, we always have ¥(z,,y,) = ¢ + d(z,,
Vo) s ise. Y(D) =@ +d(x,,v,) = ¢ + d.(D). On the other hand, by Lemma 1. 3, we have
Y(D) = max {¥(x,y)} < ¢ + d,(D). Therefore

tr.yi€ 4
YD) = ¢+ d(D) 4.2)
for any D € E, (s).

Now, for nand s with n = 6 and n_—él—__Z <s<{n— 2, we need to construct a special primi-

tive Lsd with the minimal exponent in E,(s). Now, let C, = (x,x;. .. x,x,) be an s- cycle, and

we divide C, into n — s pieces such that the number of vertices of any piece is [n — 5] or

[ : :l-l— 1.Sincer, =s — [;] (n — 5), the number of pieces with [ ——S——:l—l— 1 vertices
n—s n—s n—s

is exactly r,. When r, > 0,7, pieces with [n—:_s] + 1 vertices are distributed in n — s pieces on

C, as evenly as possible. This process is called n — s well-distributed on C,. Without loss of gen-

s
_s:l+1asr2>0.

erality, we assume that the number of vertices of first piece is [n

In the n — s well-distributed on C, , let the vertex set of 7/th piece be {xy .z, ,,s. -

=i
Ry = Rysrfo = Jomsrky = Lok, + j,, =
Now let C, have an n — s well-distributed, and let D(s) be the digraph with vertex set
V(D(s)) = V(C) U {uy,uys... u,_,} and the following set of arcs: .
A(D(s)) = AWC)H U {(Ik’_]ﬂiﬂ,u;),(Iki,u;),(u,-,.rk’_+l) |7 = 1,24...9n— s} U {(w,
w,Dlifj,=0for1<<i<<n—s}, whereu,_ ;= u,.

By (4.2), it is easy to see that D(s) € E, (S) and for every DE E (s),

Zy 451+ where [n

:l o+ jioy +1=4Fkfori=1,2,...,n— s, and
5.

Y(D(s)) < Y(D). (4.3

In the following we consider the exponent of D(s) € E (s).

1+ 2
2

Lemma 4. 5. For D(s) € E (s) with z <s<n— 2andn =6, we have that
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(D) Ifr,=r 42— (n— ). thenY(D()) = @ + (r, + 1>[ ]+r2,

@) If ry =7y + 2.« then V(D()) = @ + (ry + | —=

in—s) G+ 1)(n—s) .
1 ro+ 1 for0<i<r.

Proof. (Dr,=r, +2—(n—35). Sincer, <n—s—~1,r,=r,+2—(n—3s)<<landr,
= Qor 1.
Ifr, =0, thenr, = n— s — 2and (n — 5)|s. Hence the number of vertices of any piece

s . n—+ 2 s
it Smces}—-r.n_s

}*-rl—i-i as
N

<r,<<

in the n — s well-disrtubted on C, is ” > 1. It is easy to check

d.(D(s)) = d(x,,u,_,) = - i s(r‘ + 1.
By (4. 2) we have
YD) =g+ + D —— =g+ ( +1)[ ]+r2

fr,=1,thenr,=n—s— 1,5 = [n—i—s:l(n—s) + 1. It is easy to see that

(D) = d(zu) =s=[==]—9 +1.
Hence by (4. 2) we have
YD) =g+ = ==+ 1 =0+ 6, + D[ —— ]+r2

Qyry,=r +2
Sincer, +2=r,<<n—s5— 1,7, + 3<<n — 5. In then — s well-distributed on C, , the

number of pieces with [n S ]-}- 1= - i s} vertices is exactly 7,.
When in = 5) <r < G+ 1)n—s) for some 1 << 7 <C 7. the number of pieces with
a1 + 1 r r+1

{ pr V} vertices 18 or 7 + 1 in any r, + 1 pieces in succession. Furthermore, there exist r, +

1 pieces in succession which exactly contains ¢ + 1 pieces with {n — s} vertices, say 1 tor, +

1 pieces on C,. Thus

2(D(s) = d(z,o, 1) = Gy + D {5 s}« )+it1=0,+ 1){n—i—s}— r i
Hence by (4. 2) we have
YD) =@ + (r, + 1){n—i—s}— ki

This completes the proof of Lemma. [ ]
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Theorem 4. 6. For n==8, we have

LE, = [2,2n — 4]" U {w, — 1,w,} [(Y(D(s)) e + s+ 17,
2

LHv<r<"_
7 =S
where Y(D(s)) is defined in Lemma 4. 5.
Proof. By Theorem 4.1, [2,2n — 47]° U {w, — 1.w,} C LE,.

n—+ 2
2
We take an n — s well-distributed on C,. Now, we define a digraph D' (s) as follows:

VD' () =V U {u;sttyse . yu, .} and AD (s)) = AC) U {(xk‘,_]+j'._1’u'i)’

For

< s<<n— 2, we will prove that [Y(D(s)),¢ + s+ 1]°C LE,.

(o

(v x,) li=1,2,....n— s}.

It is easy to see that D'(s) € E,(s), and Y(D'(s)) = 7(s)) + 1, where d,(D’(S)) =
dn'<.r)(“1*ur1+2) =d,(D(S)) + 1.

Now, f Y(D(5)) +1<¢ + s+ 1, for any integer Awith 1 < A<{g@ + s — Y(D'(s)),
let D'(s) denote the following resulting Lsd: «, ,, with its root vertices in I)' (s) moves to & po-
sitions along C, , where the subscript is modulon — s. And for7,r, + 2 <i<{n — s.u with
its root vertices also moves correspondingly along C, but do not surpass the root vertices of «, .
After this process, let {u,.l U ety }» which have the same root vertices, induce a transitive
subtournament on D;(s). It is easy to check that D (s) € E (s) and d,(Di(s)) = d (D' (s)) +
k=d(D(s)) + £+ 1. By Lemma 4. 4 we have

YD) = ¢ +d(D(s)) +k+1=7(D(s)) + 1+ &
Hence [Y(D(s5)),¢ + s + 1]° & LE,. So that
[2,2n —4)° U {w, — 1,w,] U [YDG),g+s+ 11" LE,.

"*2“25;,-@.—5

On the other hand, for any primitive Lsd D on n vertices, if the length of the shortest cycle of

Dis s, then¥(D) € [2,2n—4]" U {w,,—l,w,,}352<s<n —; 2 or s=n— 1. And by The-
orems 3. 1(1) and (4.3), (D) € [Y(D())+¢, + s + 17" when 212 < s < 0 — 2.

Hence

LE, = [2,2n — 41 U {w, — Lhw,] U [YDG),g + s+ 17
2

"j Lsn~

This completes the proof of Theorem. []
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A digraph D is primitive if there exists an interger k >0 such that for all ordered pair of
vertices u, vE V(D) (not necessarily distinct), there is a walk from u to v with length k. The
least such k is called the exponent of the digraph D, denoted by y(D).

A semicomplete digraph is a digraph without nonadjacent vertices. A locally semicomplete
digraph is a digraph D that satisfies the following condition: for every vertex x €V (D), the
DO (x)) and DO (x)) are semicomplete digraphs. We shall sometimes use the abbreviation
Lsd to denote a locally semicomplete digraph. A local tourrament is a locally semicomplete di-
graph without 2-¢cycles and loops.

' Locally semicomplete digraphs, which is a generalization of semicomplete digraphs and
tournaments, were first introduced by J. Bang-Jensen (1]. Many of classic theorems of tour-
naments have been generalized to Lsd. For example; (see (11.(2] and (3)).

Every connected Lsd has a directed Hamilton path and every strong Lsd has a directed
Hamilton cycle.

The arc-pancyclicity and completely strong path-connectivity have been generalized to
Lsd. Therefore it is clear that Lsd form a new and interesting class. In this paper, we get

some properties of cycles and determinate the exponent set of primitive Lsds.

+« The project supported by NSFC
Received ; 1994— 10—26
Zhang Kemin, male, in July 1935, Professor, Combinatorial Mathematics and Graph Theory, ” On

Lewin and Vitek's Conjecture about the exponent set of primitive matrices” etc papers have been published



%3M0  Zhang Keming et al;ON THE EXPONENT SET OF PRIMITIVE Lsds « 507 »

THEOREM 1. Let D be a primitive Lsd on n vertices without loop. L (D) = {r;,12,,
1.} is the cycle length set of D with r;<Cr,<C+++<Cr,. Then the structure of L (D) is only one of

the following cases:
(1) L(D)={s,s+1,*,n}, where 3<s<<n—1;
(2) L(D)={2989S+1"" ’n}’ where 3<S<n"—1;

(D LMD)={sys+1,s*,t,k,k+1,+-,n}, where 2<s<(3,3<t<< [rl—;l] and t+2<k

<n—t+1. .
Let LE. be the exponent set of primitive Lsds on n vertices. And let E,(s) be the set of all

primitive Lsds on n vertices with the length s(=>4) of the shortest cycle.

For D(s) €E,(s) with nzﬂQ<n—2 and n—>6, we get that

WyOE =p+ G+ D[] +r  n=nt2— G-

(Z)V(D(s))=’/’«+("'1+1){nis}_‘r1+i as
PP << EEREE Rt 0<i<n itr=nt2

whtere ¢, is Frobenius number % (s,8-+1,+-,n).
THEOREM 2. For n==8, we have that. :
LE,=[2,2n—4"U{w,—1,wa} U D), +s+17°,

22 an—2

where [m,n]° denotes a set of integers {m,m-+1,--=,n}.
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