AN ADDITIVE THEOREM AND RESTRICTED SUMSETS

${\rm Zhi\text{-}Wei}~{\rm Sun}$

ABSTRACT. Let G be any additive abelian group with cyclic torsion subgroup, and let A, B and C be finite subsets of G with cardinality n > 0. We show that there is a numbering $\{a_i\}_{i=1}^n$ of the elements of A, a numbering $\{b_i\}_{i=1}^n$ of the elements of B and a numbering $\{c_i\}_{i=1}^n$ of the elements of C, such that all the sums $a_i + b_i + c_i$ $(1 \le i \le n)$ are (pairwise) distinct. Consequently, each subcube of the Latin cube formed by the Cayley addition table of $\mathbb{Z}/N\mathbb{Z}$ contains a Latin transversal. This additive theorem is an essential result which can be further extended via restricted sumsets in a field.

1. INTRODUCTION

In 1999 Snevily [Sn] raised the following beautiful conjecture in additive combinatorics which is currently an active area of research.

Snevily's Conjecture. Let G be an additive abelian group with |G| odd. Let A and B be subsets of G with cardinality $n \in \mathbb{Z}^+ = \{1, 2, 3, ...\}$. Then there is a numbering $\{a_i\}_{i=1}^n$ of the elements of A and a numbering $\{b_i\}_{i=1}^n$ of the elements of B such that the sums $a_1 + b_1, ..., a_n + b_n$ are (pairwise) distinct.

When |G| is an odd prime, this conjecture was proved by Alon [A2] via the polynomial method rooted in Alon and Tarsi [AT], and developed by Alon, Nathanson and Ruzsa [ANR] (see also [N, pp. 98-107] and [TV, pp. 329-345]) and refined by Alon [A1] in 1999. In 2001 Dasgupta, Károlyi, Serra and Szegedy [DKSS] confirmed Snevily's conjecture for any cyclic group of odd order. In 2003 Sun [Su3] obtained some further extensions of the Dasgupta-Károlyi-Serra-Szegedy result via restricted sums in a field.

In Snevily's conjecture the abelian group is required to have odd order. (An abelian group of even order has an element g of order 2 and hence we don't have the described result for $A = B = \{0, g\}$.) For a general abelian group G with its torsion subgroup $\text{Tor}(G) = \{a \in G : a \text{ has a finite order}\}$ cyclic, if we make no hypothesis on the order of G, what additive properties can we impose on several finite subsets of G with cardinality n? In this direction we establish the following new theorem of additive nature.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11B75; Secondary 05A05, 05B15, 05E99, 11C08, 11P99, 15A15, 20D60, 20K99.

Supported by the National Science Fund (grant 10425103) for Distinguished Young Scholars in China.

¹

Theorem 1.1. Let G be any additive abelian group with cyclic torsion subgroup, and let A_1, \ldots, A_m be arbitrary subsets of G with cardinality $n \in \mathbb{Z}^+$, where m is odd. Then the elements of A_i $(1 \leq i \leq m)$ can be listed in a suitable order a_{i1}, \ldots, a_{in} , so that all the sums $\sum_{i=1}^m a_{ij}$ $(1 \leq j \leq n)$ are distinct. In other words, for a certain subset A_{m+1} of G with $|A_{m+1}| = n$, there is a matrix $(a_{ij})_{1 \leq i \leq m+1, 1 \leq j \leq n}$ such that $\{a_{i1}, \ldots, a_{in}\} = A_i$ for all $i = 1, \ldots, m+1$ and the column sum $\sum_{i=1}^{m+1} a_{ij}$ vanishes for every $j = 1, \ldots, n$.

Remark 1.1. Theorem 1.1 in the case m = 3 is essential; the result for $m = 5, 7, \ldots$ can be obtained by repeated use of the case m = 3.

Example 1.1. In Theorem 1.1 the condition $2 \nmid m$ is indispensable. Let G be an additive cyclic group of even order n. Then G has a unique element g of order 2 and hence $a \neq -a$ for all $a \in G \setminus \{0, g\}$. Thus $\sum_{a \in G} a = 0 + g = g$. For each $i = 1, \ldots, m$ let a_{i1}, \ldots, a_{in} be a list of the n elements of G. If those $\sum_{i=1}^{m} a_{ij}$ with $1 \leq j \leq n$ are distinct, then

$$\sum_{a \in G} a = \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} = m \sum_{a \in G} a,$$

hence $(m-1)g = (m-1)\sum_{a \in G} a = 0$ and therefore m is odd.

Example 1.2. The group G in Theorem 1.1 cannot be replaced by an arbitrary abelian group. To illustrate this, we look at the Klein quaternion group

$$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} = \{(0,0), (0,1), (1,0), (1,1)\}$$

and its subsets

$$A_1 = \{(0,0), (0,1)\}, A_2 = \{(0,0), (1,0)\}, A_3 = \dots = A_m = \{(0,0), (1,1)\},\$$

where $m \ge 3$ is odd. For i = 1, ..., m let a_i, a'_i be a list of the two elements of A_i , then

$$\sum_{i=1}^{m} (a_i + a'_i) = (0,1) + (1,0) + (m-2)(1,1) = (0,0)$$

and hence $\sum_{i=1}^{m} a_i = -\sum_{i=1}^{m} a'_i = \sum_{i=1}^{m} a'_i$.

Recall that a line of an $n \times n$ matrix is a row or column of the matrix. We define a line of an $n \times n \times n$ cube in a similar way. A *Latin cube* over a set S of cardinality n is an $n \times n \times n$ cube whose entries come from the set S and no line of which contains a repeated element. A *transversal* of an $n \times n \times n$ cube is a collection of n cells no two of which lie in the same line. A *Latin transversal* of a cube is a transversal whose cells contain no repeated element. **Corollary 1.1.** Let N be any positive integer. For the $N \times N \times N$ Latin cube over $\mathbb{Z}/N\mathbb{Z}$ formed by the Cayley addition table, each $n \times n \times n$ subcube with $n \leq N$ contains a Latin transversal.

Proof. Just apply Theorem 1.1 with $G = \mathbb{Z}/N\mathbb{Z}$ and m = 3. \Box

In 1967 Ryser [R] conjectured that every Latin square of odd order has a Latin transversal. Another conjecture of Brualdi (cf. [D], [DK, p. 103] and [EHNS]) states that every Latin square of order n has a partial Latin transversal of size n-1. These and Corollary 1.1 suggest that our following conjecture might be reasonable.

Conjecture 1.1. Every $n \times n \times n$ Latin cube contains a Latin transversal.

Note that Conjecture 1.1 does not imply Theorem 1.1 since an $n \times n \times n$ subcube of a Latin cube might have more than n distinct entries.

Corollary 1.2. Let G be any additive abelian group with cyclic torsion subgroup, and let A_1, \ldots, A_m be subsets of G with cardinality $n \in \mathbb{Z}^+$, where m is even. Suppose that all the elements of A_m have odd order. Then the elements of A_i $(1 \leq i \leq m)$ can be listed in a suitable order a_{i1}, \ldots, a_{in} , so that all the sums $\sum_{i=1}^m a_{ij}$ $(1 \leq j \leq n)$ are distinct.

Proof. As m-1 is odd, by Theorem 1.1 the elements of A_i $(1 \le i \le m-1)$ can be listed in a suitable order a_{i1}, \ldots, a_{in} , such that all the sums $s_j = \sum_{i=1}^{m-1} a_{ij}$ $(1 \le j \le n)$ are distinct. Since all the elements of A_m have odd order, by [Su3, Theorem 1.1(ii)] there is a numbering $\{a_{mj}\}_{j=1}^n$ of the elements of A_m such that all the sums $s_j + a_{mj} = \sum_{i=1}^m a_{ij}$ $(1 \le j \le n)$ are distinct. We are done. \Box

As an essential result, Theorem 1.1 might have various potential applications in additive number theory and combinatorial designs.

We can extend Theorem 1.1 via restricted sumsets in a field. The additive order of the multiplicative identity of a field F is either infinite or a prime; we call it the *characteristic* of F and denote it by ch(F). The reader is referred to [DH], [ANR], [Su2], [HS], [LS], [PS1], [Su3], [SY] and [PS2] for various results on restricted sumsets of the type

 $\{a_1 + \dots + a_n : a_1 \in A_1, \dots, a_n \in A_n \text{ and } P(a_1, \dots, a_n) \neq 0\},\$

where $A_1, \ldots, A_n \subseteq F$ and $P(x_1, \ldots, x_n) \in F[x_1, \ldots, x_n]$.

For a finite sequence $\{A_i\}_{i=1}^n$ of sets, if $a_1 \in A_1, \ldots, a_n \in A_n$ and a_1, \ldots, a_n are distinct, then the sequence $\{a_i\}_{i=1}^n$ is called a system of distinct representives (SDR) of $\{A_i\}_{i=1}^n$. This concept plays an important role in combinatorics and a celebrated theorem of Hall tells us when $\{A_i\}_{i=1}^n$ has an SDR (see, e.g., [Su1]). Most results in our paper involve SDRs of several subsets of a field.

Now we state our second theorem which is much more general than Theorem 1.1.

Theorem 1.2. Let h, k, l, m, n be positive integers satisfying

$$k-1 \ge m(n-1) \quad and \quad l-1 \ge h(n-1). \tag{1.1}$$

Let F be a field with $ch(F) > max\{K, L\}$, where

$$K = (k-1)n - (m+1)\binom{n}{2} \text{ and } L = (l-1)n - (h+1)\binom{n}{2}.$$
 (1.2)

Assume that $c_1, \ldots, c_n \in F$ are distinct and $A_1, \ldots, A_n, B_1, \ldots, B_n$ are subsets of F with

$$|A_1| = \dots = |A_n| = k \text{ and } |B_1| = \dots = |B_n| = l.$$
 (1.3)

Let $P_1(x), \ldots, P_n(x), Q_1(x), \ldots, Q_n(x) \in F[x]$ be monic polynomials with deg $P_i(x) = m$ and deg $Q_i(x) = h$ for $i = 1, \ldots, n$. Then, for any $S, T \subseteq F$ with $|S| \leq K$ and $|T| \leq L$, there exist $a_1 \in A_1, \ldots, a_n \in A_n, b_1 \in B_1, \ldots, b_n \in B_n$ such that $a_1 + \cdots + a_n \notin S, b_1 + \cdots + b_n \notin T$, and also

$$a_i b_i c_i \neq a_j b_j c_j, \ P_i(a_i) \neq P_j(a_j), \ Q_i(b_i) \neq Q_j(b_j) \ if \ 1 \le i < j \le n.$$
 (1.4)

Remark 1.2. If h, k, l, m, n are positive integers satisfying (1.1), then the integers K and L given by (1.2) are nonnegative since

$$K \ge m(n-1)n - (m+1)\binom{n}{2} = (m-1)\binom{n}{2}$$
 and $L \ge (h-1)\binom{n}{2}$.

From Theorem 1.2 we can deduce the following extension of Theorem 1.1.

Theorem 1.3. Let G be an additive abelian group with cyclic torsion subgroup. Let h, k, l, m, n be positive integers satisfying (1.1). Assume that $c_1, \ldots, c_n \in G$ are distinct, and $A_1, \ldots, A_n, B_1, \ldots, B_n$ are subsets of G with $|A_1| = \cdots = |A_n| = k$ and $|B_1| = \cdots = |B_n| = l$. Then, for any sets S and T with $|S| \leq (k-1)n - (m+1)\binom{n}{2}$ and $|T| \leq (l-1)n - (h+1)\binom{n}{2}$, there are $a_1 \in A_1, \ldots, a_n \in A_n, b_1 \in B_1, \ldots, b_n \in B_n$ such that $\{a_1, \ldots, a_n\} \notin$ S, $\{b_1, \ldots, b_n\} \notin T$, and also

 $a_i + b_i + c_i \neq a_j + b_j + c_j, \ ma_i \neq ma_j, \ hb_i \neq hb_j \ if \ 1 \leq i < j \leq n.$ (1.5)

Proof. Let H be the subgroup of G generated by the finite set

$$A_1 \cup \cdots \cup A_n \cup B_1 \cup \cdots \cup B_n \cup \{c_1, \ldots, c_n\}.$$

Since $\operatorname{Tor}(H)$ is cyclic and finite, as in the proof of [Su3, Theorem 1.1] we can identify the additive group H with a subgroup of the multiplicative group $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$, where \mathbb{C} is the field of complex numbers. So, without loss of generality, below we simply view G as the multiplicative group \mathbb{C}^* .

Let S and T be two sets with $|S| \leq (k-1)n - (m+1)\binom{n}{2}$ and $|T| \leq (l-1)n - (h+1)\binom{n}{2}$. Then

$$S' = \{a_1 + \dots + a_n : a_1 \in A_1, \dots, a_n \in A_n, \{a_1, \dots, a_n\} \in S\}$$

and

$$T' = \{b_1 + \dots + b_n : b_1 \in B_1, \dots, b_n \in B_n, \{b_1, \dots, b_n\} \in T\}$$

are subsets of \mathbb{C} with $|S'| \leq |S|$ and $|T'| \leq |T|$. By Theorem 1.2 with $P_i(x) = x^m$ and $Q_i(x) = x^h$ $(1 \leq i \leq n)$, there are $a_1 \in A_1, \ldots, a_n \in A_n, b_1 \in B_1, \ldots, b_n \in B_n$ such that $a_1 + \cdots + a_n \notin S'$ (and hence $\{a_1, \ldots, a_n\} \notin S$), $b_1 + \cdots + b_n \notin T'$ (and hence $\{b_1, \ldots, b_n\} \notin T$), and also

$$a_i b_i c_i \neq a_j b_j c_j, \ a_i^m \neq a_j^m, \ b_i^h \neq b_j^h \ if \ 1 \leq i < j \leq n$$

This concludes the proof. \Box

Remark 1.3. Theorem 1.1 in the case m = 3 is a special case of Theorem 1.3.

Here is another extension of Theorem 1.1 via restricted sumsets in a field.

Theorem 1.4. Let k, m, n be positive integers with $k - 1 \ge m(n - 1)$, and let F be a field with $ch(F) > max\{mn, (k - 1 - m(n - 1))n\}$. Assume that $c_1, \ldots, c_n \in F$ are distinct, and $A_1, \ldots, A_n, B_1, \ldots, B_n$ are subsets of F with $|A_1| = \cdots = |A_n| = k$ and $|B_1| = \cdots = |B_n| = n$. Let $S_{ij} \subseteq F$ with $|S_{ij}| < 2m$ for all $1 \le i < j \le n$. Then there is an SDR $\{b_i\}_{i=1}^n$ of $\{B_i\}_{i=1}^n$ such that the restricted sumset

$$S = \{a_1 + \dots + a_n : a_i \in A_i, a_i - a_j \notin S_{ij} \text{ and } a_i b_i c_i \neq a_j b_j c_j \text{ if } i < j\}$$

$$(1.6)$$

has at least (k - 1 - m(n - 1))n + 1 elements.

Now we introduce some basic notations in this paper. Let R be any commutative ring with identity. The *permanent* of a matrix $A = (a_{ij})_{1 \leq i,j \leq n}$ over R is given by

$$per(A) = ||a_{ij}||_{1 \le i,j \le n} = \sum_{\sigma \in S_n} a_{1,\sigma(1)} \cdots a_{n,\sigma(n)}, \quad (1.7)$$

ZHI-WEI SUN

where S_n is the symmetric group of all the permutations on $\{1, \ldots, n\}$. Recall that the determinant of A is defined by

$$\det(A) = |a_{ij}|_{1 \le i,j \le n} = \sum_{\sigma \in S_n} \varepsilon(\sigma) a_{1,\sigma(1)} \cdots a_{n,\sigma(n)}, \qquad (1.8)$$

where $\varepsilon(\sigma)$ is 1 or -1 according as σ is even or odd. We remind the difference between the notations $|\cdot|$ and $||\cdot||$. For the sake of convenience, the coefficient of the monomial $x_1^{k_1} \cdots x_n^{k_n}$ in a polynomial $P(x_1, \ldots, x_n)$ over R will be denoted by $[x_1^{k_1} \cdots x_n^{k_n}]P(x_1, \ldots, x_n)$. In the next section we are going to prove Theorem 1.1 in two different

In the next section we are going to prove Theorem 1.1 in two different ways. Section 3 is devoted to the study of duality between determinant and permanent. On the basis of Section 3, we will show Theorem 1.2 in Section 4 via the polynomial method. In Section 5, we will present our proof of Theorem 1.4.

2. Two proofs of Theorem 1.1

Lemma 2.1. Let R be a commutative ring with identity, and let $a_{ij} \in R$ for i = 1, ..., m and j = 1, ..., n, where $m \in \{3, 5, ...\}$. The we have the identity

$$\sum_{\sigma_1,\dots,\sigma_{m-1}\in S_n} \varepsilon(\sigma_1\cdots\sigma_{m-1}) \prod_{1\leqslant i< j\leqslant n} \left(a_{mj} \prod_{s=1}^{m-1} a_{s\sigma_s(j)} - a_{mi} \prod_{s=1}^{m-1} a_{s\sigma_s(i)} \right)$$
$$= \prod_{1\leqslant i< j\leqslant n} (a_{1j} - a_{1i})\cdots(a_{mj} - a_{mi}).$$
(2.1)

Proof. Recall that $|x_j^{i-1}|_{1 \leq i,j \leq n} = \prod_{1 \leq i < j \leq n} (x_j - x_i)$ (Vandermonde). Let Σ denote the left-hand side of (2.1). Then

$$\begin{split} \Sigma &= \sum_{\sigma_1, \dots, \sigma_{m-1} \in S_n} \varepsilon(\sigma_1 \cdots \sigma_{m-1}) | (a_{1,\sigma_1(j)} \cdots a_{m-1,\sigma_{m-1}(j)} a_{mj})^{i-1} |_{1 \leqslant i,j \leqslant n} \\ &= \sum_{\sigma_1, \dots, \sigma_{m-1} \in S_n} \varepsilon(\sigma_1) \times \dots \times \varepsilon(\sigma_{m-1}) \\ &\times \sum_{\tau \in S_n} \varepsilon(\tau) \prod_{i=1}^n (a_{1,\sigma_1(\tau(i))} \cdots a_{m-1,\sigma_{m-1}(\tau(i))} a_{m,\tau(i)})^{i-1} \\ &= \sum_{\tau \in S_n} \varepsilon(\tau)^m \prod_{i=1}^n a_{m,\tau(i)}^{i-1} \times \prod_{s=1}^{m-1} \sum_{\sigma_s \in S_n} \varepsilon(\sigma_s \tau) \prod_{i=1}^n a_{s,\sigma_s \tau(i)}^{i-1} \\ &= \sum_{\tau \in S_n} \varepsilon(\tau)^m \prod_{i=1}^n a_{m,\tau(i)}^{i-1} \times \prod_{s=1}^{m-1} \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n a_{s,\sigma(i)}^{i-1}. \end{split}$$

Since m is odd, we finally have

$$\Sigma = |a_{mj}^{i-1}|_{1 \le i,j \le n} \prod_{s=1}^{m-1} |a_{sj}^{i-1}|_{1 \le i,j \le n} = \prod_{s=1}^{m} \prod_{1 \le i < j \le n} (a_{sj} - a_{si}).$$

This proves (2.1).

Remark 2.1. When $m \in \{2, 4, 6, ...\}$, the right-hand side of (2.1) should be replaced by

$$\|a_{mj}^{i-1}\|_{1 \leq i,j \leq n} \prod_{1 \leq i < j \leq n} (a_{1j} - a_{1i}) \cdots (a_{m-1,j} - a_{m-1,i}).$$

Definition 2.1. A subset S of a commutative ring R with identity is said to be *regular* if all those a - b with $a, b \in S$ and $a \neq b$ are units (i.e., invertible elements) of R.

Theorem 2.1. Let R be a commutative ring with identity, and let m > 0 be odd. Then, for any regular subsets A_1, \ldots, A_m of R with cardinality $n \in \mathbb{Z}^+$, the elements of A_i $(1 \leq i \leq m)$ can be listed in a suitable order a_{i1}, \ldots, a_{in} , so that all the products $\prod_{i=1}^m a_{ij}$ $(1 \leq j \leq n)$ are distinct.

Proof. The case m = 1 is trivial. Below we let $m \in \{3, 5, ...\}$.

Write $A_s = \{b_{s1}, \ldots, b_{sn}\}$ for $s = 1, \ldots, m$. As all those $b_{sj} - b_{si}$ with $1 \leq s \leq m$ and $1 \leq i < j \leq n$ are units of R, the product

$$\prod_{1 \leq i < j \leq n} (b_{1j} - b_{1i}) \cdots (b_{mj} - b_{mi})$$

is also a unit of R and hence nonzero. Thus, by Lemma 2.1 there are $\sigma_1, \ldots, \sigma_{m-1} \in S_n$ such that whenever $1 \leq i < j \leq n$ we have

$$b_{1,\sigma_1(i)}\cdots b_{m-1,\sigma_{m-1}(i)}b_{mi}\neq b_{1,\sigma_1(j)}\cdots b_{m-1,\sigma_{m-1}(j)}b_{mj}.$$

For $1 \leq s \leq m$ and $1 \leq j \leq n$, let $a_{sj} = b_{s,\sigma_s(j)}$ if s < m, and $a_{sj} = b_{sj}$ if s = m. Then $\{a_{s1}, \ldots, a_{sn}\} = A_s$, and all the products $\prod_{s=1}^m a_{sj}$ $(j = 1, \ldots, n)$ are distinct. This concludes the proof. \Box

Proof of Theorem 1.1. As mentioned in the proof of Theorem 1.3 via Theorem 1.2, without loss of generality we may simply take G to be the multiplicative group $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. As any nonzero element of a field is a unit in the field, the desired result follows from Theorem 2.1 immediately. \Box

Now we turn to our second approach to Theorem 1.1.

Lemma 2.2. Let c_1, \ldots, c_n be elements of a commutative ring with identity. Then we have

$$[x_1^{n-1} \cdots x_n^{n-1} y_1^{n-1} \cdots y_n^{n-1}] \prod_{1 \le i < j \le n} (x_j - x_i)(y_j - y_i)(c_j x_j y_j - c_i x_i y_i)$$
$$= \prod_{1 \le i < j \le n} (c_j - c_i).$$
(2.2)

Proof. Observe that

$$\begin{split} &\prod_{1\leqslant i< j\leqslant n} (x_j - x_i)(y_j - y_i)(c_j x_j y_j - c_i x_i y_i) \\ = &|x_i^{j-1}|_{1\leqslant i, j\leqslant n} |y_i^{j-1}|_{1\leqslant i, j\leqslant n} |(c_i x_i y_i)^{j-1}|_{1\leqslant i, j\leqslant n} \\ = &\sum_{\sigma\in S_n} \varepsilon(\sigma) \prod_{i=1}^n x_i^{\sigma(i)-1} \times \sum_{\tau\in S_n} \varepsilon(\tau) \prod_{i=1}^n y_i^{\tau(i)-1} \times \sum_{\lambda\in S_n} \varepsilon(\lambda) \prod_{i=1}^n (c_i x_i y_i)^{\lambda(i)-1} \\ = &\sum_{\lambda\in S_n} \varepsilon(\lambda) \prod_{i=1}^n c_i^{\lambda(i)-1} \sum_{\sigma,\tau\in S_n} \varepsilon(\sigma\tau) \prod_{i=1}^n \left(x_i^{\lambda(i)+\sigma(i)-2} y_i^{\lambda(i)+\tau(i)-2} \right). \end{split}$$

Thus the left-hand side of (2.2) coincides with

$$\sum_{\lambda \in S_n} \left(\varepsilon(\lambda) \prod_{i=1}^n c_i^{\lambda(i)-1} \right) \varepsilon(\bar{\lambda}\bar{\lambda}) = |c_i^{j-1}|_{1 \leq i,j \leq n} = \prod_{1 \leq i < j \leq n} (c_j - c_i),$$

where $\bar{\lambda}(i) = n + 1 - \lambda(i)$ for i = 1, ..., n. We are done. \Box

Let us recall the following central principle of the polynomial method.

Combinatorial Nullstellensatz [A1]. Let A_1, \ldots, A_n be finite subsets of a field F with $|A_i| > k_i$ for $i = 1, \ldots, n$, where k_1, \ldots, k_n are nonnegative integers. If the total degree of $f(x_1, \ldots, x_n) \in F[x_1, \ldots, x_n]$ is $k_1 + \cdots + k_n$ and $[x_1^{k_1} \cdots x_n^{k_n}] f(x_1, \ldots, x_n)$ is nonzero, then $f(a_1, \ldots, a_n) \neq$ 0 for some $a_1 \in A_1, \ldots, a_n \in A_n$.

Theorem 2.2. Let A_1, \ldots, A_n and B_1, \ldots, B_n be subsets of a field F with cardinality n. And let c_1, \ldots, c_n be distinct elements of F. Then there is an SDR $\{a_i\}_{i=1}^n$ of $\{A_i\}_{i=1}^n$ and an SDR $\{b_i\}_{i=1}^n$ of $\{B_i\}_{i=1}^n$ such that the products $a_1b_1c_1, \ldots, a_nb_nc_n$ are distinct.

Proof. As c_1, \ldots, c_n are distinct, (2.2) implies that

$$[x_1^{n-1}\cdots x_n^{n-1}y_1^{n-1}\cdots y_n^{n-1}]\prod_{1\leqslant i< j\leqslant n} (x_j-x_i)(y_j-y_i)(c_jx_jy_j-c_ix_iy_i)\neq 0.$$

Applying the Combinatorial Nullstellensatz, we obtain the desired result. \Box

Remark 2.2. When $F = \mathbb{C}$, $A_1 = \cdots = A_n$ and $B_1 = \cdots = B_n$, Theorem 2.2 yields Theorem 1.1 with m = 3. Note also that Theorems 1.2 and 1.4 are different extensions of Theorem 2.2.

3. DUALITY BETWEEN DETERMINANT AND PERMANENT

Let us first summarize Theorem 2.1 and Corollary 2.1 of Sun [Su3] in the following theorem.

Theorem 3.1 (Sun [Su3]). Let R be a commutative ring with identity, and let $A = (a_{ij})_{1 \leq i,j \leq n}$ be a matrix over R.

(i) Let $k_1, \ldots, k_n, m_1, \ldots, m_n \in \mathbb{N} = \{0, 1, 2, \ldots\}$ with $M = \sum_{i=1}^n m_i + \delta\binom{n}{2} \leq \sum_{i=1}^n k_i$ where $\delta \in \{0, 1\}$. Then

$$[x_1^{k_1} \cdots x_n^{k_n}] |a_{ij} x_j^{m_i}|_{1 \le i,j \le n} \prod_{1 \le i < j \le n} (x_j - x_i)^{\delta} \times \left(\sum_{s=1}^n x_s\right)^{\sum_{i=1}^n k_i - M}$$
$$= \begin{cases} \sum_{\sigma \in S_n, \ D_\sigma \subseteq \mathbb{N}} \varepsilon(\sigma) N_\sigma \prod_{i=1}^n a_{i,\sigma(i)} & \text{if } \delta = 0, \\ \sum_{\sigma \in T_n} \varepsilon(\sigma') N_\sigma \prod_{i=1}^n a_{i,\sigma(i)} & \text{if } \delta = 1, \end{cases}$$

where

$$D_{\sigma} = \{k_{\sigma(1)} - m_1, \dots, k_{\sigma(n)} - m_n\},\$$

$$T_n = \{\sigma \in S_n \colon D_{\sigma} \subseteq \mathbb{N} \text{ and } |D_{\sigma}| = n\},\$$

$$N_{\sigma} = \frac{(k_1 + \dots + k_n - M)!}{\prod_{i=1}^n \prod_{\substack{0 \leq j < k_{\sigma(i)} - m_i}} (k_{\sigma(i)} - m_i - j)} \in \mathbb{Z}^+,\$$

and σ' (with $\sigma \in T_n$) is the unique permutation in S_n such that

$$0 \leq k_{\sigma(\sigma'(1))} - m_{\sigma'(1)} < \dots < k_{\sigma(\sigma'(n))} - m_{\sigma'(n)}.$$
(ii) Let $k, m_1, \dots, m_n \in \mathbb{N}$ with $m_1 \leq \dots \leq m_n \leq k$. Then
$$[x_1^k \cdots x_n^k] |a_{ij} x_j^{m_i}|_{1 \leq i,j \leq n} (x_1 + \dots + x_n)^{kn - \sum_{i=1}^n m_i}$$

$$= \frac{(kn - \sum_{i=1}^n m_i)!}{\prod_{i=1}^n (k - m_i)!} \det(A).$$
(3.1)

In the case $m_1 < \cdots < m_n$, we also have

$$[x_{1}^{k} \cdots x_{n}^{k}]|a_{ij}x_{j}^{m_{i}}|_{1 \leq i,j \leq n} \prod_{1 \leq i < j \leq n} (x_{j} - x_{i}) \times \left(\sum_{s=1}^{n} x_{s}\right)^{kn - \binom{n}{2} - \sum_{i=1}^{n} m_{i}}$$
$$= (-1)^{\binom{n}{2}} \frac{(kn - \binom{n}{2} - \sum_{i=1}^{n} m_{i})!}{\prod_{i=1}^{n} \prod_{\substack{j \notin \{m_{s}: i < s \leq n\}}} (j - m_{i})} \operatorname{per}(A).$$
(3.2)

ZHI-WEI SUN

In view of the minor difference between the definitions of determinant and permanent, by modifying the proof of the above result in [Su3] slightly we get the following dual of Theorem 3.1.

Theorem 3.2. Let R be a commutative ring with identity, and let $A = (a_{ij})_{1 \leq i,j \leq n}$ be a matrix over R.

(i) Let $k_1, m_1, \ldots, k_n, m_n \in \mathbb{N}$ with $M = \sum_{i=1}^n m_i + \delta\binom{n}{2} \leq \sum_{i=1}^n k_i$ where $\delta \in \{0, 1\}$. Then

$$\begin{split} [x_1^{k_1} \cdots x_n^{k_n}] \|a_{ij} x_j^{m_i}\|_{1 \le i,j \le n} \prod_{1 \le i < j \le n} (x_j - x_i)^{\delta} \times \left(\sum_{s=1}^n x_s\right)^{\sum_{i=1}^n k_i - M} \\ &= \begin{cases} \sum_{\sigma \in S_n, \ D_\sigma \subseteq \mathbb{N}} N_\sigma \prod_{i=1}^n a_{i,\sigma(i)} & \text{if } \delta = 0, \\ \sum_{\sigma \in T_n} \varepsilon(\sigma\sigma') N_\sigma \prod_{i=1}^n a_{i,\sigma(i)} & \text{if } \delta = 1, \end{cases} \end{split}$$

where $D_{\sigma}, T_n, N_{\sigma}$ and σ' are as in Theorem 3.1(i). (ii) Let $k, m_1, \ldots, m_n \in \mathbb{N}$ with $m_1 \leq \cdots \leq m_n \leq k$. Then

$$[x_1^k \cdots x_n^k] \|a_{ij} x_j^{m_i}\|_{1 \le i, j \le n} (x_1 + \dots + x_n)^{kn - \sum_{i=1}^n m_i} = \frac{(kn - \sum_{i=1}^n m_i)!}{\prod_{i=1}^n (k - m_i)!} \operatorname{per}(A).$$
(3.3)

In the case $m_1 < \cdots < m_n$, we also have

$$\begin{aligned} [x_1^k \cdots x_n^k] \|a_{ij} x_j^{m_i}\|_{1 \le i,j \le n} \prod_{\substack{1 \le i < j \le n \\ 1 \le i < j \le n \\ m_i < j \le n \\ m_i < j \le k \\ j \notin \{m_s: i < s \le n\}}} (x_j - x_i) \times \left(\sum_{s=1}^n x_s\right)^{kn - \binom{n}{2} - \sum_{i=1}^n m_i} \\ &= (-1)^{\binom{n}{2}} \frac{(kn - \binom{n}{2} - \sum_{i=1}^n m_i)!}{\prod_{i=1}^n \prod_{\substack{m_i < j \le k \\ m_s: i < s \le n\}}} (j - m_i)} \det(A). \end{aligned}$$

$$(3.4)$$

Remark 3.1. Part (ii) of Theorem 3.2 follows from the first part.

Theorem 3.3. Let R be a commutative ring with identity, and let $a_{ij} \in R$ for all i, j = 1, ..., n. Let $k, l_1, ..., l_n, m_1, ..., m_n \in \mathbb{N}$ with $N = kn - \sum_{i=1}^n (l_i + m_i) \ge 0$.

(i) (Sun [Su3, Theorem 2.2]) There holds the identity

$$[x_1^k \cdots x_n^k] |a_{ij} x_j^{l_i}|_{1 \le i,j \le n} |x_j^{m_i}|_{1 \le i,j \le n} (x_1 + \dots + x_n)^N$$

=[$x_1^k \cdots x_n^k$] | $a_{ij} x_j^{m_i}|_{1 \le i,j \le n} |x_j^{l_i}|_{1 \le i,j \le n} (x_1 + \dots + x_n)^N.$ (3.5)

(ii) We also have the following symmetric identities:

$$[x_1^k \cdots x_n^k] \|a_{ij} x_j^{l_i}\|_{1 \le i,j \le n} |x_j^{m_i}|_{1 \le i,j \le n} (x_1 + \dots + x_n)^N$$

= $[x_1^k \cdots x_n^k] \|a_{ij} x_j^{m_i}\|_{1 \le i,j \le n} |x_j^{l_i}|_{1 \le i,j \le n} (x_1 + \dots + x_n)^N,$ (3.6)

AN ADDITIVE THEOREM AND RESTRICTED SUMSETS 11

$$[x_1^k \cdots x_n^k] |a_{ij} x_j^{l_i}|_{1 \leq i,j \leq n} ||x_j^{m_i}||_{1 \leq i,j \leq n} (x_1 + \cdots + x_n)^N$$

= $[x_1^k \cdots x_n^k] |a_{ij} x_j^{m_i}|_{1 \leq i,j \leq n} ||x_j^{l_i}||_{1 \leq i,j \leq n} (x_1 + \cdots + x_n)^N,$ (3.7)

and

$$[x_1^k \cdots x_n^k] \|a_{ij} x_j^{l_i}\|_{1 \le i,j \le n} \|x_j^{m_i}\|_{1 \le i,j \le n} (x_1 + \dots + x_n)^N$$

= $[x_1^k \cdots x_n^k] \|a_{ij} x_j^{m_i}\|_{1 \le i,j \le n} \|x_j^{l_i}\|_{1 \le i,j \le n} (x_1 + \dots + x_n)^N.$ (3.8)

Theorem 3.3(ii) can be proved by modifying the proof of [Su3, Theorem 2.2] slightly.

4. Proof of Theorem 1.2

Lemma 4.1. Let h, k, l, m, n be positive integers satisfying (1.1). Let c_1, \ldots, c_n be elements of a commutative ring R with identity, and let $P(x_1, \ldots, x_n, y_1, \ldots, y_n)$ denote the polynomial

$$\prod_{1 \leq i < j \leq n} (c_j x_j y_j - c_i x_i y_i) (x_j^m - x_i^m) (y_j^h - y_i^h) \times (x_1 + \dots + x_n)^K (y_1 + \dots + y_n)^L,$$

where K and L are given by (1.2). Then

$$[x_1^{k-1} \cdots x_n^{k-1} y_1^{l-1} \cdots y_n^{l-1}] P(x_1, \dots, x_n, y_1, \dots, y_n)$$

= $\frac{K!L!}{N} \prod_{1 \leq i < j \leq n} (c_j - c_i),$ (4.1)

where

$$N = (hm)^{-\binom{n}{2}} \prod_{r=0}^{n-1} \frac{(k-1-rm)!(l-1-rh)!}{(r!)^2} \in \mathbb{Z}^+.$$
(4.2)

Proof. In view of Theorem 3.3(i) and Theorem 3.1(ii),

$$\begin{split} &[y_1^{l-1}\cdots y_n^{l-1}]\prod_{1\leqslant i< j\leqslant n}(c_jx_jy_j-c_ix_iy_i)(y_j^h-y_i^h)\times (y_1+\cdots+y_n)^L\\ &= &[y_1^{l-1}\cdots y_n^{l-1}]|(c_jx_j)^{i-1}y_j^{i-1}|_{1\leqslant i,j\leqslant n}|y_j^{(i-1)h}|_{1\leqslant i,j\leqslant n}(y_1+\cdots+y_n)^L\\ &= &[y_1^{l-1}\cdots y_n^{l-1}]|(c_jx_j)^{i-1}y_j^{(i-1)h}|_{1\leqslant i,j\leqslant n}|y_j^{i-1}|_{1\leqslant i,j\leqslant n}(y_1+\cdots+y_n)^L\\ &= &(-1)^{\binom{n}{2}}\frac{L!}{L_0}\|(c_jx_j)^{i-1}\|_{1\leqslant i,j\leqslant n}, \end{split}$$

where

$$L_{0} = \prod_{i=1}^{n} \prod_{\substack{(i-1)h < j \le l-1 \\ j/h \notin \{s \in \mathbb{Z}: i \le s < n\}}} (j - (i-1)h) = \prod_{i=1}^{n} \frac{(l-1-(i-1)h)!}{\prod_{0 < j \le n-i}(jh)}$$
$$= \prod_{i=1}^{n} \frac{(l-1-(i-1)h)!}{(n-i)!h^{n-i}} = h^{-\binom{n}{2}} \prod_{r=0}^{n-1} \frac{(l-1-rh)!}{r!}.$$

Thus, with helps of Theorem 3.3(ii) and Theorem 3.2(ii), we have

$$(-1)^{\binom{n}{2}} [x_1^{k-1} \cdots x_n^{k-1} y_1^{l-1} \cdots y_n^{l-1}] P(x_1, \dots, x_n, y_1, \dots, y_n)$$

$$= [x_1^{k-1} \cdots x_n^{k-1}] \frac{L!}{L_0} \| (c_j x_j)^{i-1} \|_{1 \le i,j \le n} \prod_{1 \le i < j \le n} (x_j^m - x_i^m) \times \left(\sum_{s=1}^n x_s\right)^K$$

$$= \frac{L!}{L_0} [x_1^{k-1} \cdots x_n^{k-1}] \| c_j^{i-1} x_j^{i-1} \|_{1 \le i,j \le n} |x_j^{(i-1)m}|_{1 \le i,j \le n} (x_1 + \dots + x_n)^K$$

$$= \frac{L!}{L_0} [x_1^{k-1} \cdots x_n^{k-1}] \| c_j^{i-1} x_j^{(i-1)m} \|_{1 \le i,j \le n} |x_j^{i-1}|_{1 \le i,j \le n} (x_1 + \dots + x_n)^K$$

$$= \frac{L!}{L_0} (-1)^{\binom{n}{2}} \frac{K!}{K_0} |c_j^{i-1}|_{1 \le i,j \le n} = (-1)^{\binom{n}{2}} \frac{K!L!}{K_0 L_0} \prod_{1 \le i < j \le n} (c_j - c_i),$$

where

$$K_0 = \prod_{i=1}^n \prod_{\substack{(i-1)m < j \le k-1 \\ j/m \notin \{s \in \mathbb{Z}: i \le s < n\}}} (j - (i-1)m) = m^{-\binom{n}{2}} \prod_{r=0}^{n-1} \frac{(k-1-rm)!}{r!}.$$
 (4.3)

Therefore (4.1) holds with $N = K_0 L_0 \in \mathbb{Z}^+$. \Box Proof of Theorem 1.2. Let $f(x_1, \ldots, x_n, y_1, \ldots, y_n)$ denote the polynomial

$$\prod_{1 \leq i < j \leq n} (P_j(x_j) - P_i(x_i))(Q_j(y_j) - Q_i(y_i))(c_j x_j y_j - c_i x_i y_i)$$

 $\times (x_1 + \dots + x_n)^{K-|S|} \prod_{a \in S} (x_1 + \dots + x_n - a)$
 $\times (y_1 + \dots + y_n)^{L-|T|} \prod_{b \in T} (y_1 + \dots + y_n - b).$

Then

$$\deg f \leqslant (m+h+2)\binom{n}{2} + |K| + |L| = (k-1+l-1)n = \sum_{i=1}^{n} (|A_i| - 1 + |B_i| - 1).$$

Since $ch(F) > max\{K, L\}$ and $\prod_{1 \leq i < j \leq n} (c_j - c_i) \neq 0$, in view of Lemma 4.1 we have

$$[x_1^{k-1}\cdots x_n^{k-1}y_1^{l-1}\cdots y_n^{l-1}]f(x_1,\ldots,x_n,y_1,\ldots,y_n)$$

= $[x_1^{k-1}\cdots x_n^{k-1}y_1^{l-1}\cdots y_n^{l-1}]P(x_1,\ldots,x_n,y_1,\ldots,y_n) \neq 0,$

where $P(x_1, \ldots, x_n, y_1, \ldots, y_n)$ is defined as in Lemma 4.1. Applying the Combinatorial Nullstellensatz we find that $f(a_1, \ldots, a_n, b_1, \ldots, b_n) \neq 0$ for some $a_1 \in A_1, \ldots, a_n \in A_n, b_1 \in B_1, \ldots, b_n \in B_n$. Thus (1.4) holds, and also $a_1 + \cdots + a_n \notin S$ and $b_1 + \cdots + b_n \notin T$. We are done. \Box

5. Proof of Theorem 1.4

Non-vanishing permanents are useful in combinatorics. For example, Alon's permanent lemma [A1] states that, if $A = (a_{ij})_{1 \leq i,j \leq n}$ is a matrix over a field F with $per(A) \neq 0$, and X_1, \ldots, X_n are subsets of F with cardinality 2, then for any $b_1, \ldots, b_n \in F$ there are $x_1 \in X_1, \ldots, x_n \in X_n$ such that $\sum_{j=1}^n a_{ij} x_j \neq b_i$ for all $i = 1, \ldots, n$.

In contrast with [Su3, Theorem 1.2(ii)], we have the following auxiliary result.

Theorem 5.1. Let A_1, \ldots, A_n be finite subsets of a field F with $|A_1| = \cdots = |A_n| = k$, and let $P_1(x), \ldots, P_n(x) \in F[x]$ have degree at most $m \in \mathbb{Z}^+$ with $[x^m]P_1(x), \ldots, [x^m]P_n(x)$ distinct. Suppose that $k-1 \ge m(n-1)$ and $\operatorname{ch}(F) > (k-1)n - (m+1)\binom{n}{2}$. Then the restricted sumset

$$C = \left\{ \sum_{i=1}^{n} a_i : a_i \in A_i, \ a_i \neq a_j \ for \ i \neq j, \ and \ \|P_j(a_j)^{i-1}\|_{1 \le i,j \le n} \neq 0 \right\}$$
(5.1)

has cardinality at least $(k-1)n - (m+1)\binom{n}{2} + 1 > (m-1)\binom{n}{2}$.

Proof. Assume that $|C| \leq K = (k-1)n - (m+1)\binom{n}{2}$. Clearly the polynomial

$$f(x_1, \dots, x_n) := \prod_{1 \leq i < j \leq n} (x_j - x_i) \times \|P_j(x_j)^{i-1}\|_{1 \leq i,j \leq n}$$
$$\times \prod_{c \in C} (x_1 + \dots + x_n - c) \times (x_1 + \dots + x_n)^{K - |C|}$$

has degree not exceeding $(k-1)n = \sum_{i=1}^{n} (|A_i|-1)$. Since ch(F) is greater than K, and those $b_i = [x^m]P_i(x)$ with $1 \leq i \leq n$ are distinct, with the

help of Theorem 3.2(ii) we have

$$[x_1^{k-1}\cdots x_n^{k-1}]f(x_1,\ldots,x_n)$$

= $[x_1^{k-1}\cdots x_n^{k-1}]\prod_{1\leqslant i< j\leqslant n} (x_j-x_i) \times ||b_j^{i-1}x_j^{(i-1)m}||_{1\leqslant i,j\leqslant n} \left(\sum_{s=1}^n x_s\right)^K$
= $(-1)^{\binom{n}{2}}\frac{K!}{K_0}|b_j^{i-1}|_{1\leqslant i,j\leqslant n} = (-1)^{\binom{n}{2}}\frac{K!}{K_0}\prod_{1\leqslant i< j\leqslant n} (b_j-b_i) \neq 0,$

where K_0 is given by (4.3). Thus, by the Combinatorial Nullstellensatz, $f(a_1, \ldots, a_n) \neq 0$ for some $a_1 \in A_1, \ldots, a_n \in A_n$. Clearly $\sum_{i=1}^n a_i \in C$ if $\|P_j(a_j)^{i-1}\|_{1 \leq i,j \leq n} \neq 0$ and $a_i \neq a_j$ for all $1 \leq i < j \leq n$. So we also have $f(a_1, \ldots, a_n) = 0$ by the definition of $f(x_1, \ldots, x_n)$. The contradiction ends our proof. \Box

Corollary 5.1. Let A_1, \ldots, A_n and $B = \{b_1, \ldots, b_n\}$ be subsets of a field with cardinality n. Then there is an SDR $\{a_i\}_{i=1}^n$ of $\{A_i\}_{i=1}^n$ such that the permanent $||(a_jb_j)^{i-1}||_{1 \le i,j \le n}$ is nonzero.

Proof. Simply apply Theorem 5.1 with k = n and $P_j(x) = b_j x$ for $j = 1, \ldots, n$. \Box

Lemma 5.1. Let $k, m, n \in \mathbb{Z}^+$ with $k - 1 \ge m(n - 1)$. Then

$$[x_1^{k-1}\cdots x_n^{k-1}] \prod_{1\leqslant i< j\leqslant n} (x_j - x_i)^{2m-1} (x_j y_j - x_i y_i) \times \left(\sum_{s=1}^n x_s\right)^N$$

= $(-1)^{m\binom{n}{2}} \frac{(mn)!N!}{(m!)^n n!} \prod_{r=0}^{n-1} \frac{(rm)!}{(k-1-rm)!} \times \|y_j^{i-1}\|_{1\leqslant i,j\leqslant n},$ (5.2)

where N = (k - 1 - m(n - 1))n.

Proof. Since both sides of (5.2) are polynomials in y_1, \ldots, y_n , it suffices to show that (5.2) with y_1, \ldots, y_n replaced by $a_1, \ldots, a_n \in \mathbb{C}$ always holds. By Lemma 2.1 and (2.6) of [SV], we have

By Lemma 2.1 and (2.6) of [SY], we have

$$\begin{aligned} & [x_1^{k-1}\cdots x_n^{k-1}]\prod_{1\leqslant i< j\leqslant n} (x_j-x_i)^{2m-1} (a_jx_j-a_ix_i) \times \left(\sum_{s=1}^n x_s\right)^N \\ &= \frac{N!}{((k-1)!)^n} (-1)^m {\binom{n}{2}} \frac{m!(2m)!\cdots (nm)!}{(m!)^n n!} \|a_j^{i-1}\|_{1\leqslant i,j\leqslant n} \prod_{0< r< n} \prod_{s=1}^{rm} (k-s) \\ &= (-1)^m {\binom{n}{2}} \frac{(mn)!N!}{(m!)^n n!} \|a_j^{i-1}\|_{1\leqslant i,j\leqslant n} \prod_{r=0}^{n-1} \frac{(rm)!}{(k-1-rm)!}.\end{aligned}$$

This concludes the proof. \Box

Proof of Theorem 1.4. Since c_1, \ldots, c_n are distinct and $|B_1| = \cdots =$ $|B_n| = n$, by Corollary 5.1 there is an SDR $\{b_i\}_{i=1}^n$ of $\{B_i\}_{i=1}^n$ such that $\begin{aligned} \|(b_jc_j)^{i-1}\|_{1\leqslant i,j\leqslant n} &\neq 0.\\ \text{Suppose that } |S| \leqslant N = (k-1-m(n-1))n. \text{ We want to derive a} \end{aligned}$

contradiction. Let $f(x_1, \ldots, x_n)$ denote the polynomial

$$\prod_{1 \leq i < j \leq n} \left((b_j c_j x_j - b_i c_i x_i) (x_j - x_i)^{2m - 1 - |S_{ij}|} \prod_{c \in S_{ij}} (x_j - x_i + c) \right) \\ \times (x_1 + \dots + x_n)^{N - |S|} \prod_{a \in S} (x_1 + \dots + x_n - a).$$

Then

$$\deg f \leq 2m \binom{n}{2} + N = (k-1)n = \sum_{i=1}^{n} (|A_i| - 1).$$

With the help of Lemma 5.1, we have

$$[x_1^{k-1}\cdots x_n^{k-1}]f(x_1,\ldots,x_n)$$

= $[x_1^{k-1}\cdots x_n^{k-1}](x_1+\cdots+x_n)^N \prod_{1\leqslant i< j\leqslant n} (b_jc_jx_j-b_ic_ix_i)(x_j-x_i)^{2m-1}$
= $(-1)^{m\binom{n}{2}}\frac{(mn)!N!}{(m!)^nn!}\prod_{r=0}^{n-1}\frac{(rm)!}{(k-1-rm)!} \times ||(b_jc_j)^{i-1}||_{1\leqslant i,j\leqslant n} \neq 0$

since $ch(F) > max\{mn, N\}$. By the Combinatorial Nullstellensatz, there are $a_1 \in A_1, \ldots, a_n \in A_n$ such that $f(a_1, \ldots, a_n) \neq 0$. On the other hand, we do have $f(a_1, \ldots, a_n) = 0$, because $a_1 + \cdots + a_n \in S$ if $a_i - a_j \notin S_{ij}$ and $a_i b_i c_i \neq a_j b_j c_j$ for all $1 \leq i < j \leq n$. So we get a contradiction. \Box

References

- [A1]N. Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput. 8 (1999), 7 - 29.
- [A2]N. Alon, Additive Latin transversals, Israel J. Math. 117 (2000), 125–130.
- N. Alon, M. B. Nathanson and I. Z. Ruzsa, The polynomial method and re-[ANR] stricted sums of congruence classes, J. Number Theory 56 (1996), 404–417.
- [AT]N. Alon and M. Tarsi, A nowhere-zero point in linear mappings, Combinatorica **9** (1989), 393–395.
- [DKSS] S. Dasgupta, G. Károlyi, O. Serra and B. Szegedy, Transversals of additive Latin squares, Israel J. Math. 126 (2001), 17-28.
- [DK]J. Dénes and A. D. Keedwell, Latin Squares and their Applications, Academic Press, New York, 1974.
- [DH]J. A. Dias da Silva and Y. O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (1994), 140–146.

ZHI-WEI SUN

- [D] A. A. Drisko, Transversals in row-Latin rectangles, J. Combin. Theory Ser. A 84 (1998), 181–195.
- [EHNS] P. Erdős, D. R. Hickerson, D. A. Norton and S. K. Stein, Has every latin square of order n a partial latin transversal of size n - 1? Amer. Math. Monthly 95 (1988), 428-430.
- [HS] Q. H. Hou and Z. W. Sun, *Restricted sums in a field*, Acta Arith. **102** (2002), 239–249.
- [LS] J. X. Liu and Z. W. Sun, Sums of subsets with polynomial restrictions, J. Number Theory 97 (2002), 301–304.
- [N] M. B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets (Graduate texts in math.; 165), Springer, New York, 1996.
- [PS1] H. Pan and Z. W. Sun, A lower bound for $|\{a+b: a \in A, b \in B, P(a,b) \neq 0\}|$, J. Combin. Theory Ser. A **100** (2002), 387–393.
- [PS2] H. Pan and Z. W. Sun, Restricted sumsets and a conjecture of Lev, Israel J. Math. 154 (2006), 21–28.
- [R] H. J. Ryser, Neuere Probleme der Kombinatorik, in: Vorträge über Kombinatorik (Oberwolfach, 1967), Mathematiches Forschungsinstitut, Oberwolfach, 1968, pp. 69–91.
- [Sn] H. S. Snevily, The Cayley addition table of \mathbb{Z}_n , Amer. Math. Monthly 106 (1999), 584–585.
- [Su1] Z. W. Sun, Hall's theorem revisited, Proc. Amer. Math. Soc. 129 (2001), 3129– 3131.
- [Su2] Z. W. Sun, Restricted sums of subsets of Z, Acta Arith. 99 (2001), 41–60.
- [Su3] Z. W. Sun, On Snevily's conjecture and restricted sumsets, J. Combin. Theory Ser. A **103** (2003), 288–301.
- [SY] Z. W. Sun and Y. N. Yeh, On various restricted sumsets, J. Number Theory 114 (2005), 209–220.
- [TV] T. Tao and V. H. Vu, Additive Combinatorics, Cambridge Univ. Press, Cambridge, 2006.

Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

E-mail address: zwsun@nju.edu.cn *Homepage:* http://math.nju.edu.cn/~zwsun