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AN ADDITIVE THEOREM AND RESTRICTED SUMSETS

ZHI-WEI SUN

ABSTRACT. Let G be any additive abelian group with cyclic torsion sub-
group, and let A, B and C be finite subsets of G with cardinality n > 0.
We show that there is a numbering {a;}?_; of the elements of A, a number-

ing {b;}I"_; of the elements of B and a numbering {c;}" ; of the elements
of C, such that all the sums a; +b; +¢; (1 <4 < n) are (pairwise) distinct.
Consequently, each subcube of the Latin cube formed by the Cayley ad-
dition table of Z/NZ contains a Latin transversal. This additive theorem
is an essential result which can be further extended via restricted sumsets
in a field.

1. INTRODUCTION

In 1999 Snevily [Sn] raised the following beautiful conjecture in additive
combinatorics which is currently an active area of research.

Snevily’s Conjecture. Let G be an additive abelian group with |G| odd.
Let A and B be subsets of G with cardinalityn € Z+ = {1,2,3,...}. Then
there is a numbering {a;}_, of the elements of A and a numbering {b; }}_,
of the elements of B such that the sums ay +by,. .. ,a,+ b, are (pairwise)
distinct.

When |G| is an odd prime, this conjecture was proved by Alon [A2]
via the polynomial method rooted in Alon and Tarsi [AT], and developed
by Alon, Nathanson and Ruzsa [ANR] (see also [N, pp.98-107] and [TV,
pp. 329-345]) and refined by Alon [A1] in 1999. In 2001 Dasgupta, Kérolyi,
Serra and Szegedy [DKSS] confirmed Snevily’s conjecture for any cyclic
group of odd order. In 2003 Sun [Su3| obtained some further extensions of
the Dasgupta-Karolyi-Serra-Szegedy result via restricted sums in a field.

In Snevily’s conjecture the abelian group is required to have odd order.
(An abelian group of even order has an element g of order 2 and hence we
don’t have the described result for A = B = {0, ¢}.) For a general abelian
group G with its torsion subgroup Tor(G) = {a € G : a has a finite order}
cyclic, if we make no hypothesis on the order of GG, what additive properties
can we impose on several finite subsets of G with cardinality n? In this
direction we establish the following new theorem of additive nature.
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Theorem 1.1. Let G be any additive abelian group with cyclic torsion

subgroup, and let Ay, ..., A,, be arbitrary subsets of G with cardinality n €
Z*, where m is odd. Then the elements of A; (1 <1i < m) can be listed in
a suitable order a1, ... ,Qin, so that all the sums >~ a;; (1 <j < n) are
distinct. In other words, for a certain subset A,,11 of G with |Apyi1| = n,
there is a matriz (aij)1<i<m+1,1<j<n Such that {a;1,... ,a;n} = A; for
all i = 1,...,m+ 1 and the column sum Z?jl a;; vanishes for every
7=1...,n.

Remark 1.1. Theorem 1.1 in the case m = 3 is essential; the result for
m =5,7,... can be obtained by repeated use of the case m = 3.

Example 1.1. In Theorem 1.1 the condition 2 t m is indispensable. Let
G be an additive cyclic group of even order n. Then G has a unique
element g of order 2 and hence a # —a for all a € G\ {0,9}. Thus
Yacca=0+g=g. Foreachi=1,... ,mlet a;,...,a: be alist of the
n elements of G. If those 221 a;; with 1 < j < n are distinct, then

Z“:ii%:ii%:mzaa

acG j=1i=1 i=1 j=1 acG
hence (m — 1)g = (m — 1)), . a = 0 and therefore m is odd.

Example 1.2. The group G in Theorem 1.1 cannot be replaced by an
arbitrary abelian group. To illustrate this, we look at the Klein quaternion

group 7./27. & 7./27 = {(0,0), (0,1), (1,0), (1,1)}

and its subsets

A = {(Oa0)7 (Oa 1)}7 Ag = {(Oa0)7 (17())}7 Az =+ =Apn = {<Oa0)7 (L 1)}7
where m > 3isodd. Fori =1,... ,mlet a;,al be alist of the two elements
of A;, then

> (@i +aj) = (0,1) + (1,0) + (m — 2)(1,1) = (0,0)

i=1

and hence Y 37" a; = =" af = >0 aj.

Recall that a line of an n X n matrix is a row or column of the matrix.
We define a line of an n X n X n cube in a similar way. A Latin cube over
a set S of cardinality n is an n X n X n cube whose entries come from the
set S and no line of which contains a repeated element. A transversal of
an n X n X n cube is a collection of n cells no two of which lie in the same
line. A Latin transversal of a cube is a transversal whose cells contain no
repeated element.
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Corollary 1.1. Let N be any positive integer. For the N x N x N Latin
cube over Z/NZ formed by the Cayley addition table, each nxnxmn subcube
with n < N contains a Latin transversal.

Proof. Just apply Theorem 1.1 with G = Z/NZ and m =3. O

In 1967 Ryser [R] conjectured that every Latin square of odd order has
a Latin transversal. Another conjecture of Brualdi (cf. [D], [DK, p.103]
and [EHNS]) states that every Latin square of order n has a partial Latin
transversal of size n—1. These and Corollary 1.1 suggest that our following
conjecture might be reasonable.

Conjecture 1.1. FEvery nxnxn Latin cube contains a Latin transversal.

Note that Conjecture 1.1 does not imply Theorem 1.1 since an n xn xn
subcube of a Latin cube might have more than n distinct entries.

Corollary 1.2. Let G be any additive abelian group with cyclic torsion
subgroup, and let Aq,...,A,, be subsets of G with cardinality n € Z™,
where m is even. Suppose that all the elements of A,, have odd order.
Then the elements of A; (1 < i < m) can be listed in a suitable order
Qils- - - Qin, SO that all the sums Y- a;; (1 < j < n) are distinct.

Proof. As m—11is odd, by Theorem 1.1 the elements of 4; (1 <i<m—1)
can be listed in a suitable order a;1,... ,a;,, such that all the sums s; =
211_11 a;; (1 < j < n) are distinct. Since all the elements of A,, have
odd order, by [Su3, Theorem 1.1(ii)] there is a numbering {am;}7_; of the
elements of A,, such that all the sums s; + am; = Y rvq i (1 < j < n)
are distinct. We are done. [

As an essential result, Theorem 1.1 might have various potential appli-
cations in additive number theory and combinatorial designs.

We can extend Theorem 1.1 via restricted sumsets in a field. The
additive order of the multiplicative identity of a field F' is either infinite
or a prime; we call it the characteristic of F' and denote it by ch(F'). The
reader is referred to [DH], [ANR], [Su2], [HS], [LS], [PS1], [Su3], [SY] and
[PS2] for various results on restricted sumsets of the type

{a1+--+an: a1 € Ay,... ,a, € A, and Play,... ,a,) # 0},

where Aq,... A, C F and P(z1,...,2,) € Flz1,... ,2,].

For a finite sequence {A;}7, of sets, if a1 € Ay,...,a, € A, and
ai,...,a, are distinct, then the sequence {a;} ; is called a system of
distinct representives (SDR) of {A;}",. This concept plays an impor-
tant role in combinatorics and a celebrated theorem of Hall tells us when
{A;}_; has an SDR (see, e.g., [Sul]). Most results in our paper involve
SDRs of several subsets of a field.

Now we state our second theorem which is much more general than
Theorem 1.1.
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Theorem 1.2. Let h,k,l,m,n be positive integers satisfying
k—1>2m(n—-1) and 1 —12>h(n—1). (1.1)

Let F be a field with ch(F') > max{K, L}, where

K:(k—l)n—(erl)(Z) andL:(z—1)n—(h+1)(Z). (1.2)

Assume that cq,...,c, € F are distinct and Aq,... ,A,, B1,...,B, are
subsets of F with

[Ar| = =[An| =k and |By| = --- = [Bn| = I. (1.3)

Let P(z),... ,Py(x),Q1(x),... ,Qn(z) € F|x] be monic polynomials with
deg P;(x) = m and degQ;(x) = h fori=1,... ,n. Then, for any S,T C
F with |S| < K and |T| < L, there exist a1 € Ay,...,a, € Ay,by €
By,...,b, € By, such thatay +---+a, €S, b1+ ---+b, €T, and also

a;bic; # ajbjc;, Pi(a;) # Pj(aj), Qi(bi) # Q;(b;) if1 <i<j<n. (1.4)

Remark 1.2. If h,k,l,m,n are positive integers satisfying (1.1), then the
integers K and L given by (1.2) are nonnegative since

K>m(n—1)n—(m+1)<’;) :(m—1)(’;) andL>(h—1)(Z).

From Theorem 1.2 we can deduce the following extension of Theorem
1.1.

Theorem 1.3. Let G be an additive abelian group with cyclic torsion
subgroup. Let h,k,l, m,n be positive integers satisfying (1.1). Assume that
C1,...,cn € G are distinct, and Aq,... ,A,, B1,...,B, are subsets of G
with |A1| = -+ =|A,| =k and |B1| = - -+ = |B,| = l. Then, for any sets S
and T with |S| < (k—1)n—(m+1)(3) and |T| < (I-1)n—(h+1)(}), there
are ay € Ay,... ,a, € Ap,by € By,... b, € B, such that {ay,... ,a,} &
S, {b1,...,bn} €T, and also

ai+bi+ci7éaj+bj+cj, mai#maj, hbl%hbj 2f1§z<]<n (15)

Proof. Let H be the subgroup of GG generated by the finite set

AiU---UA,UBU---UB, U{cy,...,cn}
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Since Tor(H) is cyclic and finite, as in the proof of [Su3, Theorem 1.1] we
can identify the additive group H with a subgroup of the multiplicative
group C* = C\ {0}, where C is the field of complex numbers. So, without
loss of generality, below we simply view G as the multiplicative group C*.

Let S and T be two sets with S| < (k—1)n — (m +1)(}) and |T| <
(I—1)n— (h+1)(3). Then

S'={a1+-+an: a1 € Ay,... ,a, € Ay, {a1,... ,a,} €S}
and
T/:{bl—f—'”—f—bni by € By,...,b, € By, {bl,...,bn}ET}

are subsets of C with |S’| < |S| and |T'| < |T|. By Theorem 1.2 with
Pi(z) = 2™ and Q;(z) = 2" (1 < i < n), there are a; € Ay,...,a, €
A,,b1 € By,...,b, € B, such that a; + -+ 4+ a, € S’ (and hence
{a1,...,an} € S), by +---+ b, ¢ T’ (and hence {by,...,b,} ¢ T'), and
also

a;bic; # ajbjc;, ai" # a;-”, b? #* b? if 1<i<j<n.

This concludes the proof. [

Remark 1.3. Theorem 1.1 in the case m = 3 is a special case of Theorem
1.3.

Here is another extension of Theorem 1.1 via restricted sumsets in a
field.

Theorem 1.4. Let k,m,n be positive integers with k —1 > m(n — 1),
and let F be a field with ch(F) > max{mn, (k—1—m(n—1))n}. Assume
that ¢q,... ,c, € F are distinct, and Aq,... ,A,, B1,...,B, are subsets
of F with |Ai| =---=|A,| =k and |B1| =--- = |By| =n. Let S;; C F
with |Si;| < 2m for all 1 < i < j < n. Then there is an SDR {b;}!'_, of
{B;}_, such that the restricted sumset

S = {a1 +--4an:oa; € Ai, a; — aj ¢ Sij and a;b;c; 7£ ajbjcj ZfZ < j}
(1.6)
has at least (k —1 —m(n — 1))n + 1 elements.

Now we introduce some basic notations in this paper. Let R be any com-
mutative ring with identity. The permanent of a matrix A = (a;)1<i,j<n
over R is given by

per(A) = ”aijulgi,jgn = Z A1,0(1) """ An,o(n)s (17)
oceS,
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where S,, is the symmetric group of all the permutations on {1,...,n}.
Recall that the determinant of A is defined by

det(A) = |aijlicijon = Y €(0)a1,0(1)*** Gno(n)s (1.8)
oES,

where £(o) is 1 or —1 according as o is even or odd. We remind the

difference between the notations |- | and || - ||. For the sake of convenience,
the coefficient of the monomial 2% - - - 25 in a polynomial P(z1,... ;)
over R will be denoted by [z¥ - - 25| P(zy,. .. ).

In the next section we are going to prove Theorem 1.1 in two different
ways. Section 3 is devoted to the study of duality between determinant
and permanent. On the basis of Section 3, we will show Theorem 1.2 in
Section 4 via the polynomial method. In Section 5, we will present our
proof of Theorem 1.4.

2. TwO PROOFS OF THEOREM 1.1

Lemma 2.1. Let R be a commutative ring with identity, and let a;; € R
fori=1,... mandj=1,... ,n, where m € {3,5,...}. The we have the
identity

m—1 m—1
Z e(o1- - Om_1) H (amj H Asog(5) — Ami H asas(i))
s=1 s=1

01,0 ,0m—1€Sn Ii<isn

= I (ay—aw) - (am; — am).

1<i<jgn
(2.1)

Proof. Recall that ‘x;_1‘1<i7jgn = [licicjcn(zj — 2;) (Vandermonde).
Let ¥ denote the left-hand side of (2.1). Then

= ) e om0 @0,G) et ()0mg) T iii<n
O1yee sO0m—1€ESn
— Z g(or) x -+ xe(om_1)
01, ,0m—1E€Sn

(@100 (7 (1)) " A1, 1 (r(i) B ()

X

)

S
L=

TESH
n m—1 n
— m i—1 i—1
=2 e anre < 11 X sen]la o
TES, =1 s=1 o0,€8, =1

n

n m—1
= Z e(T)mHaf;i(i) X H Z E(U)Hai’_ol(i).
i=1

s=1 oc€S, =1
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Since m is odd, we finally have

m—1 m
_\G ’1<z,]<n H \a |1<z = H (asj _asz')-
s=1

This proves (2.1). O

Remark 2.1. When m € {2,4,6,...}, the right-hand side of (2.1) should
be replaced by

lagt lhi<igen  [] (@15 = a10) - (@15 — am-1,0)-
1<i<j<n

Definition 2.1. A subset S of a commutative ring R with identity is said
to be regular if all those a — b with a,b € S and a # b are units (i.e.,
invertible elements) of R.

Theorem 2.1. Let R be a commutative ring with identity, and let m > 0
be odd. Then, for any reqular subsets Ay,..., A, of R with cardinality
n € Z*, the elements of A; (1 < i < m) can be listed in a suitable order
Qils- .- s Qin, SO that all the products [~ ai; (1 < j < n) are distinct.

Proof. The case m =1 is trivial. Below we let m € {3,5,... }.
Write Ag = {bs1,... ,bsp} for s =1,... ,m. As all those bs; — bs; with
1<s<mand1l<17<j<n are units of R, the product

IT (1 —01) - (bmj — bumi)

1<i<j<n

is also a unit of R and hence nonzero. Thus, by Lemma 2.1 there are
01y yOm—1 € 5, such that whenever 1 < i < j < n we have

bl,al(i) T bm—l,am_l(i)bmi 7& bl,al(j) e bm—l,am_l(j)bmj-

For 1 <s<mand 1< j<n,letag; = b, (5 if s <m, and as; = by,
if s = m. Then {as1,... ;asn} = Ag, and all the products [[,_ as; (j =
1,...,n) are distinct. This concludes the proof. [

Proof of Theorem 1.1. As mentioned in the proof of Theorem 1.3 via
Theorem 1.2, without loss of generality we may simply take G to be the
multiplicative group C* = C\ {0}. As any nonzero element of a field is
a unit in the field, the desired result follows from Theorem 2.1 immedi-
ately. [

Now we turn to our second approach to Theorem 1.1.
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Lemma 2.2. Let cy,...,c, be elements of a commutative ring with iden-
tity. Then we have

p ey [ (= ) (s — wi) (s — i)
1<i<jgn
= JI (—c.
1<i<j<n
(2.2)

Proof. Observe that

H (w5 — i) (y; — yi) (w595 — civiyi)
1<i<j<n
-1

=|z;

Y« H T S e T xS o) [[(eriw) O
=1 =1 AES,

1<ij<nlyl i jenl(Cimiy)? " igii<n

o€S, TES, i=1
A(i)—1 - < )\(z)+a(z) 2 Z)\(z)—kr(z) 2)
A; 1;[ U,TZES 11:11:

Thus the left-hand side of (2.2) coincides with

2. (e(A) Hc?“>‘1)a<m = | hisien = (¢ = ca).
AES, i=1
where A\(i) =n+1—A(i) fori =1,... ,n. We are done. [J

Let us recall the following central principle of the polynomial method.

Combinatorial Nullstellensatz [Al]. Let Aq,..., A, be finite subsets
of a field F' with |A;| > k; fori = 1,... ,n, where ky,... ,k, are non-

negative integers. If the total degree of f(x1,...,xn) € Flxy,... ,x,] is
i+ Ak, and [z zke | f (2, ... 2y) is nonzero, then f(ay, ...  an) #
0 for some ay € Aq,... ,a, € A,.

Theorem 2.2. Let Ay,..., A, and By,...,B, be subsets of a field F
with cardinality n. And let cq,...,c, be distinct elements of F. Then
there is an SDR {a;}_, of {Ai}~, and an SDR {b;}I", of {B;}}_, such
that the products ai1bicy,... ,a,b,c, are distinct.

Proof. As cy,... ,c, are distinct, (2.2) implies that

iyt g ] (=) (0 — ) (egyy — cimigi) # 0.
1<i<jsn



AN ADDITIVE THEOREM AND RESTRICTED SUMSETS 9

Applying the Combinatorial Nullstellensatz, we obtain the desired re-
sult.

Remark 2.2. When F =C, Ay =---= A, and B; = --- = B,,, Theorem
2.2 yields Theorem 1.1 with m = 3. Note also that Theorems 1.2 and 1.4
are different extensions of Theorem 2.2.

3. DUALITY BETWEEN DETERMINANT AND PERMANENT

Let us first summarize Theorem 2.1 and Corollary 2.1 of Sun [Su3] in
the following theorem.

Theorem 3.1 (Sun [Su3|). Let R be a commutative ring with identity,
and let A = (aij)1<i,j<n be a matriz over R.

(i) Let k1,... ykp,ma, ... ,my, € N={0,1,2,...} with M =Y m;+
6(5) <3, ki where 6 € {0,1}. Then

n s ki—M
[m’fl ...g;ﬁn”aijx?ihgi,jén H (@ = xi)(S 8 <Zx8>

1<i<g<n s=1
B > ees,. pocnE@NG [y @ioey if =0,
>ver, €@ )N I @i if =1,

where
D, :{ka(l) —mi,... 7ka(n) - mn}v
T, ={c € Sp: Dy CN and |D,| = n},
— |
N (k14 + ky — M)

’ _H?zl H0<j<l€a i) My (ko(z) —m; — .7)
()
J€D, if 6=1

eZt,

and o' (with o € T,,) is the unique permutation in S,, such that
0 < Ko(or(r)) = Mor(1) < -+ < Ko(or(n)) = Mot (n)-
(ii) Let k,mq,... ,my, € N withmy <--- <m, < k. Then
[} - ah]laga] <o gen (@ + - 4 @)=
kn — 3 m)! 3.1
= ( nn Liz1 " ') det(A). 3
L= (k —mq)!

In the case mi < --- < my, we also have

[ ablaa i gen [ (2 — @) % <sz
1<i<j<n
— (_1)( ) n(kn (2) Zz:l ml)
Hz‘:l [1 m;<j<k (J —my)

JE{ms:i<s<n}

per(A).
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In view of the minor difference between the definitions of determinant
and permanent, by modifying the proof of the above result in [Su3] slightly
we get the following dual of Theorem 3.1.

Theorem 3.2. Let R be a commutative ring with identity, and let A =
(aij)1<i,j<n be a matriz over R.

(i) Let ky,ma,...  kn,m, € N with M = 30" m;i +6(5) < 30 ki
where 6 € {0,1}. Then

k k ; s 3 s
[27" -2 e lii,j<n H (7 = )" > (sz)

1<i<j<n s=1
. ZUESn,DUgN Ny, H?:1 Qj.0 (1) if5 = 0,
ZaeTn e(oo’) Ny H?:1 Aoy f0=1,

where Dy, T,, Ny and ¢’ are as in Theorem 3.1(3i).

(ii) Let k,mq,... ,my € N withmy <--- <m, < k. Then
[ - apllasa (o jan (@ 4 - 4 ) F0 iz
kn =30 0 my)! 3.3
= ( nn lel mz) per(A). ( )
Hi:l(k — ml)'
In the case my < --- < my,, we also have

n

@ Al hergen ] (@5 - a0) % ( .
1<i<j<n s—1

(kn— () — >y my)!

[T I mi<ick (G —my)
JE{ms:i<s<n}

det(A).

Remark 3.1. Part (ii) of Theorem 3.2 follows from the first part.

Theorem 3.3. Let R be a commutative ring with identity, and let a;; € R
foralli,j=1,... . n. Let k,l1,... ,l,,m1,...,m, € N with N = kn —
> i (i +my) > 0.

(i) (Sun [Su3, Theorem 2.2]) There holds the identity

[z - ah]laii el [i<ion |27 hicijon (01 4 -+ 20) Y

, , (3.5)
=[af - apllasaT i< jen |25 i jan (@1 4 -+ 2n) Y.
(ii) We also have the following symmetric identities:
[z - ab]llaiial <ogsn 12 1<ian (@1 + -+ 2n) N (3.6)

=[af - aplllaga i< 175 i<ijen (m1 + -+ 20) Y,
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—[zk .. .foHaiijihgi,jgn ||35§ li<ijcn (@14 + @),
and
ko ok L ' N
[5171 . xn]Haijxj ||1<i,j<n ||$§n ||1<i,j<n (1171 + .+ In) (3 8)

=[2} - 2F]llasaT i<igsn 125 lhi<igcn (@1 + -+ 20) Y.

Theorem 3.3(ii) can be proved by modifying the proof of [Su3, Theorem
2.2] slightly.
4. PROOF OF THEOREM 1.2

Lemma 4.1. Let h,k,l,m,n be positive integers satisfying (1.1). Let
C1,-..,Cp be elements of a commutative ring R with identity, and let
P(z1,... ,Zp,y1,-.. ,Yn) denote the polynomial

I (cimmi—cimoy) @] —a) () —yl) x (214 - +20) S (g1 ++ - +yn) "
1<i<jign

where K and L are given by (1.2). Then

[xlfil xﬁ_lyllil e yfl_l]P(xla v 3Ty Yty - e 7yn)
K\L! 4.1
- T (Cj — CZ‘), ( )

1<i<g<n
where
n—1

B —(z (k—1—rm)!(l—1—rh)! +

N = (hm)~( )EO o 7t (4.2)

Proof. In view of Theorem 3.3(i) and Theorem 3.1(ii),

Wit T (gmyy — cmy) (W) —ul) x (g + -+ +yn)®
1<i<jg<n
- - i—1, i i—1)h
=l ) T igenlyt T i gen (i o )"
_ _ P — i—1)h i
=l ) T T i senly T i en (- 4 )

(—1)(2)L—OI|(CJ'%‘) i<ij<n:
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where

T I G-t

J/hE{s€Z:i<s<n}
n

N :h—<s>ﬁw_

(n —1i)lhn—t

Thus, with helps of Theorem 3.3(ii) and Theorem 3.2(ii), we have

[ k—1 -"J;f;l_lyllil ...yfl_l]P(.I‘l,... sy Ly Y1y - 7y"’b)

k—1 k—1 L! i—1 m m g K
=[xy -y ]L_OH(ijj) h<ij<n ] @7 —a) x T

Ii<isn s=1
L, PP
:L_O[l.lf 1...:1; ]Hcl 1 z 1||1<z,j<n|x( 1) | <i,j<n(x1+""‘f‘$n>K
Ll k-1 i—1,.(i=1)m i1 K
:L_O[xl .. .CL‘ ]“C ] ||1<’L,]<n|x‘] |1<’i,j<n(x1 + o + l-ﬂ)
L Kl o KL
e —]_()_ 1—1 : L= 1 (2) .
Lo( )2 K, 5 higiign = (=1) Kl H (¢; — i),
1<i<jsn
where

1 (i—1)m<j<k—1 r=0
j/mg{s€l:i<s<n}

Therefore (4.1) holds with N = KoLy € Z*. O
Proof of Theorem 1.2. Let f(x1,...,Zn,Y1,--- ,Yn) denote the polynomial

[T (Pi)) - Pi@i)(@;(y)) — Qi(wi))(cjasy; — cimiyi)

1<i<y<n
x (x4 ) I ]+ + 20— a)
a€S
X (y1+"'+yn)L7|T| H(y1+"'+yn_b)'
beT

Then

n

deg f < (m+h+2) (Z) +|K|+|L| = (k—14+1—-1)n = Z(|Ai|—1+|BZ~|—1).
=1
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Since ch(F') > max{K, L} and [],;_;¢,(c; —¢) # 0, in view of Lemma
4.1 we have

[xl_l ' 'xﬁ_lyi_l te 'yé_l]f(xlv' e s Ty Yl 7yn)
:[‘,Ellcil ' "sz_lyiil o 'yil_l]P<I‘1, s s Tny YL, 7yn) 7A 07

where P(z1,... ,%n,Y1,... ,Yn) is defined as in Lemma 4.1. Applying the
Combinatorial Nullstellensatz we find that f(aq,...,an,b1,...,b,) # 0
for some a; € Ay,... ,a, € Ay,b1 € By,...,b, € B,. Thus (1.4) holds,
and also a; +---+a, € S and by +---+ b, € T. We are done. [

5. PROOF OF THEOREM 1.4

Non-vanishing permanents are useful in combinatorics. For example,
Alon’s permanent lemma [A1l] states that, if A = (a;5)1<i,j<n 1S @ matrix
over a field F with per(A) # 0, and Xi,...,X,, are subsets of F' with
cardinality 2, then for any by,... ,b, € F there are z1 € X4,... ,x, € X,
such that Y7 | ajja; # b; for alli =1,... ,n.

In contrast with [Su3, Theorem 1.2(ii)], we have the following auxiliary
result.

Theorem 5.1. Let Ay,..., A, be finite subsets of a field F' with |A1| =
= |A,| =k, and let Py (x),...,P,(x) € F|x| have degree at most m €
7t with [x™]Py(x), ..., [x™]P,(x) distinct. Suppose that k—1 > m(n—1)
and ch(F) > (k—1)n — (m+ 1)(%). Then the restricted sumset

C = {Zaz La; I~ Ai, a; 7£ aj fO’I“i 7£ j, (l?ld ||Pj(aj)i_1H1<i,j<n 7é O}
i=1
(5.1)
has cardinality at least (k —1)n — (m+1)(5) + 1> (m —1)(}).

Proof. Assume that |C| < K = (k— 1)n — (m + 1)(5). Clearly the
polynomial

fr,w) = [ (=) x [1P(2;)"  icijen

1<i<j<n

ceC

has degree not exceeding (k—1)n =Y (JA;|—1). Since ch(F') is greater
than K, and those b; = [¢™|P;(x) with 1 < i < n are distinct, with the
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help of Theorem 3.2(ii) we have

[y f (. T)
n K
— — i— 1—1)m
ot ] TT (o x5 e S )
1<i<j<n s=1
=(-1)&) i gy = ((DE = T (4 —bi) #0,

Ky

0 1<i<j<n

where K| is given by (4.3). Thus, by the Combinatorial Nullstellensatz,
flai,... ,a,) # 0 for some a; € Ay,... ,a, € A,,. Clearly > " ;a; € C if
|1Pj(a;)i<ij<n # 0 and a; # a; for all 1 < i < j < n. So we also have
f(ai,... ,a,) = 0 by the definition of f(z1,...,z,). The contradiction
ends our proof. [J

Corollary 5.1. Let Ay,...,A, and B ={by,... ,b,} be subsets of a field
with cardinality n. Then there is an SDR {a;}?_; of {A;}1_ such that the
permanent ||(a;b;) 1< j<n i nonzero.

Proof. Simply apply Theorem 5.1 with & = n and Pj(z) = bjx for j =
1,...,n. O

Lemma 5.1. Let k,m,n € Z* with k —1 > m(n —1). Then

) I [ R T e T T B (i%)N

1<i<j<n

() m)INUTE () .
=(=1) “) (m!)n! (k—1—7rm)! <l

li<ij<ns
r=0

where N = (k—1—m(n —1))n.

Proof. Since both sides of (5.2) are polynomials in y1, ... , Yy, it suffices to
show that (5.2) with y1,...,y, replaced by aq,... ,a, € C always holds.
By Lemma 2.1 and (2.6) of [SY], we have

eyt [ (e e - ag) X (i%)N

1<i<ign s=1
N! mym!(2m)! - (nm)! i
— (-1 la* 1< i<n (k — s)
(k=10 et 15 s 111
n—1

m(3) (mn)!N! (rm)!

m’\a§*1||1<i,j<n H Y —
m) n. r—0 (If 1 rm)'



AN ADDITIVE THEOREM AND RESTRICTED SUMSETS 15

This concludes the proof. [

Proof of Theorem 1.4. Since cy,...,c, are distinct and |By| = --- =
|By| = n, by Corollary 5.1 there is an SDR {b;}{_; of {B;};_; such that
1(bje;)*Hhigijgn # 0.

Suppose that |S| < N = (k—1—m(n —1))n. We want to derive a
contradiction. Let f(x1,...,z,) denote the polynomial

11 ((bjca‘%‘ = bicimi)(wj — o))" I ] (- i+ C))

x (14 +az) VI (@4 + 2 —a).
a€S
Then
n
deg f < 2m<2) +N=(k-1n= Z;(|Ai| —1).

With the help of Lemma 5.1, we have

[y f ()
Z[l'lf_l .. Ilfﬁil](l‘l + -+ LL‘n)N H (bjCjIj — bZCZ.ZL‘z)(:L‘] — ,I'Z‘)Qmil
1<i<ysn
n INT S (rm)! ~
=(—1 m(Z) (mn) b i1 ii<n 0
(=1) (m!)mn! 11 (k—1—rm)! x |I(bje;) i< j<n #

since ch(F') > max{mn, N}. By the Combinatorial Nullstellensatz, there
area; € Ay,...,a, € A, such that f(aq,...,a,) # 0. On the other hand,
we do have f(aq,...,a,) =0, because a1 +---+a, € S'if a; —a; &€ S;;
and a;b;c; # ajbjc; for all 1 < ¢ < j < n. So we get a contradiction. [J

[A1]

[A2]
[ANR]
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