MIXED SUMS OF SQUARES AND
 TRIANGULAR NUMBERS (III)

Byeong-Kweon Oh^{1} and Zhi-Wei Sun ${ }^{2}$
${ }^{1}$ Department of Applied Mathematics, Sejong University
Seoul, 143-747, Republic of Korea
bkoh@sejong.ac.kr
${ }^{2}$ Department of Mathematics, Nanjing University Nanjing 210093, People's Republic of China
zwsun@nju.edu.cn
http://math.nju.edu.cn/~zwsun

Abstract

In this paper we confirm a conjecture of Sun which states that each positive integer is a sum of a square, an odd square and a triangular number. Given any positive integer m, we show that $p=2 m+1$ is a prime congruent to 3 modulo 4 if and only if $T_{m}=m(m+1) / 2$ cannot be expressed as a sum of two odd squares and a triangular number, i.e., $p^{2}=x^{2}+8\left(y^{2}+z^{2}\right)$ for no odd integers x, y, z. We also show that a positive integer cannot be written as a sum of an odd square and two triangular numbers if and only if it is of the form $2 T_{m}(m>0)$ with $2 m+1$ having no prime divisor congruent to 3 modulo 4 .

1. Introduction

The study of expressing natural numbers as sums of squares has long history. Here are some well-known classical results in number theory.
(a) (Fermat-Euler theorem) Any prime $p \equiv 1(\bmod 4)$ is a sum of two squares of integers.
(b) (Gauss-Legendre theorem, cf. [G, pp. 38-49] or [N, pp. 17-23]) $n \in$ $\mathbb{N}=\{0,1,2, \ldots\}$ can be written as a sum of three squares of integers if and only if n is not of the form $4^{k}(8 l+7)$ with $k, l \in \mathbb{N}$.

[^0](c) (Lagrange's theorem) Every $n \in \mathbb{N}$ is a sum of four squares of integers.

Those integers $T_{x}=x(x+1) / 2$ with $x \in \mathbb{Z}$ are called triangular numbers. Note that $T_{x}=T_{-x-1}$ and $8 T_{x}+1=(2 x+1)^{2}$. In 1638 P. Fermat asserted that each $n \in \mathbb{N}$ can be written as a sum of three triangular numbers (equivalently, $8 n+3$ is a sum of three squares of odd integers); this follows from the Gauss-Legendre theorem.

Let $n \in \mathbb{N}$. As observed by L. Euler (cf. [D, p. 11]), the fact that $8 n+1$ is a sum of three squares (of integers) implies that n can be expressed as a sum of two squares and a triangular number. This is remarkable since there are infinitely many natural numbers which cannot be written as a sum of three squares. According to [D, p. 24], E. Lionnet stated, and V. A. Lebesgue $[\mathrm{L}]$ and M. S. Réalis $[\mathrm{R}]$ showed that n is also a sum of two triangular numbers and a square. In 2006 these two results were re-proved by H. M. Farkas [F] via the theory of theta functions. Further refinements of these results are summarized in the following theorem.

Theorem 1.0. (i) (B. W. Jones and G. Pall [JP]) For every $n \in \mathbb{N}$, we can write $8 n+1$ in the form $8 x^{2}+32 y^{2}+z^{2}$ with $x, y, z \in \mathbb{Z}$, i.e., n is a sum of a square, an even square and a triangular number.
(ii) (Z. W. Sun [S07]) Any natural number is a sum of an even square and two triangular numbers. If $n \in \mathbb{N}$ and $n \neq 2 T_{m}$ for any $m \in \mathbb{N}$, then n is also a sum of an odd square and two triangular numbers.
(iii) (Z. W. Sun [S07]) A positive integer is a sum of an odd square, an even square and a triangular number unless it is a triangular number $T_{m}(m>0)$ for which all prime divisors of $2 m+1$ are congruent to 1 mod 4.

We mention that Jones and Pall [JP] used the theory of ternary quadratic forms and Sun [S07] employed some identities on q-series. Motivated by Theorem 1.0 (iii) and the fact that every prime $p \equiv 1(\bmod 4)$ is a sum of an odd square and an even square, the second author [S09] conjectured that each natural number $n \neq 216$ can be written in the form $p+T_{x}$ with $x \in \mathbb{Z}$, where p is a prime or zero. Sun [S09] also made a general conjecture which states that for any $a, b \in \mathbb{N}$ and $r=1,3,5, \ldots$ all sufficiently large integers can be written in the form $2^{a} p+T_{x}$ with $x \in \mathbb{Z}$, where p is either zero or a prime congruent to $r \bmod 2^{b}$.

In [S07] Sun investigated what kind of mixed sums $a x^{2}+b y^{2}+c T_{z}$ or $a x^{2}+b T_{y}+c T_{z}$ (with $a, b, c \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$) represent all natural numbers, and left two conjectures in this direction. In [GPS] S. Guo, H. Pan and Sun proved Conjecture 2 of [S07]. Conjecture 1 of Sun [S07] states that any positive integer n is a sum of a square, an odd square and a triangular number, i.e., $n-1=x^{2}+8 T_{y}+T_{z}$ for some $x, y, z \in \mathbb{Z}$.

In this paper we prove Conjecture 1 of Sun [S07] and some other results concerning mixed sums of squares and triangular numbers. Our main
result is as follows.
Theorem 1.1. (i) Each positive integer is a sum of a square, an odd square and a triangular number. A triangular number T_{m} with $m \in \mathbb{Z}^{+}$is a sum of two odd squares and a triangular number if and only if $2 m+1$ is not a prime congruent to 3 mod 4.
(ii) A positive integer cannot be written as a sum of an odd square and two triangular numbers if and only if it is of the form $2 T_{m}\left(m \in \mathbb{Z}^{+}\right)$with $2 m+1$ having no prime divisor congruent to $3 \bmod 4$.

Remark 1.1. In [S09] the second author conjectured that if a positive integer is not a triangular number then it can be written as a sum of two odd squares and a triangular number unless it is among the following 25 exceptions:

$$
\begin{aligned}
& 4,7,9,14,22,42,43,48,52,67,69,72,87,114 \\
& 144,157,159,169,357,402,489,507,939,952,1029 .
\end{aligned}
$$

Here is a consequence of Theorem 1.1.
Corollary 1.1. (i) An odd integer $p>1$ is a prime congruent to 3 mod 4 if and only if $p^{2}=x^{2}+8\left(y^{2}+z^{2}\right)$ for no odd integers x, y, z.
(ii) Let $n>1$ be an odd integer. Then all prime divisors of n are congruent to 1 mod 4 , if and only if $n^{2}=x^{2}+4\left(y^{2}+z^{2}\right)$ for no odd integers x, y, z.

Remark 1.2. In number theory there are very few simple characterizations of primes such as Wilson's theorem. Corollary 1.1(i) provides a surprising new criterion for primes congruent to $3 \bmod 4$.

In the next section we will prove an auxiliary theorem. Section 3 is devoted to our proofs of Theorem 1.1 and Corollary 1.1.

2. An AUXILIARY THEOREM

In this section we prove the following auxiliary result.
Theorem 2.1. Let m be a positive integer.
(i) Assume that $p=2 m+1$ be a prime congruent to 3 mod 4 . Then T_{m} cannot be written in the form $x^{2}+y^{2}+T_{z}$ with $x, y, z \in \mathbb{Z}, x^{2}+y^{2}>0$ and $x \equiv y(\bmod 2)$. Also, $2 T_{m}$ is not a sum of a positive even square and two triangular numbers.
(ii) Suppose that all prime divisors of $2 m+1$ are congruent to 1 mod 4. Then T_{m} cannot be written as a sum of an odd square, an even square and a triangular number. Also, $2 T_{m}$ is not a sum of an odd square and two triangular numbers.

To prove Theorem 2.1 we need the following result due to Hurwitz.

Lemma 2.1 (cf. [D, p. 271] or [S07, Lemma 3]). Let n be a positive odd integer, and let p_{1}, \ldots, p_{r} be all the distinct prime divisors of n congruent to $3 \bmod 4$. Write $n=n_{0} \prod_{0<i \leqslant r} p_{i}^{\alpha_{i}}$, where $n_{0}, \alpha_{1}, \ldots, \alpha_{r} \in \mathbb{Z}^{+}$and n_{0} has no prime divisors congruent to 3 mod 4 . Then

$$
\left|\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+y^{2}+z^{2}=n^{2}\right\}\right|=6 n_{0} \prod_{0<i \leqslant r}\left(p_{i}^{\alpha_{i}}+2 \frac{p_{i}^{\alpha_{i}}-1}{p_{i}-1}\right)
$$

As in [S07], for $n \in \mathbb{N}$ we define

$$
r_{0}(n)=\mid\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{N} \times \mathbb{N}: x^{2}+T_{y}+T_{z}=n \text { and } 2 \mid x\right\} \mid
$$

and

$$
r_{1}(n)=\mid\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{N} \times \mathbb{N}: x^{2}+T_{y}+T_{z}=n \text { and } 2 \nmid x\right\} \mid
$$

By p. 108 and Lemma 2 of Sun [S07], we have the following lemma.
Lemma 2.2 ([S07]). For $n \in \mathbb{N}$ we have

$$
\mid\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{N}: x^{2}+y^{2}+T_{z}=n \text { and } x \equiv y(\bmod 2)\right\} \mid=r_{0}(2 n)
$$

and
$\mid\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{N}: x^{2}+y^{2}+T_{z}=n\right.$ and $\left.x \not \equiv y(\bmod 2)\right\} \mid=r_{1}(2 n)$.
Also, $r_{0}\left(2 T_{m}\right)-r_{1}\left(2 T_{m}\right)=(-1)^{m}(2 m+1)$ for every $m \in \mathbb{N}$.
Proof of Theorem 2.1. By Lemma 2.2,

$$
\begin{aligned}
& r_{0}\left(2 T_{m}\right)+r_{1}\left(2 T_{m}\right) \\
= & \left|\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{N}: x^{2}+y^{2}+T_{z}=T_{m}\right\}\right| \\
= & \frac{1}{2}\left|\left\{(x, y, z) \in \mathbb{Z}^{3}: 8 x^{2}+8 y^{2}+\left(8 T_{z}+1\right)=8 T_{m}+1\right\}\right| \\
= & \frac{1}{2}\left|\left\{(x, y, z) \in \mathbb{Z}^{3}: 4(x+y)^{2}+4(x-y)^{2}+(2 z+1)^{2}=(2 m+1)^{2}\right\}\right| \\
= & \frac{1}{2}\left|\left\{(u, v, z) \in \mathbb{Z}^{3}: 4\left(u^{2}+v^{2}\right)+(2 z+1)^{2}=(2 m+1)^{2}\right\}\right| \\
= & \frac{1}{6}\left|\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+y^{2}+z^{2}=(2 m+1)^{2}\right\}\right| .
\end{aligned}
$$

(i) As $p=2 m+1$ is a prime congruent to $3 \bmod 4$, by Lemma 2.1 and the above we have

$$
r_{0}\left(2 T_{m}\right)+r_{1}\left(2 T_{m}\right)=p+2
$$

On the other hand,

$$
r_{0}\left(2 T_{m}\right)-r_{1}\left(2 T_{m}\right)=(-1)^{m}(2 m+1)=-p
$$

by Lemma 2.2. So

$$
2 r_{0}\left(2 T_{m}\right)=r_{0}\left(2 T_{m}\right)+r_{1}\left(2 T_{m}\right)+\left(r_{0}\left(2 T_{m}\right)-r_{1}\left(2 T_{m}\right)\right)=p+2-p=2
$$

Therefore
$\mid\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{N}: x^{2}+y^{2}+T_{z}=T_{m}\right.$ and $\left.2 \mid x-y\right\} \mid=r_{0}\left(2 T_{m}\right)=1$ and also

$$
\mid\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{N} \times \mathbb{N}: x^{2}+T_{y}+T_{z}=2 T_{m} \text { and } 2 \mid x\right\} \mid=r_{0}\left(2 T_{m}\right)=1
$$

Since $T_{m}=0^{2}+0^{2}+T_{m}$ and $2 T_{m}=0^{2}+T_{m}+T_{m}$, the desired results follow immediately.
(ii) As all prime divisors of $2 m+1$ are congruent to $1 \bmod 4$, we have $r_{0}\left(2 T_{m}\right)+r_{1}\left(2 T_{m}\right)=\frac{1}{6}\left|\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+y^{2}+z^{2}=(2 m+1)^{2}\right\}\right|=2 m+1$ in view of Lemma 2.1. Note that m is even since $2 m+1 \equiv 1(\bmod 4)$. By Lemma 2.2, $r_{0}\left(2 T_{m}\right)-r_{1}\left(2 T_{m}\right)=(-1)^{m}(2 m+1)=2 m+1$. Therefore
$\mid\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{N}: x^{2}+y^{2}+T_{z}=T_{m}\right.$ and $\left.2 \nmid x-y\right\} \mid=r_{1}\left(2 T_{m}\right)=0$.
This proves part (ii) of Theorem 2.1.

3. Proofs of Theorem 1.1 and Corollary 1.1

Lemma 3.1. Let $m \in \mathbb{N}$ with $2 m+1=k\left(w^{2}+x^{2}+y^{2}+z^{2}\right)$ where $k, w, x, y, z \in \mathbb{Z}$. Then

$$
2 T_{m}=k^{2}(w y+x z)^{2}+k^{2}(w z-x y)^{2}+2 T_{v} \quad \text { for some } v \in \mathbb{Z}
$$

Proof. Write the odd integer $k\left(w^{2}+x^{2}-\left(y^{2}+z^{2}\right)\right)$ in the form $2 v+1$. Then

$$
\begin{aligned}
8 T_{m}+1 & =(2 m+1)^{2}=k^{2}\left(w^{2}+x^{2}+y^{2}+z^{2}\right)^{2} \\
& =(2 v+1)^{2}+4 k^{2}\left(w^{2}+x^{2}\right)\left(y^{2}+z^{2}\right) \\
& =8 T_{v}+1+4 k^{2}\left((w y+x z)^{2}+(w z-x y)^{2}\right)
\end{aligned}
$$

and hence

$$
2 T_{m}=2 T_{v}+k^{2}(w y+x z)^{2}+k^{2}(w z-x y)^{2} .
$$

This concludes the proof.
Proof of Theorem 1.1. (i) In view of Theorem 1.0(iii), it suffices to show the second assertion in part (i).

Let m be any positive integer. By Theorem 2.1(i), if $2 m+1$ is a prime congruent to $3 \bmod 4$ then T_{m} cannot be written as a sum of two odd squares and a triangular number.

Now assume that $2 m+1$ is not a prime congruent to $3 \bmod 4$. Since the product of two integers congruent to $3 \bmod 4$ is congruent to $1 \bmod$ 4 , we can write $2 m+1$ in the form $k(4 n+1)$ with $k, n \in \mathbb{Z}^{+}$.

Set $w=1+(-1)^{n}$. Observe that $4 n+1-w^{2}$ is a positive integer congruent to $5 \bmod 8$. By the Gauss-Legendre theorem on sums of three squares, there are integers x, y, z with x odd such that $4 n+1-w^{2}=$ $x^{2}+y^{2}+z^{2}$. Clearly both y and z are even. As $y^{2}+z^{2} \equiv 4(\bmod 8)$, we have $y_{0} \not \equiv z_{0}(\bmod 2)$ where $y_{0}=y / 2$ and $z_{0}=z / 2$.

Since $2 m+1=k\left(w^{2}+x^{2}+y^{2}+z^{2}\right)$, by Lemma 3.1 there is an integer v such that

$$
2 T_{m}=2 T_{v}+k^{2}(w y+x z)^{2}+k^{2}(w z-x y)^{2} .
$$

Thus

$$
\begin{aligned}
T_{m}= & T_{v}+2\left(k w y_{0}+k x z_{0}\right)^{2}+2\left(k w z_{0}-k x y_{0}\right)^{2} \\
= & T_{v}+\left(k w y_{0}+k x z_{0}+\left(k w z_{0}-k x y_{0}\right)\right)^{2} \\
& +\left(k w y_{0}+k x z_{0}-\left(k w z_{0}-k x y_{0}\right)\right)^{2} .
\end{aligned}
$$

As w is even and $k x y_{0} \equiv y_{0} \not \equiv z_{0} \equiv k x z_{0}(\bmod 2)$, we have

$$
k w y_{0}+k x z_{0} \pm\left(k w z_{0}-k x y_{0}\right) \equiv 1(\bmod 2)
$$

Therefore $T_{m}-T_{v}$ is a sum of two odd squares.
(ii) In view of Theorem 1.0(ii) and Theorem 2.1(ii), it suffices to show that if $2 m+1\left(m \in \mathbb{Z}^{+}\right)$has a prime divisor congruent to $3 \bmod 4$ then $2 T_{m}$ is a sum of an odd square and two triangular numbers.

Suppose that $2 m+1=k(4 n-1)$ with $k, n \in \mathbb{Z}^{+}$. Write $w=1+(-1)^{n}$. Then $4 n-1-w^{2}$ is a positive integer congruent to $3 \bmod 8$. By the GaussLegendre theorem on sums of three squares, there are integers x, y, z such that $4 n-1-w^{2}=x^{2}+y^{2}+z^{2}$. Clearly $x \equiv y \equiv z \equiv 1(\bmod 2)$ and $2 m+1=k\left(w^{2}+x^{2}+y^{2}+z^{2}\right)$. By Lemma 3.1, for some $v \in \mathbb{Z}$ we have

$$
2 T_{m}=k^{2}(w y+x z)^{2}+k^{2}(w z-x y)^{2}+2 T_{v}
$$

Let $u=k w z-k x y$. Then

$$
T_{v+u}+T_{v-u}=\frac{(v+u)^{2}+(v-u)^{2}+(v+u)+(v-u)}{2}=u^{2}+2 T_{v} .
$$

Thus

$$
2 T_{m}=(k w y+k x z)^{2}+T_{v+u}+T_{v-u}
$$

Note that $k w y+k x z$ is odd since w is even and k, x, z are odd.
Combining the above we have completed the proof of Theorem 1.1.
Proof of Corollary 1.1. (i) Let $m=(p-1) / 2$. Observe that

$$
\begin{aligned}
& T_{m}=T_{x}+(2 y+1)^{2}+(2 z+1)^{2} \\
\Longleftrightarrow & p^{2}=8 T_{m}+1=(2 x+1)^{2}+8(2 y+1)^{2}+8(2 z+1)^{2} .
\end{aligned}
$$

So the desired result follows from Theorem 1.1(i).
(ii) Let $m=(n-1) / 2$. Clearly

$$
\begin{aligned}
& 2 T_{m}=T_{x}+T_{y}+(2 z+1)^{2} \\
\Longleftrightarrow & 2 n^{2}=16 T_{m}+2=(2 x+1)^{2}+(2 y+1)^{2}+8(2 z+1)^{2} \\
\Longleftrightarrow & n^{2}=(x+y+1)^{2}+(x-y)^{2}+4(2 z+1)^{2} .
\end{aligned}
$$

So $2 T_{m}$ is a sum of an odd square and two triangular numbers if and only if $n^{2}=x^{2}+(2 y)^{2}+4 z^{2}$ for some odd integers x, y, z. (If x and z are odd but y is even, then $x^{2}+(2 y)^{2}+4 z^{2} \equiv 5 \not \equiv n^{2}(\bmod 8)$.) Combining this with Theorem 1.1(ii) we obtain the desired result.

Remark 3.1. We can deduce Corollary 1.1 in another way by using some known results (cf. $[\mathrm{E}],[\mathrm{EHH}]$ and $[\mathrm{SP}]$) in the theory of ternary quadratic forms, but this approach involves many sophisticated concepts.

Acknowledgment. The authors are grateful to the referee for his/her helpful comments.

References

[D] L. E. Dickson, History of the Theory of Numbers, Vol. II, AMS Chelsea Publ., 1999.
[E] A. G. Earnest, Representation of spinor exceptional integers by ternary quadratic forms, Nagoya Math. J. 93 (1984), 27-38.
[EHH] A. G. Earnest, J. S. Hsia and D. C. Hung, Primitive representations by spinor genera of ternary quadratic forms, J. London Math. Soc. 50 (1994), 222-230.
[F] H. M. Farkas, Sums of squares and triangular numbers, Online J. Anal. Combin. 1 (2006), \#1, 11 pp. (electronic).
[G] E. Grosswald, Representation of Integers as Sums of Squares, Springer, New York, 1985.
[GPS] S. Guo, H. Pan and Z. W. Sun, Mixed sums of squares and triangular numbers (II), Integers 7 (2007), \#A56, 5pp (electronic).
[JP] B. W. Jones and G. Pall, Regular and semi-regular positive ternary quadratic forms, Acta Math. 70 (1939), 165-191.
[L] V. A. Lebesque, Questions 1059,1060,1061 (Lionnet), Nouv. Ann. Math. 11 (1872), 516-519.
[N] M. B. Nathanson, Additive Number Theory: The Classical Bases, Grad. Texts in Math., vol. 164, Springer, New York, 1996.
[R] M. S. Réalis, Scolies pour un théoreme d'arithmétique, Nouv. Ann. Math. 12 (1873), 212-217.
[SP] R. Schulze-Pillot, Darstellung durch Spinorgeschlechter ternarer quadratischer Formen (German), J. Number Theory 12 (1980), 529-540.
[S07] Z. W. Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127 (2007), 103-113.
[S09] Z. W. Sun, On sums of primes and triangular numbers, Journal of Combinatorics and Number Theory 1 (2009), 65-76. http://arxiv.org/abs/0803.3737.

[^0]: Key words and phrases. Squares, triangular numbers, mixed sums, ternary quadratic forms, representations of natural numbers.

 2000 Mathematics Subject Classification. Primary 11E25; Secondary 05A05, 11D85, 11P99, 11 Y 11.

 The first author is supported by the Korea Research Foundation Grant (KRF-2008314 -C00004) funded by the Korean Government.

 The second author is responsible for communications, and supported by the National Natural Science Foundation (grant 10871087) of People's Republic of China.

