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Abstract. In this paper we confirm a conjecture of Sun which states that

each positive integer is a sum of a square, an odd square and a triangular
number. Given any positive integer m, we show that p = 2m + 1 is a

prime congruent to 3 modulo 4 if and only if Tm = m(m + 1)/2 cannot

be expressed as a sum of two odd squares and a triangular number, i.e.,
p2 = x2+8(y2+z2) for no odd integers x, y, z. We also show that a positive

integer cannot be written as a sum of an odd square and two triangular

numbers if and only if it is of the form 2Tm (m > 0) with 2m + 1 having
no prime divisor congruent to 3 modulo 4.

1. Introduction

The study of expressing natural numbers as sums of squares has long
history. Here are some well-known classical results in number theory.

(a) (Fermat-Euler theorem) Any prime p ≡ 1 (mod 4) is a sum of two
squares of integers.

(b) (Gauss-Legendre theorem, cf. [G, pp. 38–49] or [N, pp. 17–23]) n ∈
N = {0, 1, 2, . . . } can be written as a sum of three squares of integers if
and only if n is not of the form 4k(8l + 7) with k, l ∈ N.
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(c) (Lagrange’s theorem) Every n ∈ N is a sum of four squares of
integers.

Those integers Tx = x(x + 1)/2 with x ∈ Z are called triangular num-
bers. Note that Tx = T−x−1 and 8Tx + 1 = (2x + 1)2. In 1638 P. Fermat
asserted that each n ∈ N can be written as a sum of three triangular num-
bers (equivalently, 8n + 3 is a sum of three squares of odd integers); this
follows from the Gauss-Legendre theorem.

Let n ∈ N. As observed by L. Euler (cf. [D, p. 11]), the fact that 8n+1
is a sum of three squares (of integers) implies that n can be expressed as
a sum of two squares and a triangular number. This is remarkable since
there are infinitely many natural numbers which cannot be written as a
sum of three squares. According to [D, p. 24], E. Lionnet stated, and V.
A. Lebesgue [L] and M. S. Réalis [R] showed that n is also a sum of two
triangular numbers and a square. In 2006 these two results were re-proved
by H. M. Farkas [F] via the theory of theta functions. Further refinements
of these results are summarized in the following theorem.

Theorem 1.0. (i) (B. W. Jones and G. Pall [JP]) For every n ∈ N, we
can write 8n + 1 in the form 8x2 + 32y2 + z2 with x, y, z ∈ Z, i.e., n is a
sum of a square, an even square and a triangular number.

(ii) (Z. W. Sun [S07]) Any natural number is a sum of an even square
and two triangular numbers. If n ∈ N and n 6= 2Tm for any m ∈ N, then
n is also a sum of an odd square and two triangular numbers.

(iii) (Z. W. Sun [S07]) A positive integer is a sum of an odd square,
an even square and a triangular number unless it is a triangular number
Tm (m > 0) for which all prime divisors of 2m+1 are congruent to 1 mod
4.

We mention that Jones and Pall [JP] used the theory of ternary qua-
dratic forms and Sun [S07] employed some identities on q-series. Motivated
by Theorem 1.0(iii) and the fact that every prime p ≡ 1 (mod 4) is a sum
of an odd square and an even square, the second author [S09] conjectured
that each natural number n 6= 216 can be written in the form p + Tx with
x ∈ Z, where p is a prime or zero. Sun [S09] also made a general conjecture
which states that for any a, b ∈ N and r = 1, 3, 5, . . . all sufficiently large
integers can be written in the form 2ap + Tx with x ∈ Z, where p is either
zero or a prime congruent to r mod 2b.

In [S07] Sun investigated what kind of mixed sums ax2 + by2 + cTz or
ax2 + bTy + cTz (with a, b, c ∈ Z+ = {1, 2, 3, . . . }) represent all natural
numbers, and left two conjectures in this direction. In [GPS] S. Guo, H.
Pan and Sun proved Conjecture 2 of [S07]. Conjecture 1 of Sun [S07]
states that any positive integer n is a sum of a square, an odd square and
a triangular number, i.e., n− 1 = x2 + 8Ty + Tz for some x, y, z ∈ Z.

In this paper we prove Conjecture 1 of Sun [S07] and some other results
concerning mixed sums of squares and triangular numbers. Our main
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result is as follows.

Theorem 1.1. (i) Each positive integer is a sum of a square, an odd
square and a triangular number. A triangular number Tm with m ∈ Z+ is
a sum of two odd squares and a triangular number if and only if 2m + 1
is not a prime congruent to 3 mod 4.

(ii) A positive integer cannot be written as a sum of an odd square and
two triangular numbers if and only if it is of the form 2Tm (m ∈ Z+) with
2m + 1 having no prime divisor congruent to 3 mod 4.

Remark 1.1. In [S09] the second author conjectured that if a positive
integer is not a triangular number then it can be written as a sum of two
odd squares and a triangular number unless it is among the following 25
exceptions:

4, 7, 9, 14, 22, 42, 43, 48, 52, 67, 69, 72, 87, 114,

144, 157, 159, 169, 357, 402, 489, 507, 939, 952, 1029.

Here is a consequence of Theorem 1.1.

Corollary 1.1. (i) An odd integer p > 1 is a prime congruent to 3 mod
4 if and only if p2 = x2 + 8(y2 + z2) for no odd integers x, y, z.

(ii) Let n > 1 be an odd integer. Then all prime divisors of n are
congruent to 1 mod 4, if and only if n2 = x2 + 4(y2 + z2) for no odd
integers x, y, z.

Remark 1.2. In number theory there are very few simple characterizations
of primes such as Wilson’s theorem. Corollary 1.1(i) provides a surprising
new criterion for primes congruent to 3 mod 4.

In the next section we will prove an auxiliary theorem. Section 3 is
devoted to our proofs of Theorem 1.1 and Corollary 1.1.

2. An auxiliary theorem

In this section we prove the following auxiliary result.

Theorem 2.1. Let m be a positive integer.
(i) Assume that p = 2m+1 be a prime congruent to 3 mod 4. Then Tm

cannot be written in the form x2 + y2 + Tz with x, y, z ∈ Z, x2 + y2 > 0
and x ≡ y (mod 2). Also, 2Tm is not a sum of a positive even square and
two triangular numbers.

(ii) Suppose that all prime divisors of 2m + 1 are congruent to 1 mod
4. Then Tm cannot be written as a sum of an odd square, an even square
and a triangular number. Also, 2Tm is not a sum of an odd square and
two triangular numbers.

To prove Theorem 2.1 we need the following result due to Hurwitz.
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Lemma 2.1 (cf. [D, p. 271] or [S07, Lemma 3]). Let n be a positive odd
integer, and let p1, . . . , pr be all the distinct prime divisors of n congruent
to 3 mod 4. Write n = n0

∏
0<i6r pαi

i , where n0, α1, . . . , αr ∈ Z+ and n0

has no prime divisors congruent to 3 mod 4. Then

|{(x, y, z) ∈ Z3 : x2 + y2 + z2 = n2}| = 6n0

∏
0<i6r

(
pαi

i + 2
pαi

i − 1
pi − 1

)
.

As in [S07], for n ∈ N we define

r0(n) = |{(x, y, z) ∈ Z× N× N : x2 + Ty + Tz = n and 2 | x}|

and

r1(n) = |{(x, y, z) ∈ Z× N× N : x2 + Ty + Tz = n and 2 - x}|.

By p. 108 and Lemma 2 of Sun [S07], we have the following lemma.

Lemma 2.2 ([S07]). For n ∈ N we have

|{(x, y, z) ∈ Z× Z× N : x2 + y2 + Tz = n and x ≡ y (mod 2)}| = r0(2n)

and

|{(x, y, z) ∈ Z× Z× N : x2 + y2 + Tz = n and x 6≡ y (mod 2)}| = r1(2n).

Also, r0(2Tm)− r1(2Tm) = (−1)m(2m + 1) for every m ∈ N.

Proof of Theorem 2.1. By Lemma 2.2,

r0(2Tm) + r1(2Tm)

=|{(x, y, z) ∈ Z× Z× N : x2 + y2 + Tz = Tm}|

=
1
2
|{(x, y, z) ∈ Z3 : 8x2 + 8y2 + (8Tz + 1) = 8Tm + 1}|

=
1
2
|{(x, y, z) ∈ Z3 : 4(x + y)2 + 4(x− y)2 + (2z + 1)2 = (2m + 1)2}|

=
1
2
|{(u, v, z) ∈ Z3 : 4(u2 + v2) + (2z + 1)2 = (2m + 1)2}|

=
1
6
|{(x, y, z) ∈ Z3 : x2 + y2 + z2 = (2m + 1)2}|.

(i) As p = 2m + 1 is a prime congruent to 3 mod 4, by Lemma 2.1 and
the above we have

r0(2Tm) + r1(2Tm) = p + 2.
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On the other hand,

r0(2Tm)− r1(2Tm) = (−1)m(2m + 1) = −p

by Lemma 2.2. So

2r0(2Tm) = r0(2Tm) + r1(2Tm) + (r0(2Tm)− r1(2Tm)) = p + 2− p = 2.

Therefore

|{(x, y, z) ∈ Z× Z×N : x2 + y2 + Tz = Tm and 2 | x− y}| = r0(2Tm) = 1

and also

|{(x, y, z) ∈ Z× N× N : x2 + Ty + Tz = 2Tm and 2 | x}| = r0(2Tm) = 1.

Since Tm = 02 + 02 + Tm and 2Tm = 02 + Tm + Tm, the desired results
follow immediately.

(ii) As all prime divisors of 2m + 1 are congruent to 1 mod 4, we have

r0(2Tm)+r1(2Tm) =
1
6
|{(x, y, z) ∈ Z3 : x2+y2+z2 = (2m+1)2}| = 2m+1

in view of Lemma 2.1. Note that m is even since 2m + 1 ≡ 1 (mod 4). By
Lemma 2.2, r0(2Tm)− r1(2Tm) = (−1)m(2m + 1) = 2m + 1. Therefore

|{(x, y, z) ∈ Z×Z×N : x2 + y2 + Tz = Tm and 2 - x− y}| = r1(2Tm) = 0.

This proves part (ii) of Theorem 2.1. �

3. Proofs of Theorem 1.1 and Corollary 1.1

Lemma 3.1. Let m ∈ N with 2m + 1 = k(w2 + x2 + y2 + z2) where
k, w, x, y, z ∈ Z. Then

2Tm = k2(wy + xz)2 + k2(wz − xy)2 + 2Tv for some v ∈ Z.

Proof. Write the odd integer k(w2 + x2 − (y2 + z2)) in the form 2v + 1.
Then

8Tm + 1 =(2m + 1)2 = k2(w2 + x2 + y2 + z2)2

=(2v + 1)2 + 4k2(w2 + x2)(y2 + z2)

=8Tv + 1 + 4k2((wy + xz)2 + (wz − xy)2)
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and hence
2Tm = 2Tv + k2(wy + xz)2 + k2(wz − xy)2.

This concludes the proof. �

Proof of Theorem 1.1. (i) In view of Theorem 1.0(iii), it suffices to show
the second assertion in part (i).

Let m be any positive integer. By Theorem 2.1(i), if 2m + 1 is a prime
congruent to 3 mod 4 then Tm cannot be written as a sum of two odd
squares and a triangular number.

Now assume that 2m + 1 is not a prime congruent to 3 mod 4. Since
the product of two integers congruent to 3 mod 4 is congruent to 1 mod
4, we can write 2m + 1 in the form k(4n + 1) with k, n ∈ Z+.

Set w = 1 + (−1)n. Observe that 4n + 1 − w2 is a positive integer
congruent to 5 mod 8. By the Gauss-Legendre theorem on sums of three
squares, there are integers x, y, z with x odd such that 4n + 1 − w2 =
x2 + y2 + z2. Clearly both y and z are even. As y2 + z2 ≡ 4 (mod 8), we
have y0 6≡ z0 (mod 2) where y0 = y/2 and z0 = z/2.

Since 2m + 1 = k(w2 + x2 + y2 + z2), by Lemma 3.1 there is an integer
v such that

2Tm = 2Tv + k2(wy + xz)2 + k2(wz − xy)2.

Thus

Tm =Tv + 2(kwy0 + kxz0)2 + 2(kwz0 − kxy0)2

=Tv + (kwy0 + kxz0 + (kwz0 − kxy0))2

+ (kwy0 + kxz0 − (kwz0 − kxy0))2.

As w is even and kxy0 ≡ y0 6≡ z0 ≡ kxz0 (mod 2), we have

kwy0 + kxz0 ± (kwz0 − kxy0) ≡ 1 (mod 2).

Therefore Tm − Tv is a sum of two odd squares.

(ii) In view of Theorem 1.0(ii) and Theorem 2.1(ii), it suffices to show
that if 2m + 1 (m ∈ Z+) has a prime divisor congruent to 3 mod 4 then
2Tm is a sum of an odd square and two triangular numbers.

Suppose that 2m+1 = k(4n−1) with k, n ∈ Z+. Write w = 1+(−1)n.
Then 4n−1−w2 is a positive integer congruent to 3 mod 8. By the Gauss-
Legendre theorem on sums of three squares, there are integers x, y, z such
that 4n − 1 − w2 = x2 + y2 + z2. Clearly x ≡ y ≡ z ≡ 1 (mod 2) and
2m + 1 = k(w2 + x2 + y2 + z2). By Lemma 3.1, for some v ∈ Z we have

2Tm = k2(wy + xz)2 + k2(wz − xy)2 + 2Tv.



MIXED SUMS OF SQUARES AND TRIANGULAR NUMBERS (III) 7

Let u = kwz − kxy. Then

Tv+u + Tv−u =
(v + u)2 + (v − u)2 + (v + u) + (v − u)

2
= u2 + 2Tv.

Thus
2Tm = (kwy + kxz)2 + Tv+u + Tv−u.

Note that kwy + kxz is odd since w is even and k, x, z are odd.
Combining the above we have completed the proof of Theorem 1.1. �

Proof of Corollary 1.1. (i) Let m = (p− 1)/2. Observe that

Tm = Tx + (2y + 1)2 + (2z + 1)2

⇐⇒ p2 = 8Tm + 1 = (2x + 1)2 + 8(2y + 1)2 + 8(2z + 1)2.

So the desired result follows from Theorem 1.1(i).
(ii) Let m = (n− 1)/2. Clearly

2Tm = Tx + Ty + (2z + 1)2

⇐⇒ 2n2 = 16Tm + 2 = (2x + 1)2 + (2y + 1)2 + 8(2z + 1)2

⇐⇒ n2 = (x + y + 1)2 + (x− y)2 + 4(2z + 1)2.

So 2Tm is a sum of an odd square and two triangular numbers if and only
if n2 = x2 + (2y)2 + 4z2 for some odd integers x, y, z. (If x and z are odd
but y is even, then x2 + (2y)2 + 4z2 ≡ 5 6≡ n2 (mod 8).) Combining this
with Theorem 1.1(ii) we obtain the desired result. �

Remark 3.1. We can deduce Corollary 1.1 in another way by using some
known results (cf. [E], [EHH] and [SP]) in the theory of ternary quadratic
forms, but this approach involves many sophisticated concepts.

Acknowledgment. The authors are grateful to the referee for his/her
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