ON *m*-COVERS AND *m*-SYSTEMS

Zhi-Wei Sun

ABSTRACT. Let $\mathcal{A} = \{a_s \pmod{n_s}\}_{s=0}^k$ be a system of residue classes. With the help of cyclotomic fields we obtain a theorem which unifies several previously known results related to the covering multiplicity of \mathcal{A} . In particular, we show that if every integer lies in more than $m_0 = \lfloor \sum_{s=1}^k 1/n_s \rfloor$ members of \mathcal{A} , then for any $a = 0, 1, 2, \ldots$ there are at least $\binom{m_0}{\lfloor a/n_0 \rfloor}$ subsets I of $\{1, \ldots, k\}$ with $\sum_{s \in I} 1/n_s = a/n_0$. We also characterize when any integer lies in at most m members of \mathcal{A} , where m is a fixed positive integer.

1. The main results

For $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+ = \{1, 2, 3, ...\}$, we simply denote the residue class $\{x \in \mathbb{Z} : x \equiv a \pmod{n}\}$ by a(n). For a finite system

(1.1)
$$A = \{a_s(n_s)\}_{s=1}^k$$

of residue classes, the function $w_A : \mathbb{Z} \to \mathbb{N} = \{0, 1, 2, \dots\}$ given by

(1.2)
$$w_A(x) = |\{1 \le s \le k : x \in a_s(n_s)\}|$$

is called the *covering function* of A. Obviously $w_A(x)$ is periodic modulo the least common multiple N of the moduli n_1, \ldots, n_k , and it is easy to see that the average $\sum_{x=0}^{N-1} w_A(x)/N$ equals $\sum_{s=1}^k 1/n_s$. As in [S97] we call $m(A) = \min_{x \in \mathbb{Z}} w_A(x)$ the *covering multiplicity* of system (1.1).

Let *m* be any positive integer. If $w_A(x) \ge m$ for all $x \in \mathbb{Z}$ (i.e., $m(A) \ge m$), then (1.1) is said to be an *m*-cover of \mathbb{Z} as in [S95, S96], and in this case $\sum_{s=1}^{k} 1/n_s \ge m$. Covers (i.e. 1-covers) of \mathbb{Z} were first introduced by P. Erdős [E50] and they are also called covering systems. If $w_A(x) = m$ for all $x \in \mathbb{Z}$, then we call (1.1) an *exact m*-cover of \mathbb{Z} as in [S96, S97] (and in this case $\sum_{s=1}^{k} 1/n_s = m$). By [PZ, Theorem 1.3], when $m \ge 2$ there are exact *m*-covers of \mathbb{Z} that cannot split into two covers of \mathbb{Z} . If

Key words and phrases. Covers of the integers, residue classes, unit fractions. 2000 Mathematics Subject Classification. Primary 11B25; Secondary 05A05, 11A07,

¹¹B75, 11D68.

Supported by the National Natural Science Foundation (grant 10871087) of China.

¹

ZHI-WEI SUN

 $w_A(x) \leq m$ for all $x \in \mathbb{Z}$, then we call (1.1) an *m*-system, and in this case $\sum_{s=1}^k 1/n_s \leq m$; any 1-system is said to be *disjoint*.

The reader may consult Guy [G04, pp. 383-390] and Simpson [Sim] for some problems and results in covering theory. Covers of \mathbb{Z} have many surprising applications, see, e.g., [C71], [G04, sections A19 and B21], [S00], [SY] and [WS]. Sun [S09] showed that *m*-covers of \mathbb{Z} are related to zerosum problems for abelian groups. Also, the topic of covering systems stimulated the birth of some new algebraic results (cf. [S01] and [S05]).

Throughout this paper, for $a, b \in \mathbb{Z}$ we set $[a, b] = \{x \in \mathbb{Z} : a \leq x \leq b\}$ and define [a, b) and (a, b] similarly. As usual, the integral part and the fractional part of a real number α are denoted by $\lfloor \alpha \rfloor$ and $\{\alpha\}$ respectively.

For system (1.1) we define its dual system A^* by

(1.3)
$$A^* = \{a_s + r(n_s): \ 1 \le r < n_s, \ 1 \le s \le k\}$$

As $\{a_s + r(n_s)\}_{r=0}^{n_s-1}$ is a partition of \mathbb{Z} for any $s \in [1, k]$, we have $w_A(x) + w_{A^*}(x) = k$ for all $x \in \mathbb{Z}$. Thus $w_A(x) \leq m$ for all $x \in \mathbb{Z}$ if and only if $w_{A^*}(x) \geq k - m$ for all $x \in \mathbb{Z}$. This simple and new observation shows that we can study *m*-systems via covers of \mathbb{Z} , and construct covers of \mathbb{Z} via *m*-systems.

By a result in [S96], if (1.1) is an *m*-cover of \mathbb{Z} then for any $m_1, \ldots, m_k \in \mathbb{Z}^+$ there are at least *m* positive integers in the form $\sum_{s \in I} m_s/n_s$ with $I \subseteq [1, k]$. Applying this result to the dual A^* of an *m*-system (1.1), we obtain that there are more than k - m integers in the form $\sum_{s=1}^k x_s/n_s$ with $x_s \in [0, n_s)$; equivalently, at most m - 1 of the numbers in [1, k] cannot be written in the form $\sum_{s=1}^k m_s/n_s = k - \sum_{s=1}^k (n_s - m_s)/n_s$ with $m_s \in [1, n_s]$. This implies the following result stated in [S03, Remark 1.3]: If (1.1) is an *m*-system, then there are $m_1, \ldots, m_k \in \mathbb{Z}^+$ such that $\sum_{s=1}^k m_s/n_s = m$.

Our following theorem unifies and generalizes several known results.

Theorem 1.1. Let $\mathcal{A} = \{a_s(n_s)\}_{s=0}^k$ be a finite system of residue classes with $m(\mathcal{A}) > m = \lfloor \sum_{s=1}^k m_s/n_s \rfloor$, where $m_1, \ldots, m_k \in \mathbb{Z}^+$. Then, for any $0 \leq \alpha < 1$, either

(1.4)
$$\sum_{\substack{I \subseteq [1,k] \\ \sum_{s \in I} m_s/n_s = (\alpha+a)/n_0}} (-1)^{|I|} e^{2\pi i \sum_{s \in I} a_s m_s/n_s} = 0$$

for any $a \in \mathbb{N}$, or

(1.5)
$$\left| \left\{ I \subseteq [1,k] : \sum_{s \in I} \frac{m_s}{n_s} = \frac{\alpha + a}{n_0} \right\} \right| \ge \binom{m}{\lfloor a/n_0 \rfloor}$$

for all $a = 0, 1, 2, \ldots$

Example 1.1. Erdős observed that $\{0(2), 0(3), 1(4), 5(6), 7(12)\}$ is a cover of \mathbb{Z} with the moduli

$$n_0 = 2, \ n_1 = 3, \ n_2 = 4, \ n_3 = 6, \ n_4 = 12$$

distinct. As $\lfloor \sum_{s=1}^{4} 1/n_s \rfloor = 0$, by Theorem 1.1 in the case $\alpha = 0$ we have $\sum_{s \in I} 1/n_s = 1/n_0 = 1/2$ for some $I \subseteq [1,4]$; we can actually take $I = \{1,3\}$. Since $\sum_{s=1}^{4} 1/n_s < (5/6+1)/n_0 = 11/12$, by Theorem 1.1 in the case $\alpha = 5/6$ the set $\mathcal{I} = \{I \subseteq [1,4] : \sum_{s \in I} 1/n_s = 5/12\}$ cannot have a single element; in fact, $\mathcal{I} = \{\{1,4\},\{2,3\}\}$ and

$$(-1)^{|\{1,4\}|}e^{2\pi i(0/n_1+7/n_4)} + (-1)^{|\{2,3\}|}e^{2\pi i(1/n_2+5/n_3)} = -e^{\pi i/6} + e^{\pi i/6} = 0.$$

Corollary 1.1. If $\mathcal{A} = \{a_s(n_s)\}_{s=0}^k$ is a finite system of residue classes with $w_{\mathcal{A}}(x) > m = \lfloor \sum_{s=1}^k 1/n_s \rfloor$ for all $x \in \mathbb{Z}$, then

(1.6)
$$\left| \left\{ I \subseteq [1,k] : \sum_{s \in I} \frac{1}{n_s} = \frac{a}{n_0} \right\} \right| \ge \binom{m}{\lfloor a/n_0 \rfloor} \text{ for all } a \in \mathbb{N}.$$

In particular, if (1.1) has covering multiplicity $m(A) = \lfloor \sum_{s=1}^{k} 1/n_s \rfloor$, then

(1.7)
$$\left| \left\{ I \subseteq [1,k] : \sum_{s \in I} \frac{1}{n_s} = n \right\} \right| \ge \binom{m(A)}{n} \text{ for each } n \in \mathbb{N}.$$

Proof. Observe that the left hand side of (1.4) is nonzero in the case $\alpha = a = 0$. So (1.6) follows from Theorem 1.1 immediately. In the case $n_0 = 1$ this yields the latter result in Corollary 1.1. \Box

Remark 1.1. Let (1.1) be an exact *m*-cover of \mathbb{Z} . Then $\sum_{s=1}^{k} 1/n_s = m$ and $\lfloor \sum_{s \in [1,k] \setminus \{t\}} 1/n_s \rfloor = m - 1$ for any $t = 1, \ldots, k$. So Corollary 1.1 implies the following result in [S97]: For any $t \in [1,k]$ and $a \in \mathbb{N}$, we have

$$\left| \left\{ I \subseteq [1,k] \setminus \{t\} : \sum_{s \in I} \frac{1}{n_s} = \frac{a}{n_t} \right\} \right| \ge \binom{m-1}{\lfloor a/n_t \rfloor}.$$

As $m(A) = \sum_{s=1}^{k} 1/n_s$, we also have $|\{I \subseteq [1,k] : \sum_{s \in I} 1/n_s = n\}| \ge {m \choose n}$ for all $n = 0, 1, \ldots, m$, which was first established in [S92] by means of the Riemann zeta function.

Corollary 1.2. Let (1.1) be an *m*-system with $m = \lceil \sum_{s=1}^{k} 1/n_s \rceil$, where $\lceil \alpha \rceil$ denotes the least integer not smaller than a real number α . Then

(1.8)
$$\left| \left\{ \langle m_1, \dots, m_k \rangle \in \mathbb{Z}^k : m_s \in [1, n_s], \sum_{s=1}^k \frac{m_s}{n_s} = n \right\} \right| \ge \binom{k-m}{n-m}$$

for every $n = m, \ldots, k$.

Proof. Let $n \in [m, k]$. Clearly the left hand side of (1.8) coincides with

$$L := \left| \left\{ \langle x_1, \dots, x_k \rangle : x_s \in [0, n_s - 1], \sum_{s=1}^k \frac{x_s}{n_s} = \sum_{s=1}^k \frac{n_s}{n_s} - n = k - n \right\} \right|.$$

Since $\sum_{s=1}^{k} 1/n_s > m-1$, $w_A(x) = m$ for some $x \in \mathbb{Z}$. As the dual A^* of (1.1) has covering multiplicity $m(A^*) = k - m$, applying Corollary 1.1 to A^* we find that $L \ge \binom{k-m}{k-n} = \binom{k-m}{n-m}$. This concludes the proof. \Box

Remark 1.2. When (1.1) is an exact *m*-cover of \mathbb{Z} , it was proved in [S97] (by a different approach) that for each $n \in \mathbb{N}$ the equation $\sum_{s=1}^{k} x_s/n_s = n$ with $x_s \in [0, n_s)$ has at least $\binom{k-m}{n}$ solutions.

Corollary 1.3. Let $\mathcal{A} = \{a_s(n_s)\}_{s=0}^k$ be a finite system of residue classes with $m(\mathcal{A}) > m = \lfloor \sum_{s=1}^k m_s/n_s \rfloor$, where $m_1, \ldots, m_k \in \mathbb{Z}^+$. Suppose that $J \subseteq [1,k]$ and $\sum_{s \in I} m_s/n_s = \sum_{s \in J} m_s/n_s$ for no $I \subseteq [1,k]$ with $I \neq J$. Then

(1.9)
$$\left\{n_0 \sum_{s \in J} \frac{m_s}{n_s}\right\} + \left\{n_0 \sum_{s \in \bar{J}} \frac{m_s}{n_s}\right\} < 1,$$

where $\overline{J} = [1, k] \setminus J$. Also,

(1.10)
$$\sum_{s \in J} \frac{m_s}{n_s} \ge m \quad or \quad \sum_{s \in \bar{J}} \frac{m_s}{n_s} \ge m$$

Proof. Let $v = \sum_{s \in J} m_s/n_s$, $\alpha = \{n_0v\}$ and $b = \lfloor n_0v \rfloor$. Then $(\alpha+b)/n_0 = v$ and

$$\sum_{\substack{I \subseteq [1,k] \\ \sum_{s \in I} m_s/n_s = v}} (-1)^{|I|} e^{2\pi i \sum_{s \in I} a_s m_s/n_s} = (-1)^{|J|} e^{2\pi i \sum_{s \in J} a_s m_s/n_s} \neq 0.$$

By Theorem 1.1, (1.5) holds for any $a \in \mathbb{N}$. Applying (1.5) with $a = mn_0 + n_0 - 1$ we find that $\sum_{s \in I} m_s/n_s = (\alpha + mn_0 + n_0 - 1)/n_0$ for some $I \subseteq [1, k]$, therefore $\sum_{s=1}^k m_s/n_s \ge m + (\alpha + n_0 - 1)/n_0$. As $\lfloor \sum_{s=1}^k m_s/n_s \rfloor = m$, we must have

$$\left\{\sum_{s=1}^{k} \frac{m_s}{n_s}\right\} \ge \frac{\alpha + n_0 - 1}{n_0}, \text{ i.e., } n_0 - 1 + \alpha \leqslant n_0 \left\{\sum_{s=1}^{k} \frac{m_s}{n_s}\right\} < n_0.$$

Therefore $\alpha \leq \{n_0\{\sum_{s=1}^k m_s/n_s\}\} = \{n_0\sum_{s=1}^k m_s/n_s\}$, which is equivalent to (1.9).

(1.5) in the case a = b gives that $\binom{m}{\lfloor b/n_0 \rfloor} \leq 1$, thus $\lfloor v \rfloor \in \{0, m\}$. As $n_0\{v\} - \alpha = \lfloor n_0\{v\} \rfloor \leq n_0 - 1$, $\{v\} \leq (\alpha + n_0 - 1)/n_0 \leq \{\sum_{s=1}^k m_s/n_s\}$. If $\lfloor v \rfloor = 0$, then $m + v \leq m + \{\sum_{s=1}^k m_s/n_s\} = \sum_{s=1}^k m_s/n_s$ and hence $\sum_{s \in \bar{J}} m_s/n_s \geq m$. Therefore (1.10) is valid. We are done. \Box

Remark 1.3. Let (1.1) be an exact *m*-cover of \mathbb{Z} . Theorem 4(ii) in [S95] asserts that if $\emptyset \neq J \subset [1,k]$ then $\sum_{s \in I} 1/n_s = \sum_{s \in J} 1/n_s$ for some $I \subseteq [1,k]$ with $I \neq J$. This follows from Corollary 1.3, for, $\mathcal{A} = \{a_s(n_s)\}_{s=0}^k$ (where $a_0 = 0$ and $n_0 = 1$) is an (m+1)-cover of \mathbb{Z} with $\sum_{s \in J \cup \overline{J}} 1/n_s = \sum_{s=1}^k 1/n_s = m$.

In the 1960s Erdős made the following conjecture: For any system (1.1) with $1 < n_1 < \cdots < n_k$, if it is a cover of \mathbb{Z} then $\sum_{s=1}^k 1/n_s > 1$, in other words it cannot be a disjoint cover of \mathbb{Z} . This was later confirmed by H. Davenport, L. Mirsky, D. Newman and R. Radó who proved that if (1.1) is a disjoint cover of \mathbb{Z} with $1 < n_1 \leq \cdots \leq n_{k-1} \leq n_k$ then $n_{k-1} = n_k$.

Corollary 1.4. Let (1.1) be an m-cover of \mathbb{Z} with

(1.11)
$$n_1 \leqslant \cdots \leqslant n_{k-l} < n_{k-l+1} = \cdots = n_k \quad (0 < l < k).$$

Then, for any $r \in [0, l]$ with $r < n_k/n_{k-l}$, either $\sum_{s=1}^{k-r} 1/n_s \ge m$ or

$$\binom{l}{r} \in D(n_k) = \bigg\{ \sum_{p \mid n_k} px_p : x_p \in \mathbb{N} \text{ for any prime divisor } p \text{ of } n_k \bigg\}.$$

Proof. Set $\mathcal{A} = \{a_s(n_s)\}_{s=0}^k$ where $a_0 = 0$ and $n_0 = 1$. Suppose that $\sum_{s=1}^{k-r} 1/n_s < m$. Then $\sum_{s=1}^k 1/n_s < m + r/n_k < m + 1 \leq m(\mathcal{A})$. Since $|\{I \subseteq [1,k] : \sum_{s \in I} 1/n_s = m + r/n_k\}| = 0 < \binom{m}{m}$, by Theorem 1.1 we must have

$$\sum_{\substack{I \subseteq [1,k] \\ \sum_{s \in I} 1/n_s = r/n_k}} (-1)^{|I|} e^{2\pi i \sum_{s \in I} a_s/n_s} = 0.$$

Observe that $r/n_k < 1/n_{k-l} = \min\{1/n_s : 1 \leq s \leq k-l\}$. Therefore

$$0 = \sum_{\substack{I \subseteq (k-l,k] \\ \sum_{s \in I} 1/n_s = r/n_k}} (-1)^{|I|} e^{2\pi i \sum_{s \in I} a_s/n_s} = (-1)^r \Sigma_r,$$

where

$$\Sigma_r = \sum_{\substack{I \subseteq (k-l,k] \\ |I|=r}} e^{2\pi i \sum_{s \in I} a_s/n_k}.$$

By [S03, Lemma 3.1], $\Sigma_r = 0$ implies that

$$\binom{l}{r} = |\{I \subseteq (k-l,k] : |I| = r\}| \in D(n_k).$$

This concludes the proof. \Box

Remark 1.4. Let (1.1) be an *m*-cover of \mathbb{Z} with (1.11). By Corollary 1.4 in the case r = l, either $l \ge n_k/n_{k-l} > 1$ or $\sum_{s=1}^{k-l} 1/n_s \ge m$; this is one of the main results in [S96]. Corollary 1.4 in the case r = 1 yields that either $\sum_{s=1}^{k-1} 1/n_s \ge m$ or $l \in D(n_k)$; this implies the extended Newman-Znám result (cf. [N71]) which asserts that if (1.1) is an exact *m*-cover of \mathbb{Z} (and hence $\sum_{s=1}^{k-1} 1/n_s < \sum_{s=1}^{k} 1/n_s = m$) then l is not smaller than the least prime divisor of n_k .

Let (1.1) is an *m*-system with (1.11), and let $r \in \mathbb{N}$ and $r < n_k/n_{k-l}$. With the help of the dual system of (1.1), we can also show that either $\sum_{s=1}^{k} 1/n_s \leq m - r/n_k$ or

$$\binom{l+r-1}{r} = |\{\langle x_{k-l+1}, \dots, x_k\rangle \in \mathbb{N}^l : x_{k-l+1} + \dots + x_k = r\}| \in D(n_k).$$

If (1.1) is disjoint with $1 < n_1 < \cdots < n_k$, then $\sum_{s=1}^k 1/n_s < 1$ since (1.1) is not a disjoint cover of \mathbb{Z} ; Erdős [E62] showed further that $\sum_{s=1}^k 1/n_s \leq 1 - 1/2^k$. Now we give a generalization of this result.

Theorem 1.2. Let (1.1) be an *m*-system with $k \ge m$, $\sum_{s=1}^{k} 1/n_s \ne m$ and $n_1 \le \cdots \le n_k$. Then we have

(1.12)
$$\sum_{s=1}^{k} \frac{1}{n_s} \leqslant m - \frac{1}{2^{k-m+1}},$$

and equality holds if and only if $n_s = 2^{\max\{s-m+1,0\}}$ for all $s = 1, \ldots, k$.

Remark 1.5. Let $k \ge m \ge 1$ be integers. Then m-1 copies of 0(1), together with the following k-m+1 residue classes

$$1(2), 2(2^2), \ldots, 2^{k-m}(2^{k-m+1}),$$

form an *m*-system with the moduli $2^{\max\{s-m+1,0\}}$ $(s = 1, \dots, k)$.

We will prove Theorems 1.1 and 1.2 in the next section. Section 3 deals with two characterizations of m-systems one of which is as follows.

Theorem 1.3. (1.1) is an *m*-system if and only if for any $n \in [m, k)$ we have

(1.13)
$$S(n, \alpha) = \begin{cases} (-1)^k & \text{if } \alpha = 0, \\ 0 & \text{if } 0 < \alpha < 1, \end{cases}$$

where $S(n, \alpha)$ represents the sum

$$\sum_{\substack{m_1,\ldots,m_k\in\mathbb{Z}^+\\\{\sum_{s=1}^k m_s/n_s\}=\alpha}} (-1)^{\lfloor\sum_{s=1}^k m_s/n_s\rfloor} \binom{n}{\lfloor\sum_{s=1}^k m_s/n_s\rfloor} e^{2\pi i \sum_{s=1}^k a_s m_s/n_s}.$$

Theorem 1.3 in the case m = 1 yields the following result.

Corollary 1.5. If (1.1) is disjoint, then we have

(1.14)
$$\sum_{\substack{m_1, \dots, m_k \in \mathbb{Z}^+ \\ \sum_{s=1}^k m_s/n_s = 1}} e^{2\pi i \sum_{s=1}^k a_s m_s/n_s} = (-1)^{k-1}.$$

A residue class $a(n) = a + n\mathbb{Z}$ is a coset of $n\mathbb{Z}$ in the additive group \mathbb{Z} with $[\mathbb{Z} : n\mathbb{Z}] = n$. In [S06] the author conjectured that if $\{a_s G_s\}_{s=1}^k (1 < k < \infty)$ is a disjoint system of left cosets in a group G with all the indices $n_s = [G : G_s]$ finite, then $gcd(n_s, n_t) \ge k$ for some $1 \le s < t \le k$.

2. Proofs of Theorems 1.1 and 1.2

Lemma 2.1. Let $N \in \mathbb{Z}^+$ be a common multiple of the moduli n_1, \ldots, n_k in (1.1). And let $m, m_1, \ldots, m_k \in \mathbb{Z}^+$. If (1.1) is an m-cover of \mathbb{Z} , then $(1 - z^N)^m$ divides the polynomial $\prod_{s=1}^k (1 - z^{Nm_s/n_s} e^{2\pi i a_s m_s/n_s})$. When m_1, \ldots, m_k are relatively prime to n_1, \ldots, n_k respectively, the converse also holds.

Proof. For any r = 0, 1, ..., N-1, clearly $e^{2\pi i r/N}$ is a zero of the polynomial $\prod_{s=1}^{k} (1 - z^{Nm_s/n_s} e^{2\pi i a_s m_s/n_s})$ with multiplicity $M_r = |\{s \in [1,k] : n_s \mid m_s(r+a_s)\}|$. Observe that $M_r \ge w_A(-r)$. If m_s is relatively prime to n_s for each $s \in [1,k]$, then $M_r = w_A(-r)$. As $(1 - z^N)^m = \prod_{r=0}^{N-1} (1 - ze^{-2\pi i r/N})^m$, the desired result follows from the above.

Proof of Theorem 1.1. Set $m_0 = 1$, and let N_0 be the least common multiple of n_0, n_1, \ldots, n_k . In light of Lemma 2.1, we can write P(z) = $\prod_{s=0}^k (1-z^{N_0 m_s/n_s} e^{2\pi i a_s m_s/n_s})$ in the form $(1-z^{N_0})^{m+1}Q(z)$ where $Q(z) \in \mathbb{C}[z]$. Clearly

$$\deg Q = \deg P - (m+1)N_0 = N_0 \left(\sum_{s=0}^k \frac{m_s}{n_s} - m - 1\right) < \frac{N_0}{n_0}$$

Also,

(2.1)
$$\prod_{s=1}^{k} \left(1 - z^{N_0 m_s/n_s} e^{2\pi i a_s m_s/n_s} \right)$$
$$= \sum_{n=0}^{m} (-1)^n \binom{m}{n} z^{nN_0} \sum_{r=0}^{n_0-1} z^{rN_0/n_0} e^{2\pi i r a_0/n_0} Q(z)$$

since

$$\frac{1-z^{N_0}}{1-z^{N_0/n_0}e^{2\pi i a_0/n_0}} = \sum_{r=0}^{n_0-1} z^{rN_0/n_0} e^{2\pi i r a_0/n_0}$$

Let $a \in \mathbb{N}$ and

$$C_a = (-1)^{\lfloor a/n_0 \rfloor} \sum_{\substack{I \subseteq [1,k] \\ \sum_{s \in I} m_s/n_s = (\alpha+a)/n_0}} (-1)^{|I|} e^{2\pi i \sum_{s \in I} (a_s - a_0) m_s/n_s}.$$

By comparing the coefficients of $z^{N_0(\alpha+a)/n_0}$ on both sides of (2.1) we obtain that

$$\sum_{\substack{I \subseteq [1,k] \\ \sum_{s \in I} m_s/n_s = (\alpha+a)/n_0}} (-1)^{|I|} e^{2\pi i \sum_{s \in I} a_s m_s/n_s}$$

=(-1)^{\la/n_0\rac{\lambda}{\left(\alpha/n_0\rac{1}{\rac{2}{1}}\right)} e^{2\pi i a_0 \{a/n_0\}} [z^{\alpha N_0/n_0}]Q(z),}

where $[z^{\alpha N_0/n_0}]Q(z)$ denotes the coefficient of $z^{\alpha N_0/n_0}$ in Q(z). Therefore

(2.2)
$$C_a = e^{-2\pi i \alpha a_0/n_0} \binom{m}{\lfloor a/n_0 \rfloor} [z^{\alpha N_0/n_0}] Q(z) = \binom{m}{\lfloor a/n_0 \rfloor} C_0.$$

For an algebraic integer ω in the field $K = \mathbb{Q}(e^{2\pi i/N_0})$, the norm $N(\omega) = \prod_{1 \leq r \leq N_0, \ \gcd(r,N_0)=1} \sigma_r(\omega)$ (with respect to the field extension K/\mathbb{Q}) is a rational integer, where σ_r is the automorphism of K (in the Galois group $\operatorname{Gal}(K/\mathbb{Q})$) induced by $\sigma_r(e^{2\pi i/N_0}) = e^{2\pi i r/N_0}$. (See, e.g., [K97, Chapter 1].) As $N((-1)^{\lfloor a/n_0 \rfloor} C_a)$ equals

$$\prod_{\substack{1 \leq r \leq N_0 \\ \gcd(r,N_0)=1}} \sum_{\substack{I \subseteq [1,k] \\ \sum_{s \in I} m_s/n_s = (\alpha+a)/n_0}} (-1)^{|I|} e^{2\pi i r \sum_{s \in I} (a_s - a_0) m_s/n_s}$$

we have

$$|N(C_a)| = \prod_{\substack{1 \le r \le N_0 \\ \gcd(r,N_0)=1}} \left| \sum_{\substack{I \subseteq [1,k] \\ \sum_{s \in I} m_s/n_s = (\alpha+a)/n_0}} (-1)^{|I|} e^{2\pi i r \sum_{s \in I} (a_s - a_0) m_s/n_s} \right|$$
$$\leqslant \left| \left\{ I \subseteq [1,k] : \sum_{s \in I} \frac{m_s}{n_s} = \frac{\alpha+a}{n_0} \right\} \right|^{\varphi(N_0)},$$

where φ is Euler's totient function. Also,

$$|N(C_a)| = \left| N\left(\begin{pmatrix} m \\ \lfloor a/n_0 \rfloor \end{pmatrix} \right) \right| \times |N(C_0)| = \begin{pmatrix} m \\ \lfloor a/n_0 \rfloor \end{pmatrix}^{\varphi(N_0)} |N(C_0)|.$$

Suppose that $C_b \neq 0$ for some $b \in \mathbb{N}$. Then $N(C_b) \neq 0$ and hence $N(C_0) \in \mathbb{Z}$ is nonzero. For any $a \in \mathbb{N}$, we have

$$\left|\left\{I \subseteq [1,k] : \sum_{s \in I} \frac{m_s}{n_s} = \frac{\alpha + a}{n_0}\right\}\right|^{\varphi(N_0)} \ge |N(C_a)| \ge \binom{m}{\lfloor a/n_0 \rfloor}^{\varphi(N_0)}$$

and hence (1.5) holds. This concludes the proof. \Box

Proof of Theorem 1.2. We use induction on k.

In the case k = m, we have $n_k > 1$ and hence

$$\sum_{s=1}^{k} \frac{1}{n_s} \leqslant k - 1 + \frac{1}{n_k} \leqslant m - \frac{1}{2} = m - \frac{1}{2^{k-m+1}},$$

also $\sum_{s=1}^{k} 1/n_s = m - 1/2$ if and only if $n_1 = \cdots = n_{k-1} = 1$ and $n_k = 2$. Now let k > m. Clearly $\sum_{s=1}^{k-1} 1/n_s < \sum_{s=1}^{k} 1/n_s < m$. Assume that

$$\sum_{s=1}^{k-1} \frac{1}{n_s} \leqslant m - \frac{1}{2^{(k-1)-m+1}} = m - \frac{1}{2^{k-m}}$$

and that equality holds if and only if $n_s = 2^{\max\{s-m+1,0\}}$ for all $s \in [1, k-1]$. When $n_k > 2^{k-m+1}$, we have

$$\sum_{s=1}^{k} \frac{1}{n_s} = \sum_{s=1}^{k-1} \frac{1}{n_s} + \frac{1}{n_k} < \left(m - \frac{1}{2^{k-m}}\right) + \frac{1}{2^{k-m+1}} = m - \frac{1}{2^{k-m+1}}.$$

If $\sum_{s=1}^{k} 1/n_s > m - 1/n_k$, then $\left\lceil \sum_{s=1}^{k} 1/n_s \right\rceil = m$, thus $\sum_{s=1}^{k} m_s/n_s = m$ for some $m_1, \ldots, m_k \in \mathbb{Z}^+$ (by Corollary 1.2) and hence

$$m - \sum_{s=1}^{k} \frac{1}{n_s} \ge \min\left\{\frac{1}{n_s} : 1 \le s \le k\right\} = \frac{1}{n_k}.$$

This shows that we do have $\sum_{s=1}^{k} 1/n_s \leq m - 1/n_k$. Providing $n_k \leq 2^{k-m+1}$, (1.12) holds, and also

$$\sum_{s=1}^{k} \frac{1}{n_s} = m - \frac{1}{2^{k-m+1}} \iff n_k = 2^{k-m+1} \text{ and } \sum_{s=1}^{k-1} \frac{1}{n_s} = m - \frac{1}{2^{k-m}}$$
$$\iff n_s = 2^{\max\{s-m+1,0\}} \text{ for } s = 1, \dots, k-1, k.$$

This concludes the induction step and we are done. $\hfill\square$

ZHI-WEI SUN

3. Characterizations of m-systems

Proof of Theorem 1.3. Like Lemma 2.1, (1.1) is an *m*-system if and only if $f(z) = (1 - z^N)^m / \prod_{s=1}^k (1 - z^{N/n_s} e^{2\pi i a_s/n_s})$ is a polynomial, where N is the least common multiple of n_1, \ldots, n_k .

is the least common multiple of n_1, \ldots, n_k . Set $c = m - \sum_{s=1}^k 1/n_s$. If f(z) is a polynomial, then deg f = cN and $[z^{cN}]f(z) = (-1)^{k-m}e^{-2\pi i \sum_{s=1}^k a_s/n_s}$.

For |z| < 1 we have

$$f(z) = \sum_{n=0}^{m} \binom{m}{n} (-1)^n z^{nN} \prod_{s=1}^{k} \sum_{x_s=0}^{\infty} e^{2\pi i a_s x_s/n_s} z^{Nx_s/n_s}$$

Let $\alpha \ge 0$. Then

$$[z^{(c+\alpha)N}]f(z) = \sum_{n=0}^{m} (-1)^n \binom{m}{n} \sum_{\substack{x_1, \dots, x_k \in \mathbb{N} \\ \sum_{s=1}^k x_s/n_s = c+\alpha-n}} e^{2\pi i \sum_{s=1}^k a_s x_s/n_s}$$
$$= \sum_{n=0}^m (-1)^n \binom{m}{n} \sum_{\substack{m_1, \dots, m_k \in \mathbb{Z}^+ \\ \sum_{s=1}^k m_s/n_s = \alpha+m-n}} e^{2\pi i \sum_{s=1}^k a_s (m_s-1)/n_s}$$
$$= (-1)^m e^{-2\pi i \sum_{s=1}^k a_s/n_s} S(m, \alpha),$$

where $S(n, \alpha)$ $(n \in \mathbb{N})$ represents the sum

$$\sum_{\substack{m_1,\ldots,m_k\in\mathbb{Z}^+\\\sum_{s=1}^k m_s/n_s-\alpha\in\mathbb{N}}} (-1)^{\sum_{s=1}^k m_s/n_s-\alpha} \binom{n}{\sum_{s=1}^k m_s/n_s-\alpha} e^{2\pi i \sum_{s=1}^k a_s m_s/n_s}$$

which agrees with its definition in the case $0 \leq \alpha < 1$ given in Theorem 1.3.

(i) Suppose that (1.1) is an *m*-system. Then f(z) is a polynomial of degree cN and hence

$$S(m,\alpha) = (-1)^m e^{2\pi i \sum_{s=1}^k a_s/n_s} [z^{(c+\alpha)N}] f(z) = \begin{cases} (-1)^k & \text{if } \alpha = 0, \\ 0 & \text{if } \alpha > 0. \end{cases}$$

For any integer $n \ge m$, (1.1) is also an *n*-system and so we have (1.13).

(ii) Now assume that (1.13) holds for all $n \in [m, k)$. For any $n \ge k$ we also have (1.13) by (i) because (1.1) is a k-system.

If $0 < \alpha < 1$ then $S(n, \alpha) = 0$ for any integer $n \ge m$. Fix $\alpha > 0$. If $S(n, \alpha) = 0$ for all integers $n \ge m$, then for any integer $n \ge m$ we have

$$S(n, \alpha + 1) = S(n, \alpha) - S(n + 1, \alpha) = 0$$

because $\binom{n}{j-1} = \binom{n+1}{j} - \binom{n}{j}$ for $j = 1, 2, \ldots$ Thus, by induction, $S(n, \alpha) = 0$ for all $\alpha > 0$ and $n = m, m+1, \ldots$. It follows that $[z^{(c+\alpha)N}]f(z) = 0$ for any $\alpha > 0$. So f(z) is a polynomial and (1.1) is an *m*-system.

The proof of Theorem 1.3 is now complete. \Box

The following characterization of m-covers plays important roles in [S95, S96].

Lemma 3.1 (Sun [S95]). Let $m, m_1, \ldots, m_k \in \mathbb{Z}^+$. If (1.1) forms an *m*-cover of \mathbb{Z} , then

(3.1)
$$\sum_{\substack{I \subseteq [1,k] \\ \{\sum_{s \in I} m_s/n_s\} = \theta}} (-1)^{|I|} \binom{\lfloor \sum_{s \in I} m_s/n_s \rfloor}{n} e^{2\pi i \sum_{s \in I} a_s m_s/n_s} = 0$$

for all $0 \leq \theta < 1$ and n = 0, 1, ..., m - 1. We also have the converse if $m_1, ..., m_k$ are relatively prime to $n_1, ..., n_k$ respectively.

We can provide a new proof of Lemma 3.1 in a way similar to the proof of Theorem 1.3.

Lemma 3.2. Let $n \in \mathbb{Z}^+$ and $l \in [0, n-1]$. Then

(3.2)
$$\sum_{\substack{J \subseteq [1,n) \\ |J|=l}} e^{2\pi i \sum_{j \in J} j/n} = (-1)^l.$$

Proof. Clearly we have the identity

$$\prod_{0 < j < n} \left(1 - z e^{2\pi i j/n} \right) = \frac{1 - z^n}{1 - z} = 1 + z + \dots + z^{n-1}.$$

Comparing the coefficients of z^l we then obtain (3.2). \Box

Using Lemmas 3.1 and 3.2 we can deduce another characterization of m-systems.

Theorem 3.1. (1.1) is an m-system if and only if we have

(3.3)
$$\sum_{\substack{x_s \in [0,n_s) \text{ for } s \in [1,k] \\ \{\sum_{s=1}^k x_s/n_s\} = \theta}} \binom{\lfloor \sum_{s=1}^k x_s/n_s \rfloor}{n} e^{2\pi i \sum_{s=1}^k a_s x_s/n_s} = 0$$

for all $0 \leq \theta < 1$ and $n \in [0, k - m)$.

Proof. The case $k \leq m$ is trivial, so we just let k > m. Recall that (1.1) is an *m*-system if and only if its dual A^* is a (k - m)-cover of \mathbb{Z} .

ZHI-WEI SUN

By Lemma 3.1 in the case $m_1 = \cdots = m_k = 1$, A^* forms an (k - m)cover of \mathbb{Z} if and only if for any $0 \leq \theta < 1$ and $n \in [0, k - m)$ the sum

$$\sum_{\substack{x_s \in [0, n_s) \text{ for } s \in [1, k] \\ \{\sum_{s=1}^k x_s/n_s\} = \theta}} (-1)^{\sum_{s=1}^k x_s} \binom{\lfloor \sum_{s=1}^k x_s/n_s \rfloor}{n} e^{2\pi i \sum_{s=1}^k a_s x_s/n_s} \prod_{s=1}^k f_s(x_s)$$

vanishes, where

$$f_s(x_s) = \sum_{\substack{J \subseteq [1, n_s) \\ |J| = x_s}} e^{2\pi i \sum_{j \in J} j/n_s} = (-1)^{x_s}$$

by Lemma 3.2. This concludes the proof. \Box

The following consequence extends Corollary 1.5.

Corollary 3.1. Let (1.1) be an m-system. Then we have

$$\sum_{\substack{m_s \in [1, n_s] \text{ for } s \in [1, k] \\ m - \sum_{s=1}^k m_s/n_s \in \mathbb{N}}} \binom{k - 1 - \sum_{s=1}^k m_s/n_s}{m - \sum_{s=1}^k m_s/n_s} e^{2\pi i \sum_{s=1}^k a_s m_s/n_s} = (-1)^{k-m}.$$

Proof. If $k \leq m$, then the left hand side of the last equality coincides with

$$\binom{k-1-\sum_{s=1}^{k}n_s/n_s}{m-\sum_{s=1}^{k}n_s/n_s}e^{2\pi i\sum_{s=1}^{k}a_sn_s/n_s} = \binom{-1}{m-k} = (-1)^{m-k}.$$

Now let k > m. As $\{-a_s(n_s)\}_{s=1}^k$ is an *m*-system, by Theorem 4.1 and the identity

$$(-1)^{k-m-1} \binom{x-1}{k-m-1} = \sum_{n=0}^{k-m-1} (-1)^n \binom{x}{n}$$

(cf. [GKP, (5.16)]) we have

$$0 = \sum_{\substack{x_s \in [0, n_s] \text{ for } s \in [1, k] \\ \{\sum_{s=1}^k x_s/n_s\} = 0}} {\binom{\lfloor \sum_{s=1}^k x_s/n_s \rfloor - 1}{k - m - 1}} e^{2\pi i \sum_{s=1}^k (-a_s) x_s/n_s}$$

$$= \sum_{\substack{m_s \in [1, n_s] \text{ for } s \in [1, k] \\ \sum_{s=1}^k (n_s - m_s)/n_s \in \mathbb{N}}} {\binom{\sum_{s=1}^k (n_s - m_s)/n_s - 1}{k - m - 1}} e^{-2\pi i \sum_{s=1}^k a_s (n_s - m_s)/n_s}$$

$$= \sum_{\substack{m_s \in [1, n_s] \text{ for } s \in [1, k] \\ \sum_{s=1}^k m_s/n_s \in [0, k - 1]}} {\binom{k - 1 - \sum_{s=1}^k m_s/n_s}{k - 1 - m}} e^{2\pi i \sum_{s=1}^k a_s m_s/n_s}$$

So the desired equality follows. \Box

References

- [C71] R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36 (1971), 103–107.
- [E50] P. Erdős, On integers of the form $2^k + p$ and some related problems, Summa Brasil. Math. **2** (1950), 113–123.
- [E62] P. Erdős, Remarks on number theory IV: Extremal problems in number theory I, Mat. Lapok 13 (1962), 228-255.
- [GKP] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd Edition, Addison-Wesley, Amsterdam, 1994.
- [G04] R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, New York, 2004.
- [K97] H. Koch, Algebraic Number Theory, Springer, Berlin, 1997.
- [N71] M. Newman, Roots of unity and covering sets, Math. Ann. 191 (1971), 279–282.
 [PZ] H. Pan and L. L. Zhao, Clique numbers of graphs and irreducible exact m-covers of the integers, Adv. in Appl. Math. 43 (2009), 24–30.
- [Sim] R. J. Simpson, On a conjecture of Crittenden and Vanden Eynden concerning coverings by arithmetic progressions, J. Austral. Math. Soc. Ser. A 63 (1997), 396-420.
- [S92] Z. W. Sun, On exactly m times covers, Israel J. Math. 77 (1992), 345–348.
- [S95] Z. W. Sun, Covering the integers by arithmetic sequences, Acta Arith. 72 (1995), 109–129.
- [S96] Z. W. Sun, Covering the integers by arithmetic sequences II, Trans. Amer. Math. Soc. 348 (1996), 4279–4320.
- [S97] Z. W. Sun, Exact m-covers and the linear form $\sum_{s=1}^{k} x_s/n_s$, Acta Arith. 81 (1997), 175–198.
- [S00] Z. W. Sun, On integers not of the form $\pm p^a \pm q^b$, Proc. Amer. Math. Soc. **128** (2000), 997–1002.
- [S01] Z. W. Sun, Algebraic approaches to periodic arithmetical maps, J. Algebra 240 (2001), 723–743.
- [S03] Z. W. Sun, On the function $w(x) = |\{1 \le s \le k : x \equiv a_s \pmod{n_s}\}|$, Combinatorica **23** (2003), 681–691.
- [S05] Z. W. Sun, A local-global theorem on periodic maps, J. Algebra 293 (2005), 506-512.
- [S06] Z. W. Sun, Finite covers of groups by cosets or subgroups, Internat. J. Math. 17 (2006), 1047–1064.
- [S09] Z. W. Sun, Zero-sum problems for abelian p-groups and covers of the integers by residue classes, Israel J. Math. 170 (2009), 235–252.
- [SY] Z. W. Sun and S. M. Yang, A note on integers of the form $2^n + cp$, Proc. Edinburgh. Math. Soc. **45** (2002), 155–160.
- [WS] K. J. Wu and Z. W. Sun, Covers of the integers with odd moduli and their applications to the forms $x^m 2^n$ and $x^2 F_{3n}/2$, Math. Comp. **78** (2009), 1853–1866.

DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY, NANJING 210093, PEO-PLE'S REPUBLIC OF CHINA

E-mail address: zwsun@nju.edu.cn Homepage:http://math.nju.edu.cn/~zwsun