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ON m-COVERS AND m-SYSTEMS

ZHI-WEI SUN

ABSTRACT. Let A = {as(mod ns)}*_, be a system of residue classes.
With the help of cyclotomic fields we obtain a theorem which unifies several
previously known results related to the covering multiplicity of A. In par-
ticular, we show that if every integer lies in more than mgo = |>_ 5:1 1/ns|
members of A, then for any a = 0,1,2,... there are at least (La7£oj) sub-

sets I of {1,...,k} with > ., 1/ns = a/ng. We also characterize when
any integer lies in at most m members of A, where m is a fixed positive
integer.

1. THE MAIN RESULTS

For a € Z and n € ZT = {1,2,3,...}, we simply denote the residue
class {x € Z: x = a (mod n)} by a(n). For a finite system

(1.1) A = {as(ny) Yooy

of residue classes, the function wy : Z — N ={0,1,2,...} given by
(1.2) wa(z) ={1<s<k: z€ag(ng)}

is called the covering function of A. Obviously w4 (z) is periodic modulo
the least common multiple N of the moduli nq,...,nk, and it is easy to
see that the average Zi\[:—ol wa(x)/N equals 25:1 1/ns. As in [S97] we
call m(A) = ming ey wa(x) the covering multiplicity of system (1.1).

Let m be any positive integer. If wa(z) > m for all x € Z (i.e., m(A) >
m), then (1.1) is said to be an m-cover of Z as in [S95, S96|, and in this
case ZI;ZI 1/ns = m. Covers (i.e. 1-covers) of Z were first introduced by
P. Erdés [E50] and they are also called covering systems. If wy(xz) = m
for all x € Z, then we call (1.1) an ezact m-cover of Z as in [S96, S97]
(and in this case Z’;Zl 1/ns = m). By [PZ, Theorem 1.3], when m > 2
there are exact m-covers of Z that cannot split into two covers of Z. If
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wa(x) < m for all x € Z, then we call (1.1) an m-system, and in this case
ZI::1 1/ng < m; any 1-system is said to be disjoint.

The reader may consult Guy [G04, pp. 383-390] and Simpson [Sim] for
some problems and results in covering theory. Covers of Z have many
surprising applications, see, e.g., [C71], [G04, sections A19 and B21], [S00],
[SY] and [WS]. Sun [S09] showed that m-covers of Z are related to zero-
sum problems for abelian groups. Also, the topic of covering systems
stimulated the birth of some new algebraic results (cf. [SO1] and [S05]).

Throughout this paper, for a,b € Z we set [a,b] = {x € Z: a < = < b}
and define [a,b) and (a,b] similarly. As usual, the integral part and the
fractional part of a real number « are denoted by |« | and {a} respectively.

For system (1.1) we define its dual system A* by

(1.3) A" ={as+r(ns): 1<r<n, 1<s<k}.

As {as+7(ng) ¥ 5! is a partition of Z for any s € [1, k], we have w4 () +
wax(x) =k for all z € Z. Thus wa(x) < m for all z € Z if and only if
wa+(x) = k —m for all x € Z. This simple and new observation shows
that we can study m-systems via covers of Z, and construct covers of Z
via m-systems.

By aresult in [S96], if (1.1) is an m-cover of Z then for any mq,... ,my €
Z7 there are at least m positive integers in the form 3 ., m,/n, with
I C [1,k]. Applying this result to the dual A* of an m-system (1.1), we
obtain that there are more than £ — m integers in the form 25:1 Ts /Mg
with zs € [0,ng); equivalently, at most m — 1 of the numbers in [1, k]
cannot be written in the form Zl;f:l ms/ns =k — Zle(ns —ms)/ns with
ms € [1,ng]. This implies the following result stated in [S03, Remark
1.3]: If (1.1) is an m-system, then there are mq,... ,my € Z* such that

k _
Y a1 Ms/ng = m.
Our following theorem unifies and generalizes several known results.

Theorem 1.1. Let A = {as(n,)}*_, be a finite system of residue classes
with m(A) > m = Lzl;:l ms/ns|, where my,... ,my € Z*. Then, for
any 0 < a < 1, either

(14) Z (_1)|I|627Ti2561 asms/ns — 0
ICI[1,k]
Zselms/nsz(a—i—a)/no

for any a € N, or

an [frena grossls ()

foralla=0,1,2,....
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Ezample 1.1. Erd6s observed that {0(2),0(3),1(4),5(6),7(12)} is a cover
of Z with the moduli

ng=2 n=3, no=4, ng==6, ng =12

distinct. As Lzésl:l 1/ns] = 0, by Theorem 1.1 in the case a = 0 we
have > ;1/ng, = 1/ng = 1/2 for some I C [1,4]; we can actually take
I={1,3}. Since 3.2, 1/n, < (5/6 + 1)/no = 11/12, by Theorem 1.1 in
the case a = 5/6 the set T = {I C [1,4] : > .;1/n, = 5/12} cannot have
a single element; in fact, 7 = {{1,4},{2,3}} and

(—1) 1AM 2mi(0/mi+T/na) (1 )H23H 2mi(1/na+5/ns) — _owi/6 4 omi/o _ g

Corollary 1.1. If A = {as(ns)}*_, is a finite system of residue classes
with wa(z) >m = LZ’;:l 1/ns| for all x € Z, then

(1.6) Hzg [1,4] : Zi - nio}‘ > (LG;ZOJ) for all a € N.

n
sel %

In particular, if (1.1) has covering multiplicity m(A) = LZ§:1 1/ns]|, then

(1.7) HI C [L,K]: Zni - n}’ > (m;A)) for each n € N.

sel

Proof. Observe that the left hand side of (1.4) is nonzero in the case
a=a=0. So (1.6) follows from Theorem 1.1 immediately. In the case
nog = 1 this yields the latter result in Corollary 1.1. [

Remark 1.1. Let (1.1) be an exact m-cover of Z. Then 21521 1/ng =m

and [Zse[l7k]\{t} 1/ng] = m—1for any t = 1,... ,k. So Corollary 1.1
implies the following result in [S97]: For any ¢ € [1, k] and a € N, we have

e )

sel

Asm(A) = 2521 1/ns, we also have |[{I C [L,k]: > ., 1/ns=n}| = (7)
for all n = 0,1,...,m, which was first established in [S92] by means of
the Riemann zeta function.

Corollary 1.2. Let (1.1) be an m-system with m = [Zle 1/ns|, where
[a] denotes the least integer not smaller than a real number o. Then

(1.8) H<m1,... Jmy) € ZF © my € [1,ny), Xk:ms :n}‘ > <k:—m>

Ng n—m
s=1
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for everyn=m,... k.

Proof. Let n € [m, k]. Clearly the left hand side of (1.8) coincides with

k k
L:z'{(ml,...,xk>: zs € [0,ns — 1], Z%:Z%—n:k’—n}‘.

Since ZI;ZI 1/ng >m — 1, wa(x) = m for some x € Z. As the dual A* of
(1.1) has covering multiplicity m(A*) = k — m, applying Corollary 1.1 to
A* we find that L > (kk__:?) = (Z:%) This concludes the proof. [

Remark 1.2. When (1.1) is an exact m-cover of Z, it was proved in [S97]
(by a different approach) that for each n € N the equation Z’;Zl Ts/ns =mn

with zs € [0,n,) has at least (k;m) solutions.

Corollary 1.3. Let A = {as(ns)}r_, be a finite system of residue classes
with m(A) > m = LZ§:1 ms/ns|, where my, ... ,my € Z*. Suppose that
J C Lkl and Y cpms/ng = Y o mg/ns for no I C [1,k] with I # J.

Then
(1.9) {nOZZ}Jr{nOZ’Z} <1,

seJ seJ

where J = [1,k]\ J. Also,

V

(1.10) st >m or st m
sed s seJ M

Proof. Let v =3 . ;mg/n,, a = {ngv} and b = |[ngv]. Then (a+b)/ng =
v and

Z (_1)|I|€2wizsel asms/ns _ (_1)|J|627ri256, asms/mnsg 7& 0.
ICI[1,k]

Yser Ms/Ns=v

By Theorem 1.1, (1.5) holds for any a € N. Applying (1.5) with a = mno+
no—1 we find that > __; ms/n, = (a+mng+ne—1)/ng for some I C [1, k],

therefore 25:1 ms/ns = m+ (a+ng—1)/ng. As LZ§:1 ms/ns| = m, we
must have

b m a+n 1 b m
0— .
{E —8}2—, 1.e.,n0—1+a<no{E —8}<n0.
s=1 s o s=1 S

Therefore o < {no{zlzzl ms/ns}}t = {no lezl ms/ns}, which is equiva-
lent to (1.9).
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(1.5) in the case a = b gives that (Lb/n:LoJ) < 1, thus |v] € {0,m}. As
no{v} —a = [nofv}] <no—1, {0} < (atno —1)/ng < {1y ma/na}.
If |[v] =0, then m+v <m+ {Z’;Zl ms/nst = Z’;Zl ms/ns and hence
Y sejMs/ns = m. Therefore (1.10) is valid. We are done. [

Remark 1.3. Let (1.1) be an exact m-cover of Z. Theorem 4(ii) in [S95]
asserts that if ) # J C [1,k] then " _,1/ng, =3 ., 1/n, for some I C
[1,k] with I # J. This follows from Corollary 1.3, for, A = {as(ns)}*_,
(where ap = 0 and ng = 1) is an (m + 1)-cover of Z with > __; 71/ns =
Zle 1/ng =m.

In the 1960s Erd6s made the following conjecture: For any system (1.1)
with 1 <ni < --- < ng, if it is a cover of Z then Z’;zl 1/ngs > 1, in other
words it cannot be a disjoint cover of Z. This was later confirmed by H.
Davenport, L. Mirsky, D. Newman and R. Rad6 who proved that if (1.1)
is a disjoint cover of Z with 1 < n; < --- < ngp_1 < ng then ng_1 = ng.

Corollary 1.4. Let (1.1) be an m-cover of Z with
(1.11) Ny < SNy < N1 =+ =N (0<l<k’)

Then, for any r € [0,1] with r < ny/nk_;, either ZIS;I 1/ng > m or

<l) € D(ny) = { mep .z, € N for any prime divisor p ofnk}.
r

plng

Proof. Set A = {as(ns)}%_, where ap = 0 and ny = 1. Suppose that
S F "1 /ng < m. Then SF_ 1/ng < m+r/nx < m+1 < m(A). Since
{1 C [,k : Y,e;1/ns = m+7r/ni}t| =0 < (), by Theorem 1.1 we

must have
Z (_1)|I\627rizselas/ns —0.

IC[1,k]
Yoser L/ns=r/ng

Observe that r/ni < 1/ng—; = min{l/ng : 1 < s < k —[}. Therefore

1C(k—1,k]
ZSEI 1/7’L5:’f‘/’nk

where
Er: E : e27rizselas/nk‘

IC(k—1,k]
|I|=r
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By [S03, Lemma 3.1], ¥, = 0 implies that

(Z) (I C (k1K : [T = )] € D(ny).

r

This concludes the proof. [

Remark 1.4. Let (1.1) be an m-cover of Z with (1.11). By Corollary 1.4
in the case r = [, either [ > ny/ni_; > 1 or leti 1/ng > m; this is one of
the main results in [S96]. Corollary 1.4 in the case r = 1 yields that either
Zf;ll 1/ns = m or |l € D(ny); this implies the extended Newman-Zndm
result (cf. [N71]) which asserts that if (1.1) is an exact m-cover of Z (and

hence Z’;ll 1/ng < 215:1 1/ns = m) then [ is not smaller than the least
prime divisor of ny.

Let (1.1) is an m-system with (1.11), and let » € N and r < ng/ng_;.
With the help of the dual system of (1.1), we can also show that either
k
Yoe1 1/ng <m —r/ny or

l+r—1
( ) = |{<xk—l+1,-“ 7xk> € Nl : xk—l—l—l‘i‘“'—i—.’lfk :7‘}’ € D(nk)

r

If (1.1) is disjoint with 1 < ny < --- < ng, then ¢ 1/n, < 1
since (1.1) is not a disjoint cover of Z; Erdés [E62] showed further that

2521 1/ns <1—1/2% Now we give a generalization of this result.

Theorem 1.2. Let (1.1) be an m-system with k > m, Z]::l 1/ns #m
and ny < -+ < ng. Then we have

1 1
(1.12) Zn_ SM = g

s=1 %

and equality holds if and only if ng = 2max{s=m+1.0} for gll s =1,... k.

Remark 1.5. Let k > m > 1 be integers. Then m — 1 copies of 0(1),
together with the following £ — m 4+ 1 residue classes

1(2), 2(2%), ..., 2k—m(k—mtly)

form an m-system with the moduli 2@&{s—m+1L0} (g — 1 k).

We will prove Theorems 1.1 and 1.2 in the next section. Section 3 deals
with two characterizations of m-systems one of which is as follows.
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Theorem 1.3. (1.1) is an m-system if and only if for any n € [m, k) we
have

(_1)k ZfOé =0,

(1.13) S(n,a):{o iF0<a<1

where S(n, ) represents the sum

-1 ngzl ms/ns]| ( n >627ri21;=1 asms/ns'
2 3y m/n

mi,... ,mk€Z+

10y ?:1 ms/ns}=o

Theorem 1.3 in the case m = 1 yields the following result.

Corollary 1.5. If (1.1) is disjoint, then we have

(114) Z eZWiZ];:l asms/ns — (_1)]{)—1.

M,y ,mkGZ+
25:1 ms/ns=1

A residue class a(n) = a + nZ is a coset of nZ in the additive group Z
with [Z : nZ] = n. In [S06] the author conjectured that if {a,Gs}*_; (1 <
k < 00) is a disjoint system of left cosets in a group G with all the indices

= [G : G, finite, then ged(ng,ny) > k for some 1 < s <t < k.

2. PrROOFS OF THEOREMS 1.1 AND 1.2

Lemma 2.1. Let N € ZT be a common multiple of the moduli ny, ... ,ng
n (1.1). And let m,mq,... ,my € Z*. If (1.1) is an m-cover of Z, then
(1 — 2N)Y™ divides the polynomial H§:1(1 — ZNms/ns g2miasms /ns) - When

mi,...,mg are relatively prime to nq,... ,ny respectively, the converse
also holds.
Proof. For any r = 0,1,... ,N —1, clearly ¢2™"/N is a zero of the polyno-

mial H§:1(1 — gNms/ns g2miasms/ns ) with multiplicity M, = |{s € [1,k] :
ns | ms(r + as)}|. Observe that M, > wa(—r). If ms is relatively
prime to n, for each s € [1,k], then M, = wa(—r). As (1 —2VN)™ =
Hf,vz_ol(l — ze~2mr/Nym the desired result follows from the above.

Proof of Theorem 1.1. Set mg = 1, and let Ny be the least common
multiple of ng,nq,... ,ng. In light of Lemma 2.1, we can write P(z) =
[1E_, (1 —2Noms/ns g2miasms/ns) in the form (1—2N0)"+1Q(2) where Q(z) €
C[z]. Clearly

Ns no

k
deg Q = deg P — (m No—No(Z )<%
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Also,
H (1 o ZNoms/nseQﬂ'iasms/ns>
s=1
(2.1) - o
— (_1)n (7:;) ano Z zTNo/?’LQ e27ri7"a0/n0Q(z)
n=0 r=0
since .
1- ZNO — 02: Z?”No/nOGQTrirao/no
1 _ ZNo/n0€27Tia0/n0 — ‘
Let a € N and
Ca _ (_1)La/noj Z (_1)|I|627riZsel(as—ao)ms/ns'

IC[1,H]
ng[ ms/ns:(a+a)/n0

By comparing the coefficients of zNo(@+a@)/m0 on both sides of (2.1) we
obtain that

Z (_1)|I|e27rizsel asms/ng

ICI1,k]
Zsel ms/ns=(a+ta)/no

:(—1) la/no] (La;:LlOJ)QZW'L‘aO{a/nO} [ZaNO/nO]Q(z),

where [z*No/™0]Q(z) denotes the coefficient of z*No/™ in Q(z). Therefore

_ _—2miaag/no m aNg/no _ m
22 e (Lot 7106 = (1o, ) 0
For an algebraic integer w in the field K = Q(e27*/No), the norm N(w) =
[Ti<r<no, ged(r,Ng)=1 Or(w) (with respect to the field extension K/Q) is a
rational integer, where o, is the automorphism of K (in the Galois group
Gal(K/Q)) induced by o, (e?™/No) = ¢2mir/No_ (See, e.g., [K97, Chapter
1].) As N((=1)le/mlC,) equals

H Z (—1)Hl2mir 2 ser(as—ao)ms/ns

1<r<No IC[1,k]
ged(r,No)=1 Y _, m./n.=(a+a)/no

we have
Nl = ] ‘ 2 (—1)V 27 = e (ae—anyma /n,
1<r<No IC[1,k]
ged(r,No)=1 37 o ms/ns=(ata)/no
(No)
Mg a—+a s
< IC l,k‘ . = ,
‘{ _[ ] Z Ng no }

sel
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where ¢ is Euler’s totient function. Also,
m ¢(No)
vl = () NG

@I = (((ofney)) [a/no)

Suppose that C, # 0 for some b € N. Then N(C,) # 0 and hence
N(Cy) € Z is nonzero. For any a € N, we have

©(No) »(No)
m
> IN(Ca)l > (L J)

a/ng

fren -2

scl Ns no

and hence (1.5) holds. This concludes the proof. [

Proof of Theorem 1.2. We use induction on k.
In the case k = m, we have ng > 1 and hence

Zk: P I 1 1
— X — xM— o =M— 3 —7>
N ny 2 2k—m+1
s=1
alsozlgzll/ns:m—l/Zifandonlyifm:~~~:nk_1zlandnkzz

Now let & > m. Clearly le;ll 1/ns < Zle 1/ns < m. Assume that

N
—_

1 1

T ok—D—mt1 T ok—m

N

m

1
n
s=1 "%

and that equality holds if and only if n, = 2max{s=m+1.0} for ]l 5 €
[1,k — 1]. When ny > 2¥~™%1 we have

= 1 1 1
Zn__ n_+n_k< m_Qkfm +2kfm+1_m_m'

If Zi:l 1/ns > m—1/ny, then [lezl 1/ns| = m, thus 2521 ms/ng =

m for some my,... ,my € Z* (by Corollary 1.2) and hence
1 1 1
m—Z—}min{—:lgsgk}:—.
s—1 Ur Ur ng

This shows that we do have zl;:l 1/ng < m — 1/ng. Providing nj <
2k—m+1(1.12) holds, and also

k k—1

1 1 k—ma1 1 1
Zn—:m—W@”kZQ " a’ndzn_:m_Qk—m
s=1 "% s=1 7%

e ng=2mx{smmHL0t for g =1 .k —1,k.

This concludes the induction step and we are done. [
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3. CHARACTERIZATIONS OF m-SYSTEMS

Proof of Theorem 1.3. Like Lemma 2.1, (1.1) is an m-system if and only
if f(z) = (1—2N)m/TTEL, (1 — 2N/nee?mias/ns) s a polynomial, where N
is the least common multiple of nq,... ,ng.

Set ¢ =m — Zi:l 1/ns. If f(2) is a polynomial, then deg f = ¢N and
[ZCN]f(Z) — (_1)k—m€—27ri25:1 as/ns'

For |z| < 1 we have

m k oo
f(Z) — Z (7:;)(_1)71an H Z 627riaszzs/nSZNa:S/ns.
n=0

s=1xz,=0

Let a > 0. Then

[ HIN] f(2) = fj(—l)n (”:) 3 2mi S E auaa/n,

T1,...,cxEN
k
YoaqTs/ng=cta—n

:Zm:(_l)n (:) Z 627ri2’;=1 as(ms—1)/ns

M ,... ,mkEZ+
> §=1 ms/ns=at+m—n

:(_l)me—QﬂiZ';:l as/nss(m7 O./),

where S(n,a) (n € N) represents the sum

_1 Z?:l ms/nsfa n 27T’i2§:1 asms/ns
S ey (s o)

M1, ,mkEZ"'
> le ms/ns—a€N

which agrees with its definition in the case 0 < a < 1 given in Theorem
1.3.

(i) Suppose that (1.1) is an m-system. Then f(z) is a polynomial of
degree cN and hence

(-1)F ifa=0,

S(m, = (=1)™ 2mi 3 _ | as/ng [, (ct+a)N :{
(m,a) = (=1)"e [z 1f(2) . o

For any integer n > m, (1.1) is also an n-system and so we have (1.13).
(ii) Now assume that (1.13) holds for all n € [m, k). For any n > k we
also have (1.13) by (i) because (1.1) is a k-system.
If 0 < @ < 1 then S(n,a) = 0 for any integer n > m. Fix a > 0. If
S(n,a) = 0 for all integers n > m, then for any integer n > m we have

S(n,a+1)=8(n,a)—Sn+1,a)=0
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because (jfl) = (”jl) —(?) for j =1,2,.... Thus, by induction, S(n, «a) =
0 for all @ > 0 and n = m,m + 1,.... It follows that [2(ct®IN]f(2) =0
for any o > 0. So f(z) is a polynomial and (1.1) is an m-system.

The proof of Theorem 1.3 is now complete. [J

The following characterization of m-covers plays important roles in [S95,

596).

Lemma 3.1 (Sun [S95]). Let m,mq,... ,my € Z*. If (1.1) forms an
m-cover of 7, then

3.1 -1 |1] LZSEI ms/nsJ 2T sep asMs/Ns 0
& IC%:k] o ( " ) )
(e me/ne}=0

for all0 <0 <1 andn=20,1,... ,m —1. We also have the converse if
mi,...,mg are relatively prime to nq,... ,ng respectively.

We can provide a new proof of Lemma 3.1 in a way similar to the proof
of Theorem 1.3.

Lemma 3.2. Letn € Z" andl € [0,n —1]. Then

(3.2) > emiaes it = (<1,
JC[1,n)
|J|=l

Proof. Clearly we have the identity

g 1— o
H (1_2627TZ‘7/”): “ :1+Z+"'+Zn_1,

. 11—z
0<j<n

Comparing the coefficients of 2! we then obtain (3.2). O
Using Lemmas 3.1 and 3.2 we can deduce another characterization of
m-systems.

Theorem 3.1. (1.1) is an m-system if and only if we have

n

k
(33) Z (Lzszl xs/nSJ> 62#125:1 asTs/ns _ 0
zs€[0,ns) for se[l,k]
{Z§=1 zs/ns}=0

for all0 <0 <1 andn € [0,k —m).

Proof. The case k < m is trivial, so we just let £ > m. Recall that (1.1)
is an m-system if and only if its dual A* is a (kK — m)-cover of Z.



12 ZHI-WEI SUN

By Lemma 3.1 in the case my = -+- = my, = 1, A* forms an (k — m)-
cover of Z if and only if for any 0 < # < 1 and n € [0,k —m) the sum

k k
Z (—1) ?:1 Ts (Lzszlnxs/nsJ)QQﬂizl;:l asxTs/ng H fs($s)
s=1

xs€[0,ns) for s€[l,k]
{25:1 Ts/ns =0

vanishes, where
fs(xs) = Z 627ri2j€Jj/nS = (—1)365

JC[1,ns)
|J|=zs

by Lemma 3.2. This concludes the proof. [
The following consequence extends Corollary 1.5.

Corollary 3.1. Let (1.1) be an m-system. Then we have

k
> (P ann amn - e

k
ms€[l,ns] for s€[l,k] m= 25:1 ms/ns

m—3 ?:1 ms/nsEN

Proof. If k < m, then the left hand side of the last equality coincides with

k—1-F ng/ng\ -
( Zs_ln /n >62WZZ§:1 asns/ns _ ( 1 > = (_1)m—k

m—zljzlns/ns m—k

Now let k > m. As {—as(ns)}*_; is an m-system, by Theorem 4.1 and
the identity

() = ()

n=0
(cf. [GKP, (5.16)]) we have
k
0= Z (Lzs:1 $s/nsJ - 1> e2ﬂi2’;:1(—as)xs/ns

k—m—1
zs€[0,ns) for s€[1,k]

{30y za/na}=0
k
— Z (Zs—l(ns - ms)/ns - 1) 8—2771'2’;:1 as(ns—ms)/nsg

k—m—1
mgs€[l,ns] for s€[l,k]

Z l§=1 (ns—ms)/ns eN

k
_ Z (]{7 —1- 28:1 ms/nS) e27ri2§:1 asms/ns

k—1—m
ms€[l,ns] for s€[l,k]

Z§=1 ms/ns€[0,k—1]
k
+ k—1- Zs:l nS/TI’S eZwiZfil asns/ns-
k—1—m
So the desired equality follows. [J
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