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ON m-COVERS AND m-SYSTEMS

Zhi-Wei Sun

Abstract. Let A = {as(mod ns)}k
s=0 be a system of residue classes.

With the help of cyclotomic fields we obtain a theorem which unifies several
previously known results related to the covering multiplicity of A. In par-

ticular, we show that if every integer lies in more than m0 = b
∑k

s=1 1/nsc
members of A, then for any a = 0, 1, 2, . . . there are at least

( m0
ba/n0c

)
sub-

sets I of {1, . . . , k} with
∑

s∈I 1/ns = a/n0. We also characterize when
any integer lies in at most m members of A, where m is a fixed positive

integer.

1. The main results

For a ∈ Z and n ∈ Z+ = {1, 2, 3, . . . }, we simply denote the residue
class {x ∈ Z : x ≡ a (mod n)} by a(n). For a finite system

(1.1) A = {as(ns)}k
s=1

of residue classes, the function wA : Z → N = {0, 1, 2, . . . } given by

(1.2) wA(x) = |{1 6 s 6 k : x ∈ as(ns)}|

is called the covering function of A. Obviously wA(x) is periodic modulo
the least common multiple N of the moduli n1, . . . , nk, and it is easy to
see that the average

∑N−1
x=0 wA(x)/N equals

∑k
s=1 1/ns. As in [S97] we

call m(A) = minx∈Z wA(x) the covering multiplicity of system (1.1).
Let m be any positive integer. If wA(x) > m for all x ∈ Z (i.e., m(A) >

m), then (1.1) is said to be an m-cover of Z as in [S95, S96], and in this
case

∑k
s=1 1/ns > m. Covers (i.e. 1-covers) of Z were first introduced by

P. Erdős [E50] and they are also called covering systems. If wA(x) = m
for all x ∈ Z, then we call (1.1) an exact m-cover of Z as in [S96, S97]
(and in this case

∑k
s=1 1/ns = m). By [PZ, Theorem 1.3], when m > 2

there are exact m-covers of Z that cannot split into two covers of Z. If
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wA(x) 6 m for all x ∈ Z, then we call (1.1) an m-system, and in this case∑k
s=1 1/ns 6 m; any 1-system is said to be disjoint.
The reader may consult Guy [G04, pp. 383-390] and Simpson [Sim] for

some problems and results in covering theory. Covers of Z have many
surprising applications, see, e.g., [C71], [G04, sections A19 and B21], [S00],
[SY] and [WS]. Sun [S09] showed that m-covers of Z are related to zero-
sum problems for abelian groups. Also, the topic of covering systems
stimulated the birth of some new algebraic results (cf. [S01] and [S05]).

Throughout this paper, for a, b ∈ Z we set [a, b] = {x ∈ Z : a 6 x 6 b}
and define [a, b) and (a, b] similarly. As usual, the integral part and the
fractional part of a real number α are denoted by bαc and {α} respectively.

For system (1.1) we define its dual system A∗ by

(1.3) A∗ = {as + r(ns) : 1 6 r < ns, 1 6 s 6 k}.

As {as + r(ns)}ns−1
r=0 is a partition of Z for any s ∈ [1, k], we have wA(x)+

wA∗(x) = k for all x ∈ Z. Thus wA(x) 6 m for all x ∈ Z if and only if
wA∗(x) > k − m for all x ∈ Z. This simple and new observation shows
that we can study m-systems via covers of Z, and construct covers of Z
via m-systems.

By a result in [S96], if (1.1) is an m-cover of Z then for any m1, . . . , mk ∈
Z+ there are at least m positive integers in the form

∑
s∈I ms/ns with

I ⊆ [1, k]. Applying this result to the dual A∗ of an m-system (1.1), we
obtain that there are more than k − m integers in the form

∑k
s=1 xs/ns

with xs ∈ [0, ns); equivalently, at most m − 1 of the numbers in [1, k]
cannot be written in the form

∑k
s=1 ms/ns = k−

∑k
s=1(ns−ms)/ns with

ms ∈ [1, ns]. This implies the following result stated in [S03, Remark
1.3]: If (1.1) is an m-system, then there are m1, . . . , mk ∈ Z+ such that∑k

s=1 ms/ns = m.
Our following theorem unifies and generalizes several known results.

Theorem 1.1. Let A = {as(ns)}k
s=0 be a finite system of residue classes

with m(A) > m = b
∑k

s=1 ms/nsc, where m1, . . . , mk ∈ Z+. Then, for
any 0 6 α < 1, either

(1.4)
∑

I⊆[1,k]∑
s∈I ms/ns=(α+a)/n0

(−1)|I|e2πi
∑

s∈I asms/ns = 0

for any a ∈ N, or

(1.5)
∣∣∣∣{I ⊆ [1, k] :

∑
s∈I

ms

ns
=

α + a

n0

}∣∣∣∣ >

(
m

ba/n0c

)
for all a = 0, 1, 2, . . . .
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Example 1.1. Erdős observed that {0(2), 0(3), 1(4), 5(6), 7(12)} is a cover
of Z with the moduli

n0 = 2, n1 = 3, n2 = 4, n3 = 6, n4 = 12

distinct. As b
∑4

s=1 1/nsc = 0, by Theorem 1.1 in the case α = 0 we
have

∑
s∈I 1/ns = 1/n0 = 1/2 for some I ⊆ [1, 4]; we can actually take

I = {1, 3}. Since
∑4

s=1 1/ns < (5/6 + 1)/n0 = 11/12, by Theorem 1.1 in
the case α = 5/6 the set I = {I ⊆ [1, 4] :

∑
s∈I 1/ns = 5/12} cannot have

a single element; in fact, I = {{1, 4}, {2, 3}} and

(−1)|{1,4}|e2πi(0/n1+7/n4) +(−1)|{2,3}|e2πi(1/n2+5/n3) = −eπi/6 + eπi/6 = 0.

Corollary 1.1. If A = {as(ns)}k
s=0 is a finite system of residue classes

with wA(x) > m = b
∑k

s=1 1/nsc for all x ∈ Z, then

(1.6)
∣∣∣∣{I ⊆ [1, k] :

∑
s∈I

1
ns

=
a

n0

}∣∣∣∣ >

(
m

ba/n0c

)
for all a ∈ N.

In particular, if (1.1) has covering multiplicity m(A) = b
∑k

s=1 1/nsc, then

(1.7)
∣∣∣∣{I ⊆ [1, k] :

∑
s∈I

1
ns

= n

}∣∣∣∣ >

(
m(A)

n

)
for each n ∈ N.

Proof. Observe that the left hand side of (1.4) is nonzero in the case
α = a = 0. So (1.6) follows from Theorem 1.1 immediately. In the case
n0 = 1 this yields the latter result in Corollary 1.1. �

Remark 1.1. Let (1.1) be an exact m-cover of Z. Then
∑k

s=1 1/ns = m
and b

∑
s∈[1,k]\{t} 1/nsc = m − 1 for any t = 1, . . . , k. So Corollary 1.1

implies the following result in [S97]: For any t ∈ [1, k] and a ∈ N, we have∣∣∣∣{I ⊆ [1, k] \ {t} :
∑
s∈I

1
ns

=
a

nt

}∣∣∣∣ >

(
m− 1
ba/ntc

)
.

As m(A) =
∑k

s=1 1/ns, we also have |{I ⊆ [1, k] :
∑

s∈I 1/ns = n}| >
(
m
n

)
for all n = 0, 1, . . . , m, which was first established in [S92] by means of
the Riemann zeta function.

Corollary 1.2. Let (1.1) be an m-system with m = d
∑k

s=1 1/nse, where
dαe denotes the least integer not smaller than a real number α. Then

(1.8)
∣∣∣∣{〈m1, . . . , mk〉 ∈ Zk : ms ∈ [1, ns],

k∑
s=1

ms

ns
= n

}∣∣∣∣ >

(
k −m

n−m

)
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for every n = m, . . . , k.

Proof. Let n ∈ [m, k]. Clearly the left hand side of (1.8) coincides with

L :=
∣∣∣∣{〈x1, . . . , xk〉 : xs ∈ [0, ns − 1],

k∑
s=1

xs

ns
=

k∑
s=1

ns

ns
− n = k − n

}∣∣∣∣.
Since

∑k
s=1 1/ns > m− 1, wA(x) = m for some x ∈ Z. As the dual A∗ of

(1.1) has covering multiplicity m(A∗) = k −m, applying Corollary 1.1 to
A∗ we find that L >

(
k−m
k−n

)
=

(
k−m
n−m

)
. This concludes the proof. �

Remark 1.2. When (1.1) is an exact m-cover of Z, it was proved in [S97]
(by a different approach) that for each n ∈ N the equation

∑k
s=1 xs/ns = n

with xs ∈ [0, ns) has at least
(
k−m

n

)
solutions.

Corollary 1.3. Let A = {as(ns)}k
s=0 be a finite system of residue classes

with m(A) > m = b
∑k

s=1 ms/nsc, where m1, . . . , mk ∈ Z+. Suppose that
J ⊆ [1, k] and

∑
s∈I ms/ns =

∑
s∈J ms/ns for no I ⊆ [1, k] with I 6= J .

Then

(1.9)
{

n0

∑
s∈J

ms

ns

}
+

{
n0

∑
s∈J̄

ms

ns

}
< 1,

where J̄ = [1, k] \ J . Also,

(1.10)
∑
s∈J

ms

ns
> m or

∑
s∈J̄

ms

ns
> m

Proof. Let v =
∑

s∈J ms/ns, α = {n0v} and b = bn0vc. Then (α+b)/n0 =
v and ∑

I⊆[1,k]∑
s∈I ms/ns=v

(−1)|I|e2πi
∑

s∈I asms/ns = (−1)|J|e2πi
∑

s∈J asms/ns 6= 0.

By Theorem 1.1, (1.5) holds for any a ∈ N. Applying (1.5) with a = mn0+
n0−1 we find that

∑
s∈I ms/ns = (α+mn0+n0−1)/n0 for some I ⊆ [1, k],

therefore
∑k

s=1 ms/ns > m+(α+n0− 1)/n0. As b
∑k

s=1 ms/nsc = m, we
must have{ k∑

s=1

ms

ns

}
>

α + n0 − 1
n0

, i.e., n0 − 1 + α 6 n0

{ k∑
s=1

ms

ns

}
< n0.

Therefore α 6 {n0{
∑k

s=1 ms/ns}} = {n0

∑k
s=1 ms/ns}, which is equiva-

lent to (1.9).
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(1.5) in the case a = b gives that
(

m
bb/n0c

)
6 1, thus bvc ∈ {0,m}. As

n0{v} − α = bn0{v}c 6 n0 − 1, {v} 6 (α + n0 − 1)/n0 6 {
∑k

s=1 ms/ns}.
If bvc = 0, then m + v 6 m + {

∑k
s=1 ms/ns} =

∑k
s=1 ms/ns and hence∑

s∈J̄ ms/ns > m. Therefore (1.10) is valid. We are done. �

Remark 1.3. Let (1.1) be an exact m-cover of Z. Theorem 4(ii) in [S95]
asserts that if ∅ 6= J ⊂ [1, k] then

∑
s∈I 1/ns =

∑
s∈J 1/ns for some I ⊆

[1, k] with I 6= J . This follows from Corollary 1.3, for, A = {as(ns)}k
s=0

(where a0 = 0 and n0 = 1) is an (m + 1)-cover of Z with
∑

s∈J∪J̄ 1/ns =∑k
s=1 1/ns = m.

In the 1960s Erdős made the following conjecture: For any system (1.1)
with 1 < n1 < · · · < nk, if it is a cover of Z then

∑k
s=1 1/ns > 1, in other

words it cannot be a disjoint cover of Z. This was later confirmed by H.
Davenport, L. Mirsky, D. Newman and R. Radó who proved that if (1.1)
is a disjoint cover of Z with 1 < n1 6 · · · 6 nk−1 6 nk then nk−1 = nk.

Corollary 1.4. Let (1.1) be an m-cover of Z with

(1.11) n1 6 · · · 6 nk−l < nk−l+1 = · · · = nk (0 < l < k).

Then, for any r ∈ [0, l] with r < nk/nk−l, either
∑k−r

s=1 1/ns > m or(
l

r

)
∈ D(nk) =

{ ∑
p|nk

pxp : xp ∈ N for any prime divisor p of nk

}
.

Proof. Set A = {as(ns)}k
s=0 where a0 = 0 and n0 = 1. Suppose that∑k−r

s=1 1/ns < m. Then
∑k

s=1 1/ns < m + r/nk < m + 1 6 m(A). Since
|{I ⊆ [1, k] :

∑
s∈I 1/ns = m + r/nk}| = 0 <

(
m
m

)
, by Theorem 1.1 we

must have ∑
I⊆[1,k]∑

s∈I 1/ns=r/nk

(−1)|I|e2πi
∑

s∈I as/ns = 0.

Observe that r/nk < 1/nk−l = min{1/ns : 1 6 s 6 k − l}. Therefore

0 =
∑

I⊆(k−l,k]∑
s∈I 1/ns=r/nk

(−1)|I|e2πi
∑

s∈I as/ns = (−1)rΣr,

where
Σr =

∑
I⊆(k−l,k]
|I|=r

e2πi
∑

s∈I as/nk .
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By [S03, Lemma 3.1], Σr = 0 implies that(
l

r

)
= |{I ⊆ (k − l, k] : |I| = r}| ∈ D(nk).

This concludes the proof. �

Remark 1.4. Let (1.1) be an m-cover of Z with (1.11). By Corollary 1.4
in the case r = l, either l > nk/nk−l > 1 or

∑k−l
s=1 1/ns > m; this is one of

the main results in [S96]. Corollary 1.4 in the case r = 1 yields that either∑k−1
s=1 1/ns > m or l ∈ D(nk); this implies the extended Newman-Znám

result (cf. [N71]) which asserts that if (1.1) is an exact m-cover of Z (and
hence

∑k−1
s=1 1/ns <

∑k
s=1 1/ns = m) then l is not smaller than the least

prime divisor of nk.

Let (1.1) is an m-system with (1.11), and let r ∈ N and r < nk/nk−l.
With the help of the dual system of (1.1), we can also show that either∑k

s=1 1/ns 6 m− r/nk or(
l + r − 1

r

)
= |{〈xk−l+1, . . . , xk〉 ∈ Nl : xk−l+1 + · · ·+xk = r}| ∈ D(nk).

If (1.1) is disjoint with 1 < n1 < · · · < nk, then
∑k

s=1 1/ns < 1
since (1.1) is not a disjoint cover of Z; Erdős [E62] showed further that∑k

s=1 1/ns 6 1− 1/2k. Now we give a generalization of this result.

Theorem 1.2. Let (1.1) be an m-system with k > m,
∑k

s=1 1/ns 6= m
and n1 6 · · · 6 nk. Then we have

(1.12)
k∑

s=1

1
ns

6 m− 1
2k−m+1

,

and equality holds if and only if ns = 2max{s−m+1,0} for all s = 1, . . . , k.

Remark 1.5. Let k > m > 1 be integers. Then m − 1 copies of 0(1),
together with the following k −m + 1 residue classes

1(2), 2(22), . . . , 2k−m(2k−m+1),

form an m-system with the moduli 2max{s−m+1,0} (s = 1, . . . , k).

We will prove Theorems 1.1 and 1.2 in the next section. Section 3 deals
with two characterizations of m-systems one of which is as follows.
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Theorem 1.3. (1.1) is an m-system if and only if for any n ∈ [m, k) we
have

(1.13) S(n, α) =
{

(−1)k if α = 0,

0 if 0 < α < 1,

where S(n, α) represents the sum∑
m1,... ,mk∈Z+

{
∑k

s=1 ms/ns}=α

(−1)b
∑k

s=1 ms/nsc
(

n

b
∑k

s=1 ms/nsc

)
e2πi

∑k
s=1 asms/ns .

Theorem 1.3 in the case m = 1 yields the following result.

Corollary 1.5. If (1.1) is disjoint, then we have

(1.14)
∑

m1,... ,mk∈Z+∑k
s=1 ms/ns=1

e2πi
∑k

s=1 asms/ns = (−1)k−1.

A residue class a(n) = a + nZ is a coset of nZ in the additive group Z
with [Z : nZ] = n. In [S06] the author conjectured that if {asGs}k

s=1 (1 <
k < ∞) is a disjoint system of left cosets in a group G with all the indices
ns = [G : Gs] finite, then gcd(ns, nt) > k for some 1 6 s < t 6 k.

2. Proofs of Theorems 1.1 and 1.2

Lemma 2.1. Let N ∈ Z+ be a common multiple of the moduli n1, . . . , nk

in (1.1). And let m,m1, . . . , mk ∈ Z+. If (1.1) is an m-cover of Z, then
(1 − zN )m divides the polynomial

∏k
s=1(1 − zNms/nse2πiasms/ns). When

m1, . . . , mk are relatively prime to n1, . . . , nk respectively, the converse
also holds.

Proof. For any r = 0, 1, . . . , N − 1, clearly e2πir/N is a zero of the polyno-
mial

∏k
s=1(1 − zNms/nse2πiasms/ns) with multiplicity Mr = |{s ∈ [1, k] :

ns | ms(r + as)}|. Observe that Mr > wA(−r). If ms is relatively
prime to ns for each s ∈ [1, k], then Mr = wA(−r). As (1 − zN )m =∏N−1

r=0 (1− ze−2πir/N )m, the desired result follows from the above.

Proof of Theorem 1.1. Set m0 = 1, and let N0 be the least common
multiple of n0, n1, . . . , nk. In light of Lemma 2.1, we can write P (z) =∏k

s=0(1−zN0ms/nse2πiasms/ns) in the form (1−zN0)m+1Q(z) where Q(z) ∈
C[z]. Clearly

deg Q = deg P − (m + 1)N0 = N0

( k∑
s=0

ms

ns
−m− 1

)
<

N0

n0
.
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Also,

(2.1)

k∏
s=1

(
1− zN0ms/nse2πiasms/ns

)
=

m∑
n=0

(−1)n

(
m

n

)
znN0

n0−1∑
r=0

zrN0/n0e2πira0/n0Q(z)

since
1− zN0

1− zN0/n0e2πia0/n0
=

n0−1∑
r=0

zrN0/n0e2πira0/n0 .

Let a ∈ N and

Ca = (−1)ba/n0c
∑

I⊆[1,k]∑
s∈I ms/ns=(α+a)/n0

(−1)|I|e2πi
∑

s∈I(as−a0)ms/ns .

By comparing the coefficients of zN0(α+a)/n0 on both sides of (2.1) we
obtain that ∑

I⊆[1,k]∑
s∈I ms/ns=(α+a)/n0

(−1)|I|e2πi
∑

s∈I asms/ns

=(−1)ba/n0c
(

m

ba/n0c

)
e2πia0{a/n0}[zαN0/n0 ]Q(z),

where [zαN0/n0 ]Q(z) denotes the coefficient of zαN0/n0 in Q(z). Therefore

(2.2) Ca = e−2πiαa0/n0

(
m

ba/n0c

)
[zαN0/n0 ]Q(z) =

(
m

ba/n0c

)
C0.

For an algebraic integer ω in the field K = Q(e2πi/N0), the norm N(ω) =∏
16r6N0, gcd(r,N0)=1 σr(ω) (with respect to the field extension K/Q) is a

rational integer, where σr is the automorphism of K (in the Galois group
Gal(K/Q)) induced by σr(e2πi/N0) = e2πir/N0 . (See, e.g., [K97, Chapter
1].) As N((−1)ba/n0cCa) equals∏

16r6N0
gcd(r,N0)=1

∑
I⊆[1,k]∑

s∈I ms/ns=(α+a)/n0

(−1)|I|e2πir
∑

s∈I(as−a0)ms/ns ,

we have

|N(Ca)| =
∏

16r6N0
gcd(r,N0)=1

∣∣∣∣ ∑
I⊆[1,k]∑

s∈I ms/ns=(α+a)/n0

(−1)|I|e2πir
∑

s∈I(as−a0)ms/ns

∣∣∣∣
6

∣∣∣∣{I ⊆ [1, k] :
∑
s∈I

ms

ns
=

α + a

n0

}∣∣∣∣ϕ(N0)

,
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where ϕ is Euler’s totient function. Also,

|N(Ca)| =
∣∣∣∣N ((

m

ba/n0c

)) ∣∣∣∣× |N(C0)| =
(

m

ba/n0c

)ϕ(N0)

|N(C0)|.

Suppose that Cb 6= 0 for some b ∈ N. Then N(Cb) 6= 0 and hence
N(C0) ∈ Z is nonzero. For any a ∈ N, we have∣∣∣∣{I ⊆ [1, k] :

∑
s∈I

ms

ns
=

α + a

n0

}∣∣∣∣ϕ(N0)

> |N(Ca)| >
(

m

ba/n0c

)ϕ(N0)

and hence (1.5) holds. This concludes the proof. �

Proof of Theorem 1.2. We use induction on k.
In the case k = m, we have nk > 1 and hence

k∑
s=1

1
ns

6 k − 1 +
1
nk

6 m− 1
2

= m− 1
2k−m+1

,

also
∑k

s=1 1/ns = m− 1/2 if and only if n1 = · · · = nk−1 = 1 and nk = 2.
Now let k > m. Clearly

∑k−1
s=1 1/ns <

∑k
s=1 1/ns < m. Assume that

k−1∑
s=1

1
ns

6 m− 1
2(k−1)−m+1

= m− 1
2k−m

and that equality holds if and only if ns = 2max{s−m+1,0} for all s ∈
[1, k − 1]. When nk > 2k−m+1, we have

k∑
s=1

1
ns

=
k−1∑
s=1

1
ns

+
1
nk

<

(
m− 1

2k−m

)
+

1
2k−m+1

= m− 1
2k−m+1

.

If
∑k

s=1 1/ns > m−1/nk, then d
∑k

s=1 1/nse = m, thus
∑k

s=1 ms/ns =
m for some m1, . . . , mk ∈ Z+ (by Corollary 1.2) and hence

m−
k∑

s=1

1
ns

> min
{

1
ns

: 1 6 s 6 k

}
=

1
nk

.

This shows that we do have
∑k

s=1 1/ns 6 m − 1/nk. Providing nk 6
2k−m+1, (1.12) holds, and also

k∑
s=1

1
ns

= m− 1
2k−m+1

⇐⇒ nk = 2k−m+1 and
k−1∑
s=1

1
ns

= m− 1
2k−m

⇐⇒ ns = 2max{s−m+1,0} for s = 1, . . . , k − 1, k.

This concludes the induction step and we are done. �
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3. Characterizations of m-systems

Proof of Theorem 1.3. Like Lemma 2.1, (1.1) is an m-system if and only
if f(z) = (1− zN )m/

∏k
s=1(1− zN/nse2πias/ns) is a polynomial, where N

is the least common multiple of n1, . . . , nk.
Set c = m−

∑k
s=1 1/ns. If f(z) is a polynomial, then deg f = cN and

[zcN ]f(z) = (−1)k−me−2πi
∑k

s=1 as/ns .
For |z| < 1 we have

f(z) =
m∑

n=0

(
m

n

)
(−1)nznN

k∏
s=1

∞∑
xs=0

e2πiasxs/nszNxs/ns .

Let α > 0. Then

[z(c+α)N ]f(z) =
m∑

n=0

(−1)n

(
m

n

) ∑
x1,... ,xk∈N∑k

s=1 xs/ns=c+α−n

e2πi
∑k

s=1 asxs/ns

=
m∑

n=0

(−1)n

(
m

n

) ∑
m1,... ,mk∈Z+∑k

s=1 ms/ns=α+m−n

e2πi
∑k

s=1 as(ms−1)/ns

=(−1)me−2πi
∑k

s=1 as/nsS(m,α),

where S(n, α) (n ∈ N) represents the sum∑
m1,... ,mk∈Z+∑k
s=1 ms/ns−α∈N

(−1)
∑k

s=1 ms/ns−α

(
n∑k

s=1 ms/ns − α

)
e2πi

∑k
s=1 asms/ns

which agrees with its definition in the case 0 6 α < 1 given in Theorem
1.3.

(i) Suppose that (1.1) is an m-system. Then f(z) is a polynomial of
degree cN and hence

S(m,α) = (−1)me2πi
∑k

s=1 as/ns [z(c+α)N ]f(z) =
{

(−1)k if α = 0,

0 if α > 0.

For any integer n > m, (1.1) is also an n-system and so we have (1.13).
(ii) Now assume that (1.13) holds for all n ∈ [m, k). For any n > k we

also have (1.13) by (i) because (1.1) is a k-system.
If 0 < α < 1 then S(n, α) = 0 for any integer n > m. Fix α > 0. If

S(n, α) = 0 for all integers n > m, then for any integer n > m we have

S(n, α + 1) = S(n, α)− S(n + 1, α) = 0
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because
(

n
j−1

)
=

(
n+1

j

)
−

(
n
j

)
for j = 1, 2, . . . . Thus, by induction, S(n, α) =

0 for all α > 0 and n = m,m + 1, . . . . It follows that [z(c+α)N ]f(z) = 0
for any α > 0. So f(z) is a polynomial and (1.1) is an m-system.

The proof of Theorem 1.3 is now complete. �
The following characterization of m-covers plays important roles in [S95,

S96].

Lemma 3.1 (Sun [S95]). Let m,m1, . . . , mk ∈ Z+. If (1.1) forms an
m-cover of Z, then

(3.1)
∑

I⊆[1,k]
{
∑

s∈I ms/ns}=θ

(−1)|I|
(
b
∑

s∈I ms/nsc
n

)
e2πi

∑
s∈I asms/ns = 0

for all 0 6 θ < 1 and n = 0, 1, . . . , m − 1. We also have the converse if
m1, . . . , mk are relatively prime to n1, . . . , nk respectively.

We can provide a new proof of Lemma 3.1 in a way similar to the proof
of Theorem 1.3.

Lemma 3.2. Let n ∈ Z+ and l ∈ [0, n− 1]. Then

(3.2)
∑

J⊆[1,n)
|J|=l

e2πi
∑

j∈J j/n = (−1)l.

Proof. Clearly we have the identity

∏
0<j<n

(
1− ze2πij/n

)
=

1− zn

1− z
= 1 + z + · · ·+ zn−1.

Comparing the coefficients of zl we then obtain (3.2). �
Using Lemmas 3.1 and 3.2 we can deduce another characterization of

m-systems.

Theorem 3.1. (1.1) is an m-system if and only if we have

(3.3)
∑

xs∈[0,ns) for s∈[1,k]

{
∑k

s=1 xs/ns}=θ

(
b
∑k

s=1 xs/nsc
n

)
e2πi

∑k
s=1 asxs/ns = 0

for all 0 6 θ < 1 and n ∈ [0, k −m).

Proof. The case k 6 m is trivial, so we just let k > m. Recall that (1.1)
is an m-system if and only if its dual A∗ is a (k −m)-cover of Z.
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By Lemma 3.1 in the case m1 = · · · = mk = 1, A∗ forms an (k − m)-
cover of Z if and only if for any 0 6 θ < 1 and n ∈ [0, k −m) the sum∑
xs∈[0,ns) for s∈[1,k]

{
∑k

s=1 xs/ns}=θ

(−1)
∑k

s=1 xs

(
b
∑k

s=1 xs/nsc
n

)
e2πi

∑k
s=1 asxs/ns

k∏
s=1

fs(xs)

vanishes, where

fs(xs) =
∑

J⊆[1,ns)
|J|=xs

e2πi
∑

j∈J j/ns = (−1)xs

by Lemma 3.2. This concludes the proof. �

The following consequence extends Corollary 1.5.

Corollary 3.1. Let (1.1) be an m-system. Then we have∑
ms∈[1,ns] for s∈[1,k]

m−
∑k

s=1 ms/ns∈N

(
k − 1−

∑k
s=1 ms/ns

m−
∑k

s=1 ms/ns

)
e2πi

∑k
s=1 asms/ns = (−1)k−m.

Proof. If k 6 m, then the left hand side of the last equality coincides with(
k − 1−

∑k
s=1 ns/ns

m−
∑k

s=1 ns/ns

)
e2πi

∑k
s=1 asns/ns =

(
−1

m− k

)
= (−1)m−k.

Now let k > m. As {−as(ns)}k
s=1 is an m-system, by Theorem 4.1 and

the identity

(−1)k−m−1

(
x− 1

k −m− 1

)
=

k−m−1∑
n=0

(−1)n

(
x

n

)
(cf. [GKP, (5.16)]) we have

0 =
∑

xs∈[0,ns) for s∈[1,k]

{
∑k

s=1 xs/ns}=0

(
b
∑k

s=1 xs/nsc − 1
k −m− 1

)
e2πi

∑k
s=1(−as)xs/ns

=
∑

ms∈[1,ns] for s∈[1,k]∑k
s=1(ns−ms)/ns∈N

(∑k
s=1(ns −ms)/ns − 1

k −m− 1

)
e−2πi

∑k
s=1 as(ns−ms)/ns

=
∑

ms∈[1,ns] for s∈[1,k]∑k
s=1 ms/ns∈[0,k−1]

(
k − 1−

∑k
s=1 ms/ns

k − 1−m

)
e2πi

∑k
s=1 asms/ns

+
(

k − 1−
∑k

s=1 ns/ns

k − 1−m

)
e2πi

∑k
s=1 asns/ns .

So the desired equality follows. �
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