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SYMMETRIC IDENTITIES FOR EULER POLYNOMIALS

YONG ZHANG, ZHI-WEI SUN AND HAO PAN

ABSTRACT. In this paper we establish two symmetric identities on sums of prod-
ucts of Euler polynomials.

1. INTRODUCTION

The Bernoulli numbers By, By, By, ... are rational numbers given by
" /n+1
By =1, and kzzo( N )Bk—o forn=1,2,3,....

The Euler numbers Ey, Ey, Es, ... are integers determined by

Ey=1, and Z (Z)Ek:() forn=1,2,3,....
k=0

2n—k

Let N = {0,1,2,...}. The Bernoulli polynomials B, (x) (n € N) and the Euler
polynomials E,(z) (n € N) are defined by

B,(z) = i (Z) By and B, (z) = i (Z) % (x - %)H.

k=0 k=0

It is well known that
A(B,(z)) = na" ' and A*(E,(z)) = 22"
for all n € N, where we set
A(P(z)) = P(x+1) — P(z) and A*(P(z)) = P(x + 1) + P(x)

for any polynomial P(z). Bernoulli and Euler numbers and polynomials play
important roles in many fields including number theory and combinatorics.

In 2006 Z. W. Sun and H. Pan [6] established the following theorem which unifies
many curious identities concerning Bernoulli and Euler numbers and polynomials.
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Theorem 1.1 (Sun and Pan, 2006). Let n be a positive integer and let x+y+2z = 1.
(i) If r,s,t are complex numbers with r + s+t = n, then we have the symmetric

relation
r{s t] +s[t r} +t{r s] —0
oyl y oz z x|

L] e () ) B

k=0

where

(i) Ifr+s+t=n—1, then

B e
(). s

"i 0 () (, ) rwEe.

=0

Recently, by a sophisticated application of the generating function method, A.
M. Fu, H. Pan and F. Zhang [2] extended Theorem 1.1(i) of Sun and Pan to an
identity on sums of products of m > 2 Bernoulli polynomials.

In this paper we obtain a general identity only involving Euler polynomials and
also give an extension of Theorem 1.1(ii) which involves both Bernoulli and Euler
polynomials.

Theorem 1.2. Let m and n be positive integers, and let ro,r1,...,7m be complex
numbers with ro +7r1 + - +7r, =n — 1.
(i) If m is odd, then we have the symmetric relation

= 1)

J

kl‘f‘?;‘km:n
==Y (-1n" > (k')Eki(l —z) [] (k{>Ekj(:pj — i+ 1;5:), (1.1)
i=1 ki, skm>0 v 1<j<m N7

where 1,5, takes 1 or 0 according as j > i or not.
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(ii) If m is even, then

m
DI
2 ,

ki, km>0  j=1
kl +"'+k'm:n_1

:i(_ni 3 (2)3,%(1—3;2-) 11 <;J:>Ekj(xj_xi+1j>i)' (1.2)

> 1<j<m N

Zj) By, ()

J

Remark 1.1. If r + s+t =mn— 1, then (1.2) in the case m = 2 gives

5 (D)ma-n(, )

S zn: <Z)Bk(1 —(1 —y))(nik)En—k(x— (1-y)+1)

which is equivalent to the identity of Sun and Pan in Theorem 1.1(ii) since Ej(1 —
z) = (—=1)"Ep(2).

Our proof of Theorem 1.2 given in the next section involves the difference op-
erator A and its companion operator A*. We can also show Theorem 1.2 via the
generating function approach.

Let k be any nonnegative integer. It is well known that By = 0 if k& is odd and
greater than one. By [1, pp. 804-808],

1 2

By <§> = (27 = 1By and Eife) = (Bk+1($) _oktlp, (g)) .

Thus

B
—1)*Ey(1) = E;(0) = 2(1 — 2kt 284
(1) B(1) = By(0) = 2(1 - 2++) 255
In view of these, Theorem 1.2 in the case z; = - -+ = x,,, = 1/2 yields the following

consequence involving Euler numbers and Bernoulli numbers.

Corollary 1.1. Let m and n be positive integers, and let ro,r1,...,7., be complex
numbers with ro +7r1 + -+ +7r, =n— 1.
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(i) If m is odd, then

_}m: ERRY 2: 1\ [{i<i<m: k;>03 [ T0 ] I Ti\ A
=1 k1y..oskm >0 1<j<m

where By = 28(28 — 1)By/k for k =1,2,3,.. ..
(i) If m is even, then

ESIY H(”)Ek

km>0 =1
k’1+ "ka—n 1

:;::(_1)1' Yo (-pltisism kj>0}|(7];2)(2kf_2)3ki 11 (Z)Bkﬁl. (1.4)

K1y km >0 1<j<m
ki4-t+km=n i
2. PROOF OF THEOREM 1.2

As usual we let C denote the field of complex numbers. By [4, Lemma 3.1], for
P(z),Q(z) € Clz], we have P(x) = Q(z) if A*(P(z)) = A*(Q(x)). This property
will play a central role in our proof of Theorem 1.2.

Lemma 2.1. Let Pi(x), -, Py(z) € Clx]. Then
Py(z) Y (1A' (P() J] Pile+ 1)

1<i<m 1<Jj7£<zm
_JAT(Pi(x) - P(x) = AT(Pi(x) P2 +1) - Pz +1) if 2¢4m,
A*(Py(z) - Pn(x)) — APy () Py(z + 1) -+ Pu(z + 1) if2 | m.

Proof. Observe that

Z( 1) A*(P, H Pi(x +1;4)

1<i<m 1<j<m
J#i
-y ((—w [T 7o+ 10— 0 TT Pt 1j00)
1<i<m 1<j<m 1<j<m

211 2@ -t I P+,

1<j<m 1<j<m
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Therefore
Pi(z) Y (-1)A*(P(z) [] Pix+ 1<)
1<i<m 1<j<m
J#
=Pi(z) - Pu(z) + (-)"Pi(z) [] Pix
1<j<m
=A"(Pi(z) -+ Pu(x)) = (Pi(z + 1) + (=1)" ' Pi(2)) ] Pil=
1<j<m

This proves the desired identity. U
Lemma 2.2. Let ag,ag,a1,a; ..., a,,a, be complex numbers, and set

Ag(t) = Ek: (?) (=1)lait*=" and Ag(t) = Xk: (’;) (= 1) ath!

1=0 =0

fork=0,....n. Letrg+ri+---+7r,=n—1. Then

]{?1 ..... k’ ]:2
S (e
K1 yeekin >0 j=2
Also, for any i = 2,...,m we have
70 r , i\ +
Z (lﬁ) Ap, (=21) <kz> (2 — 21)" H <k;>Akj (z; — 1)
k1,eeiskm >0 2<j<m
ki4-4km=n ]#Z
r T i\ +
= Z < 1) (z1 — x;)™ (ko) A, (—x;) (k])Ak](x] — ;) (2.2)
1 i J
k1. >O 2<j<m
k14 +k J#i

Proof. By Remark 1.1 of Sun [5],

k

Aaty) =3 (’;) P A(y) and Ap(x+y) = fj (’;’) A y)

1=0 =0
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for every kK =0,...,n. Observe that

k1o >0 =2
r = i k
0 k J J l
- (k)(_xl>ln<k') (l})< A )
Kty kim >0 1 j=2 N/ =0 \Y

. s 70 = —
- Z (=a1) H (/.)Ali(xj) Z (k: ) H (k]- _ lj)
7 . 1 . j j
k120, k]‘Zl]’ (1<]§m) Jj=2
li++lm=n ki+-4km=n

Given ly,...,l,, € Nwith l; +---+,, = n, by the Chu-Vandermonde convolution
identity (cf. [3, (5.22)]), we have

To - 7"]' — lj
2 . (/ﬁ) H (kj - lj)
k120,k;>1; (1<j<m) =2

() () ()

So (2.1) follows.
(2.2) can be proved similarly. Let ¥ denote the left-hand side of (2.2). Then

O (31 3 e £

1

kl ----- k'm li:()
k1+-+km=n
k;j i
T; ; g =
<1l <kj) > (17) (2 — @)™ Ay (5 — i)
1<j<m N7/ =0 N
J#i
T r.\ -
= > (m-m) (l?)Azx—xi) I1 (/,)Azj (2 = @)
I15eeey Ilm>0 v 1<j<m J
Li++lm=n j;ﬁz
To — ll T r; — lj
oz ) I
kj>l; (1<j<m & j#i) i—=li) \Fi 1<j<m k=1
k;>0, k1+-+km=n jF#i
T T — r
= Z (l’l - xl)ll (l(]) All(_ml) H (lj>Alg (,1'] — ml) X (_1)l1 (l1> '
I1,...,lm>0 g 1<j<m J 1
Lt lm=n s

This concludes the proof. Il
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Remark 2.1. If we set a; = (—=1)'B; and @; = (—1)'Ey(0) for [ =0,...,n in Lemma

2.2, then Ay (t) = Bi(t) and Ag(t) = Ei(t) for any k=0, ...,n.

Proof of Theorem 1.2. We fix xa,...,Zp.
(i) Suppose that m is odd. Set

A*(P(z1))
T T T T
i=2 Kppokm>0 T ' 2<j<m NI
kit tkm=n J#
To - Ti

N

K1y =0 Jj=2

ki1+-+km=n

A*(P(z1))
" i ™ 1 To T
=2) (-1)" >, (k1)<$1 zi)" (ki)Ekl(l i) | (,%)Ekj(j—xﬂrlm)
=2 k1yeekm =0 2<j<m
ki+-+km=n J#
v S (ML) B )
k)t AL\, )
k1, km =0 Jj=2

It follows that A*(P(x1)) = A*(Q(z1)), where

Q=Y v ¥ (P)aa-a ]

1<i<m Kt ek >0 1<j<m
k1t +km=n i

+ Y ﬁ(]:f)Ekj(xj).

ki, km>0 j=1 N7
kfl++km:n

Therefore P(z1) = Q(x1) by [4, Lemma 3.1]. This proves (1.1).

J

T
(kj) Ekj (LL']' — T + 1j>i)
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(ii) Now assume that m is even. Define

Plr)= Y (ZO)Bklu—ml)ﬁ(;i)Ekj(xj—xlﬂ).

1 =2 J
For ky =0,1,2,..., clearly

(,:?) (B, (1= (2141)) =By, (1—21)) = — (Zi)kl(_mkl-l — (l:? - 1) o,

(As usual (%)) is regarded as 0.) Thus, by Lemma 2.1 we have

A™(P(21))
- i To T ; Ti
=2 k1,...,km >0 1<5<m
ki++km=n i
ro — 1 r
— 10 Z ( Okl )(—ml)kl H (kj>EkJ(:L'j — 1)
Kty km >0 1<j<m
it tkm=n—1
With the help of Lemma 2.2,
A*(P(21))
- i 1 1 To r
=2) (1" (]ﬁ) (21 — ;)" (kzz) B (1—m) | (,%) Ey,(xj — @i + 1;5;)
=2 k1,....km>0 1<j<m
ki+-+km=n J#
—To Z e H ? B, (x;).
k)t L k; I
kl ----- k"LZO 1<.7§m

ki++km=n—1
So we have A*(P(z1)) = A*(Q(x1)), where

Q) =Sy Y (1) Butt=a) TT (7)o = o+ 1320

i=2 K1,y ko >0 1<j<m MY
k4o k= JFi

Therefore, P(x;) coincides with Q(z1) by [4, Lemma 3.1]. So (1.2) holds. This
concludes the proof. O
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