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ABSTRACT. Let n be a positive odd integer and let p > n + 1 be a prime.
We mainly derive the following congruence:

3 (g) %zO(modp).

. . 7
0<i1 < <ip<p 1

1. INTRODUCTION

Simple congruences modulo prime powers are of interest in number
theory. Here are some examples of such congruences:
(a) (Wolstenholme) S™P~1 1/k = 0 (mod p?) for any prime p > 3.

(b) (Z. W. Sun [S02, (1.13)]) For each prime p > 3 we have

k

k —
Z %E Z (kl) (mod p).

0<k<p/2 0<k<p/6

(¢) (Z. W. Sun [S07, Theorem 1.2]) If p is a prime and a,n € N =
{0,1,2,...}, then

Ln/;aJl > (—D’“(Z) (_ﬁ)wm =1 (mod p).

" k=0 (mod p2)

(d) (Z. W. Sun and R. Tauraso [ST, Corollary 1.1]) For any prime p
and a € ZT = {1,2,3,... } we have

()= (2) it

k=0
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where (3) is the Legendre symbol.

Let p > 3 be a prime. In 2008, during his study of Zg;é (2:) modulo
powers of p with R. Tauraso, the second author conjectured that

)3 (%) (Z_jlk) = 0 (mod p), (1.1)

0<i<j<k<p

ie.,

3 Z_jikz 3 ijik(modp). (1.2)

0<i<j<k<p 0<i<j<k<p
1=1,2 (mod 6) 1=4,5 (mod 6)

In this paper we confirm the above conjecture of Sun by establishing
the following general theorem.

Theorem 1.1. Let n € Z™ and let p > n + 1 be a prime.
(i) If n is odd, then

> oto= Y o Gmedp (13)

. . in . . in
0<i1 <<t <P 0<i1 <+ <in<p
i1=1,2 (mod 6) i1=4,5 (mod 6)

(i) If n is even, then

Z ,(_1‘)1.1 =2 Z _ 1, (mod p). (1.4)

.. /L /I/ -.a’l[
0<iy < <in<p L n 0<iy<-<in<p n

11=0 (mod 3) 11=2,3,4 (mod 6)

We deduce Theorem 1.1 from our following result.

Theorem 1.2. Letn € ZT and let p > n + 1 be a prime. Set

xh
F@= Y ezl (1.5)
0<ir < <in<p L n

where Z,, denotes the integral ring of the p-adic field Q,. Then we have
Fou(1 = 2) = (—1)"1F,(z) (mod p), (1.6)

i.e., all the coefficients of F,(1 —x) — (=1)""1F,(x) are congruent to 0
modulo p.

In the next section we use Theorem 1.2 to prove Theorem 1.1. Section
3 is devoted to our proof of Theorem 1.2.
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2. THEOREM 1.2 IMPLIES THEOREM 1.1
Proof of Theorem 1.1 via Theorem 1.2. (1.3) holds trivially when p = 3
and n = 1. Below we assume that p > 3.

Let w be a primitive cubic root of unity in an extension field over Q,.
Then, in the ring Z,[w] we have the congruence

Fo(—w?) = F,(14+w) = (-1)""'F,(~w) (mod p). (2.1)

For r € Z we set

) ) 11
0<i1 < <in<p
11=r (mod 6)
Clearly
Fn(—w) :S() — wSl + CUQSQ - 53 + U.)S4 — w255
=Sy — S35 — 0.)(51 - 54) + (—1 - w)(Sg — 55)
:SQ—Sg—SQ+S5—w(51+52—54—55).
Similarly,

Fn(—u)2) =8Syp—S3— 855+ 55 — w2(51 + 859 — Sy — 55)
Thus

Fn(—w) + Fn(—wQ) :2(50 — Sy — S5+ 55) + 51+ 859 — Sy — S5
=250+ 51 — Sy — 253 — 54 + S5

and
F,(—w) — Fn(—w2) = (w2 —w)(S1+ 52 — 54— 55).

Note that (w—1)(w? — 1) = 3 is relatively prime to p. Therefore, by (2.1),
if 2t n then
S1 4+ S — 5S4 — S5 =0 (mod p); (2.2)

if 2 | n then
250 +S51 — 859 —253—-5,+S55=0 (mod p). (23)
To conclude the proof we only need to show that (2.3) is equivalent to

Sop — S3 = 2(52 + S3 + S4) (mod p). (24)
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Recall that
p—1 p—1 1
P71 = T —17)= r— = mod
Ie-n=11 (- 7) tmodp)

(cf. Proposition 4.1.1 of [IR, p.40]). Comparing the coefficients of xP~1—"
we get that

Z , 1 — =0 (mod p). (2.5)

’L -..Z
0<iy < <in<p L n

So Zi:o S =0 (mod p), which implies the equivalence of (2.3) and (2.4).
We are done. U

3. PrROOF OF THEOREM 1.2

Proof of Theorem 1.2. We use induction on n.
Observe that

pi (]Z) (—1) et =14 (—x)? - zp: (ﬁ) (-o)' =1—a?—(1-x)"

=0

Fori=1,... ,p—1 clearly

() -) d

Thus

A= tS (7) et = 22202 noa

=1 p

and hence Fi(1 — z) = Fi(x) (mod p) as desired. This proves (1.6) for
n=1.
For the induction step we need to do some preparation. For

P(zx) = Zaixi € Zylx],
i=0

we define its formal derivative by

d i1
@P(J;) Z ia;
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If1<m<p—1and LP(z) =0 (mod p), then a; = 0 (mod p) for all
i=1,...,m, and hence P(x) = ap = P(0) (mod p).

Now assume that 1 < n < p—land F,,_;(1—2) = (=1)""2F,_1(2) (mod p).
Then

i9—1

d il 1 :
Fn(x) = E ; — = E - - E i1
dx ) ) Zz...zn ) ) Zz...zn_

0<i1 << <p 1<io< - <in<p i1=1

1 A |
o Z i i x—1

. . in
0<in< - <in<p

x(xr—1 r—1 o1
( ) 0<in< - <in<p 2 n

:Fn_l(.flf) 1 Z 1

and hence

d n—1
o (Fo(1—2)— (=1)" 'Fu(z))

ity e 5

_ (D" Eaa () - Faa (L) (l N ﬂ) 3 1

- x(x—1 xr x—1 G iy
( ) 0<in< - <in<p 2 n

Combining this with the induction hypothesis and (2.5), we obtain

P~ 1) (a1~ ) — (~1)" " Fa(2)) = 0 (mod p).

For the finite field F, = Z/pZ, it is well known that [F,[z] is a principal
ideal domain. So we have

d

S (F(1 = 2) = (~1)" 7 Fy () = 0 (mod p)

and hence
Fo(1 =) — (—1)"" Fy(a)

1
=F,(1) + (-1)"Fo(0)= ) ——— =0 (mod p)
0<i1 < <in<p © n

with the help of (2.5). This concludes the induction step and we are
done. [J
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