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ON 2-ADIC ORDERS OF SOME BINOMIAL SUMS

HAO PAN AND ZHI-WEI SUN

ABSTRACT. We prove that for any nonnegative integers n and r the binomial sum

is divisible by 22n—min{a(n),a(r}  where a(n) denotes the number of 1s in the binary
expansion of n. This confirms a recent conjecture of Guo and Zeng [J. Number
Theory, 130(2010), 172-186].

In 1976 Shapiro [3] introduced the Catalan triangle <%(n2—nk>)”>k>1 and deter-

mined the sum of entries in the nth row; namely, he showed that

i I 2n _n 2n
— \n—k S 2\n /)
Let n,r € N={0,1,2,...}. Recently, Guo and Zeng [1] proved that

2 - 2n 2r+1
n2(>") Z (n — k:)k

k=1

is an odd integer if n,7 € ZT = {1,2,3,...}. They also conjectured that the

binomial sum
o 2n
F = k2 1.1
mn= 3 () (1)
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is divisible by 227—min{e(n).a()} where a(n) denotes the number of 1s in the binary
expansion of n. Note that if n,r € Z* then F(n,r) =23 }_, (nQ_”k) k2. Actually
the conjecture was motivated by Guo and Zeng’s following observations:

n

2n 2 2n—2
Z (n B k)k =2 n,

k=1

/02
3 (n _”k> k4 =22n=3p(3n — 1),

k=1

(2
> ( nk> kS =22n~4n(15n% — 15n + 4),
=1 N

"/ 2

> ( ”k> E® =22""5n,(105n® — 210n? + 147n — 34).
n JR—

k=1

In this paper we shall confirm the sophisticated conjecture of Guo and Zeng.
For an integer n and a prime p, the p-adic order of n at p is given by

vp(n) =sup{v € N: p” | n}.

Now we state our main result.

Theorem 1.1. For any n,r € N we have
vo(F(n,r)) = 2n — min{a(n), a(r)}, (1.2)

where F(n,r) is given by (1.1).
Note that (1.2) can be split into two inequalities:
va(F(n,r)) = 2n — a(n) (1.3)
and
vo(F(n,r)) = 2n — a(r). (1.4)
In Sections 2 and 3 we will show (1.3) and (1.4) respectively.

2. PROOF OF (1.3)

Let p be any prime. A useful theorem of Legendre (see, e.g., [2, pp. 22-24])
asserts that for any n € N we have

1=1

where «a,(n) is the sum of the digits of n in the expansion of n in base p. In
particular, vo(n!) =n — a(n) foralln =0,1,2,....
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Lemma 2.1. (i) For any n € Z* we have
va(n) —1=a(n—1) —a(n). (2.1)
(ii) Let s >t >0 be integers. Then

Vo ((i)) > a(t) — als) + 1. (2.2)

Proof. (i) In view of Legendre’s theorem, for any positive integer n we have
va(n) =wve(n!)—e((n—1))=n—an)—(n—1—an—-1)) =a(n—1)—a(n)+1.

This proves (2.1).
(ii) With the help of Legendre’s theorem,

Vo (@) —uo(s!) — va(t)) — v((s — t)))

=s—a(s)—(t—a(t) —(s—t—a(s—1))
=a(t) — a(s) + a(s — t)
>a(t) — a(s) + 1 (since s —t > 1).

So (2.2) holds. O

Lemma 2.2. For n,r € Z" we have

F(n,r) =n*F(n,r —1) —2n(2n — 1)F(n — 1,7 — 1). (2.3)

(n? — k?) <n2_nk> = 2n(2n — 1) (n2_”1__2k>

n

n n—1
2n 2r 2 2n 2r—2 2n —2 2r—2
= —2n(2n—1

k=—n k=—n k=—n+1

which gives (2.3). O

Proof of (1.3). We use induction on n +r. Clearly (1.3) holds trivially when n =0
or r =0.

Now let n,r € Z* and assume (1.3) for any smaller value of n + r. By (2.1),
(2.3) and the induction hypothesis, we have

vo(F(n,r)) =min{ve(n’*F(n,r —1)),12(2n(2n — 1)F(n — 1,7 — 1))}
=min{2v5(n) + vo(F(n,r —1)),1 + va(n) + vo(F(n— 1,7 — 1))}
>min{2vs(n) + 2n — a(n),1 + vo(n) +2(n—1) —a(n — 1)}

=2n — a(n).

Proof. Since

we have

This concludes the induction step. [
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3. PrROOF OF (1.4)

Lemma 3.1. Forn,r € Z" we have

—

r—

Fn,r) =4F(n —1,1) — Z (Z) F(n,i) —2(2n — 1) 5 (22,21 1)F(n —1,i)

+ nz;; (;i 1>F(n, i) + QZj (Z:) F(n —_1, ). (3.1)

Proof. Let n € N and r € ZT. We want to prove (3.1) with n in it replaced by
n+ 1.

Clearly
Flnr) = k_g_l (n o k) (ke + 1)
5 (B (DR
S0 (G0,

n

_i <n2—nk;) K :% (ki <n2—nk> K+ k_z_n (n%fk) (_W)

=—nN

n n+1
2n+1Y\. . 2n+1 2n+1 ,
2 J— J
x (e (G50 C))s
n+1 .
-3 <2n1+2k)kj:F(n+1,%).
ntl- (3.3)
If j is odd, then

(n+1) i <2:_+k1>kj—1+ i (?j]j)kﬂ

k=—n-—1 k=—n-—1

_ 3 (n—1—1+k)<2nn_+k1)kj_1:(2n+l) 3 <n2_”k>kj—1,

k=—n—1 k=—n
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ie.,

n n

2 (?f;)k =@2n+1) Y (j_’”‘k)m—l_ml) 3 (Z%jkl)kj_l

k=—n—1 k=—n
1 1 1
—(©2n+1)F <n 2 ) _ntlp (n +1, ‘7—) , (3.4)

where we use (3.3) in the last step. Combining (3.2)-(3.4), we get

Fn,r) :% Z (ZZ) Fln+1,i) + (2n+1) f (22,21 1> F(n, i)

1=0 i=0
r—1 r
n+1 2r 2r
— F 1,7) — F )
2 Zi:o (22' n 1> (n+1,9) Zi:o (2z> (n,3),

which yields the desired result. [J

Proof of (1.4). We still use induction on n + r. There is nothing to do if n = 0
or r = 0. Assume that n,7 > 1 and (1.4) holds for any smaller value of n + r. In
view of Lemma 3.1, vo(F(n,r)) is not smaller than the minimum of the following
numbers:

) 2r ) ) 2r )
24 ve(F(n=1r)), ocicr 2 ((QZ)F(n’ Z>)’ 0<ier VQ( (22 + 1)F(n 2))

2r 2r
1+ mi F(n—1,9)), 1 F(n—1,4)).
T odid ”2<(2z'+1) (n—1, )> + o ’/2((%) (n ’Z)>

By the induction hypothesis and Lemma 2.1(ii), we have vo(F(n — 1,7)) > 2n —
2 — a(r), and also

Vo ((ZZ) F(n,i)) > 2n — a(i) + o(2i) — a(2r) + 1 =2n — a(r) + 1,
((22247; ) 1,@)) >2n—2—a(i)+a2i+1) —a@r)+1=2n—ar),

Vo (n (22 N 1) (n, i)) >2n—a(i)+a2i+1)—al2r)+1=2n—a(r) + 2,

Vo ( ) n—lz)) 2n — 2 — (i) + a(2i) —a(2r) + 1 =2n — a(r) — 1.
Thus (1.4) follows. O

Acknowledgments. The authors wish to thank the referees for their helpful
comments.



6 HAO PAN AND ZHI-WEI SUN

REFERENCES

[1] V. J. W. Guo and J. Zeng, Factors of binomial sums from the Catalan triangle, J. Number
Theory 130 (2010), 172-186.

[2] P. Ribenboim, The Book of Prime Number Records, 2nd Edition, Springer, New York, 1989.
[3] L. W. Shapiro, A Catalan triangle, Discrete Math. 14 (1976), 83-90.

DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY, NANJING 210093, PEOPLE’S RE-
PUBLIC OF CHINA

E-mail address: haopan79@yahoo.com.cn, zwsun@nju.edu.cn



