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Abstract. Let m and n > 0 be integers. Suppose that p is an odd prime

dividing m− 4. We show that

νp

( n−1∑
k=0

(2k
k

)
mk

)
> νp(n) and νp

( n−1∑
k=0

(n− 1

k

)
(−1)k

(2k
k

)
mk

)
> νp(n),

where νp(x) denotes the p-adic valuation of x. Furthermore, if p > 3 then

1

n

n−1∑
k=0

(2k
k

)
mk

≡

(2n−1
n−1

)
4n−1

(mod pνp(m−4))

and

1

n

n−1∑
k=0

(n− 1

k

)
(−1)k

(2k
k

)
mk

≡
Cn−1

4n−1
(mod pνp(m−4)),

where Ck denotes the Catalan number 1
k+1

(2k
k

)
. This implies several con-

jectures of Guo and Zeng [GZ]. We also raise two conjectures, and prove

that n > 1 is a prime if and only if

n−1∑
k=0

((n− 1)k

k, . . . , k

)
≡ 0 (mod n),

where
(k1+···+kn−1

k1,... ,kn−1

)
denotes the multinomial coefficient

(k1+···+kn−1)!

k1!···kn−1!
.
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1. Introduction

Let p be a prime. In 2006 Pan and Sun [PS] obtained various congru-
ences modulo p involving central binomial coefficients and Catalan num-
bers. Later Sun and Tauraso [ST1, ST2] made some further refinements;
for example, they proved that for any a ∈ Z+ = {1, 2, 3, . . . } we have

pa−1∑
k=0

(
2k
k

)
≡
(
pa

3

)
(mod p2).

Recently the author [S10] managed to determine
∑pa−1
k=0

(
2k
k

)
/mk mod p2

for any integer m not divisible by p.
Motivated by the above work, Guo and Zeng [GZ] obtained some con-

gruences involving central q-binomial coefficients and raised several con-
jectures on p-adic valuations of some sums of binomial coefficients.

Throughout the paper, for a prime p, the p-adic valuation (or p-adic
order) of an integer m is given by

νp(m) = sup{a ∈ Z : pa | m},

and we define νp(m/n) = νp(m) − νp(n) for any m ∈ Z and n ∈ Z+. For
example,

ν2

(
2
3

)
= ν2(2)− ν2(3) = 1 and ν3

(
4
9

)
= ν3(4)− ν3(9) = −2.

For an assertion A we adopt the Iverson notation:

[A] =
{

1 if A holds,
0 otherwise.

Thus [m = n] coincides with the Kronecker symbol δm,n.
Our following result implies several conjectures of Guo and Zeng [GZ,

Section 5].

Theorem 1.1. Let m ∈ Z and n ∈ Z+. Suppose that p is an odd prime
dividing m− 4. Then

νp

( n−1∑
k=0

(
2k
k

)
mk

)
> νp(n) and νp

( n−1∑
k=0

(
n− 1
k

)
(−1)k

(
2k
k

)
mk

)
> νp(n). (1.1)

Furthermore,

1
n

n−1∑
k=0

(
2k
k

)
mk

≡
(
2n−1
n−1

)
4n−1

+ δp,3[3 | n]
m− 4

3

(
2n/3ν3(n) − 1
n/3ν3(n) − 1

)
(mod pνp(m−4))

(1.2)
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and also

1
n

n−1∑
k=0

(
n− 1
k

)
(−1)k

(
2k
k

)
mk

≡ Cn−1

4n−1
(mod pνp(m−4)−δp,3), (1.3)

where Ck denotes the Catalan number 1
k+1

(
2k
k

)
=
(
2k
k

)
−
(

2k
k+1

)
. Thus, for

a ∈ Z+ we have

1
pa

pa−1∑
k=0

(
2k
k

)
mk

≡ 1 + δp,3
m− 4

3
≡ m− 1

3
(mod p) (1.4)

and also

1
pa

pa−1∑
k=0

(
pa − 1
k

)
(−1)k

(
2k
k

)
mk

≡ −1 (mod p) provided p 6= 3. (1.5)

Now we give various consequences of Theorem 1.1.

Corollary 1.1 ([GZ, Conjecture 5.1]). Let p be a prime divisor of 4m−1
with m ∈ Z. Then

νp

( n−1∑
k=0

(
2k
k

)
mk

)
> νp(n) (1.6)

for all n ∈ Z+.

Proof. As p - m, there exists an integerm∗ such thatm∗m ≡ 1 (mod pνp(n))
and hence m∗ ≡ 4 (mod p). By Theorem 1.1, for any n ∈ Z+ we have

n−1∑
k=0

(
2k
k

)
mk ≡

n−1∑
k=0

(
2k
k

)
mk

∗
≡ 0 (mod pνp(n)).

This concludes the proof. �

Corollary 1.2 ([GZ, Conjecture 5.2]). Let n = |4m − 1| with m ∈ Z.
Then

n−1∑
k=0

(
2k
k

)
mk ≡ 0 (mod n). (1.7)

Proof. By Corollary 1.1, (1.6) holds for any prime p dividing n. So (1.7)
is valid. �
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Corollary 1.3 ([GZ, Conjecture 5.4]). Let p > 3 be a prime and a ∈ Z+.
Then

pa−1∑
k=0

(
2k
k

)(
1− (−1)(p−1)/2p

4

)k
≡ pa (mod pa+1). (1.8)

Proof. Let m = (1− (−1)(p−1)/2p)/4. Then m ∈ Z and p | 4m−1. Choose
an integer m∗ such that mm∗ ≡ 1 (mod pa+1). Clearly m∗ ≡ 4 (mod p).
Applying Theorem 1.1 we get

1
pa

pa−1∑
k=0

(
2k
k

)
mk ≡ 1

pa

pa−1∑
k=0

(
2k
k

)
mk

∗
≡ 1 (mod p).

So (1.8) holds. �
Note that (1.8) in the case p = 5 yields

5a−1∑
k=0

(−1)k
(

2k
k

)
≡ 5a (mod 5a+1), (1.9)

which is the second congruence in [GZ, Conjecture 3.5].

Corollary 1.4 ([GZ, Conjecture 5.3]). For a ∈ Z+ we have

3a−1∑
k=0

(−2)k
(

2k
k

)
≡3a (mod 3a+1), (1.10)

3a−1∑
k=0

(−5)k
(

2k
k

)
≡− 3a (mod 3a+1), (1.11)

7a−1∑
k=0

(−5)k
(

2k
k

)
≡7a (mod 7a+1). (1.12)

Proof. Choose integers m1,m2,m3 such that

m1 ≡ −1
2

(mod 3a+1), m2 ≡ −1
5

(mod 3a+1), m3 ≡ −1
5

(mod 7a+1).

Then

m1 ≡ 4 (mod 32), m2 ≡ 4 (mod 3) and m3 ≡ 4 (mod 7).

So it suffices to apply (1.4). �

(1.4) in the case p = 3, together with our computation via Mathematica,
leads us to raise the following conjecture.
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Conjecture 1.1. Let m ∈ Z with m ≡ 1 (mod 3). Then

ν3

(
1
n

n−1∑
k=0

(
2k
k

)
mk

)
> min{ν3(n), ν3(m− 1)− 1} (1.13)

and

ν3

(
1
n

n−1∑
k=0

(
n− 1
k

)
(−1)k

(
2k
k

)
mk

)
> min{ν3(n), ν3(m− 1)} − 1 (1.14)

for every n ∈ Z+. Furthermore,

1
3a

3a−1∑
k=0

(
2k
k

)
mk

≡ m− 1
3

(mod 3ν3(m−1))

for any integer a > ν3(m− 1), and

1
3a

3a−1∑
k=0

(
3a − 1
k

)
(−1)k

(
2k
k

)
mk

≡ −m− 1
3

(mod 3ν3(m−1))

for each integer a > ν3(m− 1). Also,

3a−1∑
k=0

(
3a − 1
k

)
(−1)k

(
2k
k

)
≡ −32a−1 (mod 32a) for every a = 2, 3, . . . .

We remark that Strauss, Shallit and Zagier [SSZ] used a special tech-
nique to show that for any n ∈ Z+ we have

ν3

( n−1∑
k=0

(
2k
k

))
= 2ν3(n) + ν3

((
2n
n

))
.

For any k ∈ N = {0, 1, 2, . . . }, the central binomial coefficient
(
2k
k

)
co-

incides with the multinomial coefficient
(

2k
k,k

)
. In general, the multinomial

coefficient (
k1 + · · ·+ kn
k1, . . . , kn

)
=

(k1 + · · ·+ kn)!
k1! · · · kn!

in the case k1, . . . , kn = k ∈ N gives(
nk

k, . . . , k

)
=

(nk)!
(k!)n

.

Now we pose one more conjecture which involves multinomial coeffi-
cients.
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Conjecture 1.2. For any prime p and positive integer n we have

νp

( n−1∑
k=0

(
(p− 1)k
k, . . . , k

))
> νp(n) (1.15)

and

νp

( n−1∑
k=0

(
n− 1
k

)
(−1)k

(
(p− 1)k
k, . . . , k

))
> νp(n). (1.16)

Furthermore, νp(n) in (1.15) can be replaced by νp(n
(
2n
n

)
) if p > 2.

Observe that
(4k)!
(k!)4

=
(

4k
2k

)(
2k
k

)2

and hence (1.15) in the case p = 5 yields the first congruence in [GZ,
Conjecture 5.6].

Concerning Conjecture 1.2 we can prove the following result.

Theorem 1.2. Let p be a prime.
(i) We have

p−1∑
k=0

(
(p− 1)k
k, . . . , k

)
≡ pBp−1 + (−1)p−1 − 2p (mod p2), (1.17)

where Bn denotes the nth Bernoulli number. Also, an integer m > 1 is a
prime if and only if

m−1∑
k=0

(
(m− 1)k
k, . . . , k

)
≡ 0 (mod m). (1.18)

(ii) Let n ∈ Z+. If n 6≡ 1 mod p) or there is a digit greater than 1 in
the representation of n in base p, then

n−1∑
k=0

(
(p− 1)k
k, . . . , k

)
≡ 0 (mod p), (1.19)

otherwise we have

n−1∑
k=0

(
(p− 1)k
k, . . . , k

)
≡ (−1)ψp(n)−1 (mod p), (1.20)

where ψp(n) denotes the sum of all the digits in the representation of n in
base p.
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(iii) (1.15) holds for all n ∈ Z+ if and only if so does (1.16).

A basic problem in number theory is to characterize primes. However,
besides the well-known Wilson theorem, no other simple congruence char-
acterization of primes has been proved before. Thus our characterization
of primes via (1.18) is particularly interesting.

It is curious to know what odd primes p satisfy the congruence
p−1∑
k=0

(
(p− 1)k
k, . . . , k

)
≡ 0 (mod p2) (i.e., pBp−1 ≡ 2p− 1 (mod p2)).

Using Mathematica we only find four such primes (they are 3, 11, 107,
4931) among the first 15,000 primes. It seems that all such primes are
congruent to 3 modulo 8. From the proof of (1.17) we see that such odd
primes are exactly those odd primes p satisfying (p − 2)! ≡ 1 (mod p2),
which were investigated by P. Saridis [S] who also found the above four
primes. (The author thanks Prof. N.J.A. Sloane for informing him about
the reference [S].)

In the next section we are going to provide some lemmas. Theorems
1.1 and 1.2 will be proved in Sections 3 and 4 respectively.

2. Some Lemmas

Lemma 2.1 ([ST1, Theorem 2.1]). For any n ∈ Z+ and d ∈ Z, we have∑
06k<n

(
2k
k + d

)
xn−1−k + [d > 0]xnud(x− 2)

=
∑

06k<n+d

(
2n
k

)
un+d−k(x− 2),

(2.1)

where the polynomial sequence {uk(x)}k>0 is defined as follows:

u0(x) = 0, u1(x) = 1, and uk+1(x) = xuk(x)− uk−1(x) (k = 1, 2, 3, . . . ).

Let A,B ∈ Z. The Lucas sequence un = un(A,B) (n ∈ N) is defined
by

u0 = 0, u1 = 1, and un+1 = Aun −Bun−1 (n = 1, 2, 3, . . . ).

The characteristic equation x2 −Ax+B = 0 has two roots

α =
A+

√
∆

2
and β =

A−
√

∆
2

,

where ∆ = A2 − 4B. It is well known that for any n ∈ N we have

un =
∑

06k<n

αkβn−1−k and hence (α− β)un = αn − βn.

The reader may consult [S06] for connections between Lucas sequences
and quadratic fields.
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Lemma 2.2. Let A,B ∈ Z and let d ∈ Z+ be an odd divisor of ∆ =
A2 − 4B. Then, for any n ∈ Z+, we have

un(A,B)
n

≡
(
A

2

)n−1

+
{

(A/2)n−3∆/3 (mod d) if 3 | d and 3 | n,
0 (mod d) otherwise.

(2.2)

Proof. When ∆ = 0, by induction uk(A,B) = k(A/2)k−1 for all k ∈ Z+,
and hence the desired result follows.

Now we assume that ∆ 6= 0. Then

un(A,B) =
1√
∆

((
A+

√
∆

2

)n
−

(
A−

√
∆

2

)n)
=

2
2n

∑
06k6n

2-k

(
n

k

)
An−k∆(k−1)/2

=
1

2n−1

∑
16k6n

2-k

n

k

(
n− 1
k − 1

)
An−k∆(k−1)/2

and hence

un(A,B)
n

−
(
A

2

)n−1

=
∑

1<k6n
2-k

(
n− 1
k − 1

)(
A

2

)n−k ∆(k−1)/2

k2k−1
. (2.3)

For k = 5, 7, 9, . . . , clearly k < 3(k−1)/2 and hence νp(k) 6 (k− 3)/2 for
any prime divisor p of d, thus ∆∆(k−3)/2/k ≡ 0 (mod d). Note also that(

n− 1
3− 1

)(
A

2

)n−3 ∆(3−1)/2

3× 23−1

=
(n− 1)(n− 2)

2

(
A

2

)n−3 ∆
3× 4

≡
{

(A/2)n−3∆/3 (mod d) if 3 | d and 3 | n,
0 (mod d) otherwise.

So (2.2) follows from (2.3).
The proof of Lemma 2.2 is now complete. �

Lemma 2.3. If p is a prime, and

a =
k∑
i=0

aip
i and b =

k∑
i=0

bip
i (ai, bi ∈ {0, . . . , p− 1}),
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then we have the Lucas congruence

(
a

b

)
≡

k∏
i=0

(
ai
bi

)
(mod p).

This lemma is a well-known result due to Lucas, see, e.g., [St, p. 44].

Lemma 2.4. Let p be a prime and let h ∈ Z+ and m ∈ Z \ {0}. Then we
have

min
16k6n

νp

(
1
k

k−1∑
l=0

(
k − 1
l

)
(−1)l

(
hl

l,... ,l

)
ml

)
= min

16k6n
νp

(
1
k

k−1∑
l=0

(
hl

l,... ,l

)
ml

)
(2.4)

for every n = 1, 2, 3, . . . .

Proof. By a confirmed conjecture of Dyson (cf. [D, Go, Z] or [St, p. 44]),
for any k ∈ N the constant term of the Laurent polynomial

∏
16i,j6h
i 6=j

(
1− xi

xj

)k

coincides with the multinomial coefficient
(

hk
k,... ,k

)
.

Let n ∈ Z+. Then

n−1∑
k=0

1
mk

∏
16i,j6h
i 6=j

(
1− xi

xj

)k

=
(m−1

∏
16i,j6h, i 6=j(1− xi/xj))n − 1

m−1
∏

16i,j6h, i 6=j(1− xi/xj)− 1

=
n∑
k=1

(
n

k

)(
1
m

∏
16i,j6h
i 6=j

(
1− xi

xj

)
− 1
)k−1

=
n∑
k=1

n

k

(
n− 1
k − 1

) k−1∑
l=0

(
k − 1
l

)
(−1)k−1−l

ml

∏
16i,j6h
i 6=j

(
1− xi

xj

)l
.

Comparing the constant terms of both sides we get

1
n

n−1∑
k=0

(
hk

k,... ,k

)
mk

=
n∑
k=1

(
n− 1
k − 1

)
(−1)k−1

k

k−1∑
l=0

(
k − 1
l

)
(−1)l

(
hl

l,... ,l

)
ml

. (2.5)
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Recall that for any sequences {an}n>0 and {bn}n>0 of complex numbers
we have

an =
n∑
k=0

(
n

k

)
(−1)kbk for all n = 0, 1, 2, . . .

⇐⇒ bn =
n∑
k=0

(
n

k

)
(−1)kak for all n = 0, 1, 2, . . . .

(See, e.g., [R, p. 43].) So (2.5) holds for all n ∈ Z+ if and only if for each
n ∈ Z+ we have

n∑
k=1

(
n− 1
k − 1

)
(−1)k−1

k

k−1∑
l=0

(
hl

l,... ,l

)
ml

=
1
n

n−1∑
l=0

(
n− 1
l

)
(−1)l

(
hl

l,... ,l

)
ml

. (2.6)

Since both (2.5) and (2.6) are valid for all n ∈ Z+, (2.4) holds for any
n ∈ Z+. This concludes the proof. �

3. Proof of Theorem 1.1

Observe that p - m since p | m − 4 and p 6= 2. Applying Lemma 2.1
with x = m and d = 0, we get

mn−1

n

n−1∑
k=0

(
2k
k

)
mk

=
1
n

n−1∑
k=0

(
2n
k

)
un−k(m− 2, 1)

=
n−1∑
k=0

(
2
(

2n− 1
k

)
−
(

2n
k

))
un−k(m− 2, 1)

n− k
.

Since m− 2 ≡ 2 (mod pνp(m−4)), we have
n−1∑
k=0

(
2
(

2n− 1
k

)
−
(

2n
k

))(
m− 2

2

)n−k−1

≡ Σ (mod pνp(m−4))

where

Σ :=
n−1∑
k=0

(
2
(

2n− 1
k

)
−
(

2n
k

))
=
(

2n− 1
n− 1

)
.

Thus, by Lemma 2.2 and the above,

mn−1

n

n−1∑
k=0

(
2k
k

)
mk

−
(

2n− 1
n− 1

)

≡δp,3
n−1∑
k=0

3|n−k

(
2
(

2n− 1
k

)
−
(

2n
k

))(
m− 2

2

)(n−k)−3
m(m− 4)

3

≡δp,3
m− 4

3
Sn (mod pνp(m−4)) (since m ≡ 4 (mod pνp(m−4))),
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where

Sn =
n−1∑
k=0

3|n−k

(
2
(

2n− 1
k

)
−
(

2n
k

))
.

In the case 3 - n, for any k ∈ {0, . . . , n − 1} with k ≡ n (mod 3) we
have

2
(

2n− 1
k

)
−
(

2n
k

)
=
n− k

n

(
2n
k

)
≡ 0 (mod 3).

So 3 | Sn if 3 - n.
In the case 3 | n, by Lemma 2.3, for k ∈ N we have(

2n
3k

)
≡
(

2n/3
k

)
(mod 3)

and (
2n− 1

3k

)
=

(2n− 1)(2n− 2)
(2n− 3k − 1)(2n− 3k − 2)

(
2n− 3

3k

)
≡
(

2n− 3
3k

)
≡
(

2n/3− 1
k

)
(mod 3),

thus

Sn =
n/3−1∑
k=0

(
2
(

2n− 1
3k

)
−
(

2n
3k

))

≡−
n/3−1∑
k=0

((
2n/3− 1

k

)
+
(

2n/3
k

))
(mod 3)

and hence

Sn ≡ −22n/3−2 − 22n/3−1 +
1
2

(
2n/3
n/3

)
≡ 1

2

(
2q
q

)
=
(

2q − 1
q − 1

)
(mod 3)

with q = n/3ν3(n).
Combining the above we get

1
n

n−1∑
k=0

(
2k
k

)
mk

≡
(
2n−1
n−1

)
+ δp,3[3 | n]m−4

3

(
2q−1
q−1

)
mn−1

≡
(
2n−1
n−1

)
4n−1

+ δp,3[3 | n]
m− 4

3

(
2q − 1
q − 1

)
(mod pνp(m−4)).
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This, together with (2.6) in the case h = 2, yields

1
n

n−1∑
k=0

(
n− 1
k

)
(−1)k

(
2k
k

)
mk

= σ (mod pνp(m−4)−δp,3),

where

σ :=
n∑
k=1

(
n− 1
k − 1

)
(−1)k−1

4k−1

(
2k − 1
k − 1

)

=− 2
n∑
k=0

(
n− 1
n− k

)(
−1/2
k

)
= −2

(
n− 3/2

n

)
=
Cn−1

4n−1

with the help of the Chu-Vandermonde identity (see (5.22) of [GKP, p. 169]).
Clearly, if n = pa for some a ∈ Z+ then(

2n−1
n−1

)
4n−1

≡
(

2pa − 1
pa − 1

)
=
pa−1∏
k=1

(
1 +

pa

k

)
≡ 1 (mod p)

and

Cn−1

4n−1
≡ 1
pa

(
2pa − 2
pa − 1

)
=

1
2pa − 1

(
2pa − 1
pa

)
≡ −1 (mod p).

This concludes our proof of Theorem 1.1.

4. Proof of Theorem 1.2

Lemma 4.1. Let p be a prime and let n ∈ Z+. If all the digits in the
representation of n in base p belong to {0, 1}, then

p−1∏
j=1

(
jn

n

)
≡ (−1)ψp(n) (mod p)

(where ψp(n) is defined as in Theorem 1.2), otherwise we have

p−1∏
j=1

(
jn

n

)
≡ 0 (mod p).

Proof. Suppose that n =
∑k
i=0 aip

i with a0, . . . , ak ∈ {0, . . . , p− 1}.
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If a0, . . . , ak ∈ {0, 1} then jai 6 j < p for all i = 0, . . . , k and j =
1, . . . , p− 1, thus

p−1∏
j=1

(
jn

n

)
=
p−1∏
j=1

(∑k
i=0(jai)p

i∑k
i=0 aip

i

)

≡
p−1∏
j=1

k∏
i=0

(
jai
ai

)
=

k∏
i=0

p−1∏
j=1

(
jai
ai

)
(by Lemma 2.3)

≡((p− 1)!)|{06i6k: ai=1}| ≡ (−1)ψp(n) (mod p) (by Wilson’s theorem).

Now assume that {a0, . . . , ak} 6⊆ {0, 1}. We want to show that p |
(
jn
n

)
for some j ∈ {1, . . . , p − 1}. Set s = min{0 6 i 6 k : ai > 1}. As
1 < as < p, we may choose j ∈ {1, . . . , p− 1} such that jas ≡ 1 (mod p).
Thus

jn =
∑
s<i6k

(jai)pi + (jas − 1)ps + ps +
∑

06t<s

(jat)pt.

Write ∑
s<i6k

(jai)pi + (jas − 1)ps =
∑
s<i6k

bip
i + bpk+1

with bi ∈ {0, . . . , p− 1} and b ∈ N. Then, with the help of Lemma 2.3, we
have (

jn

n

)
=
(
bpk+1 +

∑
s<i6k bip

i + ps +
∑

06t<s(jat)p
t∑k

i=0 aip
i

)
≡
∏

s<i6k

(
bi
ai

)
×
(

1
as

)
×
∏

06t<s

(
jat
at

)
= 0 (mod p).

Combining the above we have proved the desired result. �

Proof of Theorem 1.2. (i) If n is an integer greater than 1, then (pn−1)! ≡
0 (mod p) and hence

pn−1∑
k=0

(
(pn− 1)k
k, . . . , k

)
=
pn−1∑
k=0

pn−1∏
j=1

(
jk

k

)
= 1 +

pn−1∑
k=1

pn−1∏
j=1

(
j

(
jk − 1
k − 1

))

=1 + (pn− 1)!
pn−1∑
k=1

pn−1∏
j=1

(
jk − 1
k − 1

)
≡ 1 (mod p).

So (1.18) fails for any composite number m > 1.
If 1 < k 6 p− 1, then (p− 1)k > 2(p− 1) > p and hence(

(p− 1)k
k, . . . , k

)
=

((p− 1)k)!
(k!)p−1

≡ 0 (mod p).
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Thus
p−1∑
k=0

(
(p− 1)k
k, . . . , k

)
≡

1∑
k=0

(
(p− 1)k
k, . . . , k

)
= 1 + (p− 1)! ≡ 0 (mod p)

with the help of Wilson’s theorem.
Now we determine

∑p−1
k=0

(
(p−1)k
k,... ,k

)
modulo p2.

In the case p = 2, as B1 = −1/2 we have

p−1∑
k=0

(
(p− 1)k
k, . . . , k

)
= 1 + (p− 1)! = 2 ≡ 2Bp−1 + (−1)p−1 − 2p (mod p2).

Now let p be an odd prime. If 2 < k 6 p − 1, then there exist j1, j2 ∈
{1, . . . , p − 1} such that j1k ≡ 1 (mod p) and j2k ≡ 2 (mod p), hence(
j1k
k

)
≡
(
j2k
k

)
≡ 0 (mod p) by Lemma 2.3, and thus(

(p− 1)k
k, . . . , k

)
=
p−1∏
j=1

(
jk

k

)
≡ 0 (mod p2).

Note also that(
(p− 1)2
2, . . . , 2

)
=
p−1∏
j=1

(
2j
2

)
=
p−1∏
j=1

(j(2j − 1)) ≡ p!(p− 2)! ≡ −p (mod p2).

Therefore
p−1∑
k=0

(
(p− 1)k
k, . . . , k

)
≡

1∑
k=0

(
(p− 1)k
k, . . . , k

)
− p ≡ 1 + (p− 1)!− p (mod p2)

and hence we have (1.17) with the help of Glaisher’s result (p − 1)! ≡
pBp−1 − p (mod p2) (cf. [Gl]).

(ii) Write n = pm + r with m ∈ N and r ∈ {0, . . . , p − 1}. If m > 0
then

pm−1∑
k=0

(
(p− 1)k
k, . . . , k

)
=
pm−1∑
k=0

p−1∏
j=1

(
jk

k

)
=
m−1∑
k=0

p−1∑
t=0

p−1∏
j=1

(
pjk + jt

pk + t

)

≡
m−1∑
k=0

1∑
t=0

p−1∏
j=1

(
pjk + jt

pk + t

)
(by Lemma 4.1)

≡
m−1∑
k=0

1∑
t=0

p−1∏
j=1

((
jt

t

)(
jk

k

))
(by Lemma 2.3)

≡
m−1∑
k=0

(1 + (p− 1)!)
p−1∏
j=1

(
jk

k

)
≡ 0 (mod p).
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Similarly,

∑
pm6k<pm+r

(
(p− 1)k
k, . . . , k

)
=
∑

06s<r

p−1∏
j=1

(
j(pm+ s)
pm+ s

)
≡ S (mod p),

where

S :=
∑

06s<min{r,2}

p−1∏
j=1

((
js

s

)(
jm

m

))
.

Clearly S = 0 when r = 0. If r > 2, then

S = (1 + (p− 1)!)
p−1∏
j=1

(
jm

m

)
≡ 0 (mod p).

In the case r = 1 (i.e., n ≡ 1 (mod p)), if all the digits in the representation
of n = pm+ 1 in base p belong to {0, 1}, then

S =
p−1∏
j=1

(
jm

m

)
≡ (−1)ψp(n)−1 (mod p)

by Lemma 4.1, otherwise S ≡ 0 (mod p) in view of Lemma 4.1. This ends
the proof of part (ii).

(iii) Part (iii) of Theorem 1.2 follows immediately from Lemma 2.4.
By the above we have completed the proof of Theorem 1.2. �

Acknowledgment. The author is grateful to the referee for many helpful
comments.
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