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ABSTRACT. In 1992, Strauss, Shallit and Zagier proved that for any pos-
itive integer a,
3%—1

2k
Z ( ) =0 (mod 329)
k
k=0
and furthermore
391

1 2k
20 kgo (k) = 1(mod 3).

Recently a g-analogue of the first congruence was conjectured by Guo and
Zeng. In this paper we prove the conjecture of Guo and Zeng, and also
give a g-analogue of the second congruence.

1. INTRODUCTION

Partially motivated by the work of Pan and Sun [PS], Sun and Tauraso
[ST2] proved that for any prime p and a € Z1T = {1,2,3,...},

£ (2)=(5) i

where (—) is the Legendre symbol. (See also [ST1] and [ZPS] for related
results.) When checking whether there are composite numbers n such that

5 () = (5) tmar)

k=0
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Sun and Tauraso found that

3¢—1
2k
V3<Z(k>)>2a fora=1,2,3,..., (1.1)

k=0

where v3(m) denotes the 3-adic valuation of an integer m (i.e., v3(m) =
sup{a € N: 3% | m} with N = {0,1,2,...}). However, a refinement of
this was proved earlier by Strauss, Shallit and Zagier [SSZ] in 1992.

Theorem 1.1 (Strauss, Shallit and Zagier [SSZ]). For any a € Z* we
have

391
2
> (:) = 3%* (mod 3%*"). (1.2)
k=0
Furthermore,
o ()
kzo% k/ = _1 (mod 3) foralln e Z™ .
n? (%)

Recall that the usual g-analogue of a natural number n is

[n]q = 1—61 Z 7"

— 4 0<k<n

which tends to n as ¢ — 1. For d € Z* the d-th cyclotomic polynomial in
the variable ¢ is given by

d
< 2ﬂdr/d>
i

The polynomial ®,4(q) has integer coefficients. Given a positive integer
n > 1, it is clear that

rly = T L =TT (0= ) = Tt
k=1

d|n
d>1

It is well known that if dy,dy € ZT are distinct then ®4, (¢) and Pg4,(q)
are relatively prime in the polynomial ring Z[q]. If p is a prime and a is a
positive integer, then

¢ -1

Ppo(0) = o = [l and %y = [T 2(0)
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For n,k € N the usual g-analogue of the binomial coefficient (Z) is the
following g-binomial coefficient:

. ([nlg---In—k+1g)/([Ug---[Klg) HO0<k<n,
{ } {1 if k=0,

? 0 if k> n.

Recently Guo and Zeng [GZ] conjectured the following g-analogue of
(1.1).

Conjecture 1.2 (Guo and Zeng [GZ, Conjecture 3.5]). Let a be a positive
integer. Then

3%m—1 ok
Z ¢~ [ ) } =0 (mod [3“](21) for any m € Z™. (1.3)
k=0 q

Concerning this conjecture, Guo and Zeng [GZ] were able to show con-
gruence (1.3) with the modulus [3%]2 replaced by [3%],.

In this paper we prove Conjecture 1.2 as well as a g-analogue of con-
gruence (1.2).

Theorem 1.3. Let a € Z". Then (1.3) holds. Furthermore, we have the
following q-analogue of (1.2):

3¢—1

gip 2 1] =m0 moden@) 0
where
il k+2)(k—1) (— k kE—1 3a—1_|_1
R(a,q) == q(%#( 1; 1+ — (1—4") ).
S e (1 (5 )

3lk—1
(1.5)

We remark that if @ € ZT, then lim,,; R(a,q) = —1 (mod 3). This
follows from

39—1 (_1>k 3e-l_1 (_1)3j+1 3e-1_1 '
R

Also, for k € Z* with k = 1 (mod 3), [k], is relatively prime to [3%],
since k is relatively prime to 3%. Therefore congruence (1.4) implies both
congruences (1.2) and (1.3) in the case m = 1.

We will prove an auxiliary result in the next section and then show
Theorem 1.3 in Section 3.
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2. AN AUXILIARY THEOREM

Theorem 2.1. Let a,m € Z* and let v : Z — 7 be a function such that
foranyke€Z and 5 =1,...,a we have

Y(k) = (k) (mod 3%) and (k+37) =(k) (mod 37).

Then
3m—1
kI 2-3%m a
R (5) { . ] =0 (mod [3°]2). (2.1)
k=1 q
In particular,
3%m—1
k - 3¢
5 <_> {2 3 m] = 0 (mod [3°]%). (2.2)
k=1 3 K q

Proof. Clearly [z]; = [y], (mod ®4(q)) provided that x = y (mod d). By
the g-Lucas congruence (cf. [Sal),

{i;Ziz;L = () m (mod @4(q))

for x1,x2,y1,y2 € N with 0 < y7,y2 < d— 1. Recall that

[3a]q = H ®35(q)

Since these ®3;(q) are relatively prime and [2 - 3“m], = 0 (mod [3%],), we
only need to show that

i ( ) 40 {2 3 - 1L =0 (mod ®s;(q))

for every j =1,... ,a.
Forany 1 <j<aand 1<k <3%n —1 with 31k, write k = 3’s +t
where 1 <t < 37 — 1. Then, by the g-Lucas congruence,

1 =

And we have
3 —1 — 33—]
[H] H

1:[ q ] — [lq) — (_1)75—1(]—(;) (mod ®35(q)).
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Hence

i (k: k) [2 30m _1}
3 k—1 .

f <3Js+t) g¥ @ s+t [2-3%—1}
— [Bis+t]y [Fs+i—1 .

:
TE T (P

S=

Clearly,

5 ()

Sjtll( (E) (—1)t*1qd’(t)_(§) N <3J’ —t) (—1)¥ -1 gt - (*5 t))

t=1 3 [tlq 3 [37 —t],

) e
o ’ !

So (2.1) holds.
Note that (2.2) is just (2.1) with ¢ replaced by the zero function from
Z — 7. So (2.2) is also valid. This concludes the proof. O

3. PROOF OF THEOREM 1.3

Lemma 3.1. Leta € Z* and let 1) be a function as in Theorem 2.1. Then

301

Y (k) 237
5 (){ .
39—1 ) 1

= Z qd)(k)

3\k i

(3.1)
i (14 U (k) (1 — ¢¥)) (mod ®3.(q)),

where

U, (k) == + — k. (3.2)
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Proof. We have

6,
:2 () qf;if T:[ (2 - Ul
=% (5) T (T ) e o

since
2-3%, = [3,(1+¢%) = [34(2+ ¥ — 1) = 2[3%], (mod [3°]7).

Note that for s =0,1,2,... we have

s—1 ’ s—1 '
=14 -1 ¢ =1+( —1)(8+Z(q3 y —1))
Jj=0 j=0
=1+ s(¢>" — 1) (mod ®3.(q)?)
and

30s _ 1 _ 1-s(@® -1
Sl —1) 1—s2(g3" —1)2

Also, for each 1 < k < 3% — 1, we have

=1-5(¢>" —1) (mod ®3.(q)?).

q

qw(ga ) (3 k)

B —H, < ;il )

1

@@ =) k=) (391, 4 [h],) [,
- ) (1‘2 2 )

¢ F(B2 — [R2 A Bl
() (1 (UEIER ) g 3Ty (63 1)) ([39), + [K],)
- —wg
% = qj[?’a]q
(1+2j§1 )
b(k)—(5) a_ L) _ a_ .
T ()

—(*) 3%-1 ; —(*
1 P A QUL

He 42, Ul 2
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Clearly,
3%—1 qj 39—1 1+q]_1 39—1 1
B D e T [¢ B RS Y
jzzk;rl 7la jzzk;rl 714 ! j:zk—:i—l 7]
and
S 132 1
2T, T2 & (E* [:aa—g]q)
=52 (- ) =5 a0 tod 2o
Thus we get
R R L A Y 13,
(! 2T, )+ (1 2 i)
w(k)—=(3) a_py_ )
= _ q [k]q ((1/}(3 ];C)L ¢(k7) + g(ga . 1) o k‘) (q3 o 1))
O PR PR P W A P
ar (22 o, T2 2 T B

It follows that
3@21 K\ ¢?® [2.30 -1
— 3 [k]q k o 1 q
391 _(k a
k—1 ¢’ & ([3 lg
W, \ [,

+ W, (k)(1 - q3a)> (mod ®3.(q)?).

Noting that [3?], divides both sides of the above congruence by Theorem
2.1 and [2 - 3%], = 2[3%], (mod [3%]2), we are done. [

Proof of Theorem 1.3. Let m € Z*. By [T, (4.3)] in the case d = 0, we

have
3a 3@
k

L] E e O], e

0 k=1
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where

() = 2B R @ ) E) -G oy

Whenever k = [ (mod 37) with k,1 € Z and 1 < j < a, we have

2k +1) — (g) = 4k — (g) — 0 (mod 3)

() ()
=(k —1) (2(k+l) — (g)) =0 (mod 37*1).

So the function ¥ = 1,,, has the property described in Theorem 2.1. Com-
bining (2.1) with (3.3) we get (1.3).

Now it remains to prove (1.4). By (3.3) and Lemma 3.1, we finally
obtain

3%-1 3%—-1
B2k wii) (K 237
> a { k } == q 3 k
q k=1 )

and hence

k=0
391
. G2k (—1)P k-1 3141
52[3]§§:q 5 [k]g (1+( I )(l—qk))
k=1 9
3lk—1

(mod @5 (q)[3°12).

This concludes our proof. [
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