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Abstract. Let p be an odd prime. In 2008 E. Mortenson proved van Hamme’s

following conjecture:

(p−1)/2∑
k=0

(4k + 1)
(−1/2

k

)3
≡ (−1)(p−1)/2p (mod p3).

In this paper we show further that

p−1∑
k=0

(4k + 1)
(−1/2

k

)3
≡

(p−1)/2∑
k=0

(4k + 1)
(−1/2

k

)3
≡(−1)(p−1)/2p+ p3Ep−3 (mod p4),

where E0, E1, E2, . . . are Euler numbers. We also prove that if p > 3 then

(p−1)/2∑
k=0

20k + 3

(−210)k

( 4k

k, k, k, k

)
≡ (−1)(p−1)/2p(2p−1 +2− (2p−1−1)2) (mod p4).
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1. Introduction

In 1859 G. Bauer obtained the identity

∞∑
k=0

(4k + 1)

(
−1/2

k

)3

=
2

π

which was later reproved by S. Ramanujan [R] in 1914. (Note that
(−1/2

k

)
=(

2k
k

)
/(−4)k for all k = 0, 1, 2, . . . .) In 1997 van Hamme [vH] conjectured that

p−1∑
k=0

(4k + 1)

(
−1/2

k

)3

=

p−1∑
k=0

(4k + 1)

(
2k
k

)3
(−64)k

≡ (−1)(p−1)/2p (mod p3)

for any odd prime p, which was first confirmed by E. Mortenson [Mo] in 2008
via a deep method involving the p-adic Γ-function and Gauss and Jacobi sums.

Throughout this paper, for an odd prime p, we use ( ·p ) to denote the

Legendre symbol. Recall that the Euler numbers E0, E1, E2, . . . are integers
given by

E0 = 1 and

n∑
k=0
2|k

(
n

k

)
En−k = 0 (n = 1, 2, 3, . . . ).

It is well known that

2ex

e2x + 1
=

∞∑
n=0

En
xn

n!
for |x| < π

2
.

In this paper we obtain the following refinement of the congruence by van
Hamme and Mortenson via an elementary approach.

Theorem 1.1. Let p be an odd prime. Then

p−1∑
k=0

(4k + 1)

(
2k
k

)3
(−64)k

≡
(p−1)/2∑

k=0

(4k + 1)

(
2k
k

)3
(−64)k

≡ p
(
−1

p

)
+ p3Ep−3 (mod p4).

(1.1)

Remark 1.1. The only previously proved congruence mod p4 of the same kind
is the following one conjectured by van Hamme [vH] and confirmed by L. Long
[Lo]:

(p−1)/2∑
k=0

(6k + 1)

(
2k
k

)3
256k

≡ p
(
−1

p

)
(mod p4) for any prime p > 3.
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For each nonnegative integer k, it is clear that

(
4k

k, k, k, k

)
=

(4k)!

k!4
=

(
4k

2k

)(
2k

k

)2

.

In a way similar to the proof of Theorem 1.1, we also deduce the following
result.

Theorem 1.2. Let p > 3 be a prime. Then

(p−1)/2∑
k=0

20k + 3

(−210)k

(
4k

k, k, k, k

)
≡ p

(
−1

p

)(
2p−1 + 2− (2p−1 − 1)2

)
(mod p4).

(1.2)

Remark. 1.2. (a) The congruence in Theorem 1.2 gives the mod p4 analogy of
the Ramanujan series

∞∑
k=0

20k + 3

(−210)k

(
4k

k, k, k, k

)
=

8

π
.

See [BB], [BBC] and [Be, pp.353-354] for more such series. The mod p3

analogy of the above series is known (cf. [Zu]).

(b) By the same method, the author ever proved that

p−1∑
k=0

20k + 3

(−210)k

(
4k

k, k, k, k

)
≡ 3p

(
−1

p

)
+ 3p3Ep−3 (mod p4) (1.3)

for any odd prime p; unfortunately he has lost the draft containing the com-
plicated details.

Theorems 1.1 and 1.2 will be proved in Sections 2 and 3 respectively.

The author [Su2, Conjecture 5.1] raised several conjectures similar to (1.1).
Here we pose a new conjecture motivated by the Ramanujan series

∞∑
k=0

7k + 1

648k

(
4k

k, k, k, k

)
=

9

2π
.
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Conjecture 1.1. For any prime p > 3 we have

p−1∑
k=0

7k + 1

648k

(
4k

k, k, k, k

)
≡ p

(
−1

p

)
− 5

3
p3Ep−3 (mod p4). (1.4)

Also, for n = 2, 3, . . . we have

1

2n(2n+ 1)
(
2n
n

) n−1∑
k=0

(7k + 1)

(
4k

k, k, k, k

)
648n−1−k ∈ Z

unless 2n+ 1 is a power of 3 in which case the quotient is a rational number
with denominator 3.

Remark 1.3. It seems that the method for our proofs of (1.1) and (1.2) does
not work for (1.4).

In 2010, L. L. Zhao, H. Pan and the author [ZPS] proved that

p−1∑
k=1

2k

k

(
3k

k

)
≡ 0 (mod p)

for any odd prime p. Here we raise a further conjecture.

Conjecture 1.2. Let p be an odd prime. Then

p−1∑
k=1

2k

k

(
3k

k

)
≡ −3

p
(2p−1 − 1)2 (mod p2) (1.5)

and
p−1∑
k=1

2k

k2

(
3k

k

)
≡ 6

(
−1

p

)
Ep−3 (mod p). (1.6)

Also,

p

p−1∑
k=1

1

k2k
(
3k
k

) ≡ { 0 (mod p2) if p ≡ 1 (mod 4),

−3/5 (mod p2) if p ≡ 3 (mod 4),
(1.7)

p

p−1∑
k=1

1

k22k
(
3k
k

) ≡ 1− 4p−1

4p
(mod p2) if p > 3, (1.8)

and

p−1∑
k=1

2k
(

3k

k

) k∑
j=1

1

j2
≡ 0 (mod p) if p > 5 and p ≡ 1 (mod 4). (1.9)



A REFINEMENT OF A CONGRUENCE RESULT 5

2. Proof of Theorem 1.1

We need some classical congruences.

Lemma 2.1. Let p > 3 be a prime.
(i) (J. Wolstenholme [W]) We have

p−1∑
k=1

1

k
≡ 0 (mod p2),

p−1∑
k=1

1

k2
≡ 0 (mod p), (2.1)

and
1

2

(
2p

p

)
=

(
2p− 1

p− 1

)
≡ 1 (mod p3). (2.2)

(ii) (F. Morley [M]) We have(
p− 1

(p− 1)/2

)
≡ (−1)(p−1)/24p−1 (mod p3). (2.3)

The most crucial lemma we need is the following sophisticated result.

Lemma 2.2 (Sun [Su1]). Let p be an odd prime. Then

(p−1)/2∑
k=1

4k

(2k − 1)
(
2k
k

) ≡ Ep−3 − 1 +

(
−1

p

)
(mod p) (2.4)

and
(p−1)/2∑

k=1

4k

k(2k − 1)
(
2k
k

) ≡ 2Ep−3 (mod p). (2.5)

Remark 2.1. Actually (2.4) and (2.5) are equivalent since

1

2

n∑
k=1

4k

k
(
2k
k

) =
4n(
2n
n

) − 1;

they are (1.3) and (3.1) of Sun [Su1] respectively.

Proof of Theorem 1.1. (i) Clearly the first congruence in (1.1) has the following
equivalent form:

∑
p/2<k<p

(4k + 1)

(
2k
k

)3
(−64)k

≡ 0 (mod p4).
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For k ∈ {1, . . . , (p− 1)/2}, it is obvious that

1

p

(
2(p− k)

p− k

)
=

1

p
×

p!
∏p−2k

s=1 (p+ s)

((p− 1)!/
∏

0<t<k(p− t))2

≡ (k − 1)!2

(p− 1)!/(p− 2k)!
≡ − (k − 1)!2

(2k − 1)!
= − 2

k
(
2k
k

) (mod p).

(See also [Su2, Lemma 2.1].) Thus

1

p3

∑
p/2<k<p

(4k + 1)

(
2k
k

)3
(−64)k

=

(p−1)/2∑
k=1

4(p− k) + 1

(−64)p−k

((
2(p−k)
p−k

)
p

)3

≡
(p−1)/2∑

k=1

(1− 4k)(−64)k−1

(
−2

k
(
2k
k

))3

=− 1

8

(p−1)/2∑
k=1

4k − 1

k3
(−1/2

k

)3 =

(p−1)/2∑
k=1

4k − 1(−3/2
k−1

)3
≡

(p−3)/2∑
k=0

4(k + 1)− 1(
(p−3)/2

k

)3 =
1

2

(p−3)/2∑
k=0

(4k + 3) + 4((p− 3)/2− k) + 3(
(p−3)/2

k

)3
≡0 (mod p)

and hence the first congruence in (1.1) follows.

(ii) Below we prove the second congruence in (1.1). For k, n = 0, 1, 2, . . .
define

F (n, k) =
(−1)n+k(4n+ 1)

43n−k

(
2n

n

)2
(
2n+2k
n+k

)(
n+k
2k

)(
2k
k

)
and

G(n, k) =
(−1)n+k(2n− 1)2

(
2n−2
n−1

)2
2(n− k)43(n−1)−k

(
2(n− 1 + k)

n− 1 + k

)(n−1+k
2k

)(
2k
k

) .

Clearly F (n, k) = G(n, k) = 0 if n < k. It can be easily verified that

F (n, k − 1)− F (n, k) = G(n+ 1, k)−G(n, k)
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for all nonnegative integers n and k > 0 as observed by S. B. Ekhad and D.
Zeilberger [EZ].

Let m = (p− 1)/2. In the spirit of the WZ (Wilf-Zeilberger) method (see
the book of M. Petkovšek, H. S. Wilf and D. Zeilberger [PWZ], and [AZ] and
[Z] for this method), we have

m∑
n=0

F (n, 0)− F (m,m) =

m∑
n=0

F (n, 0)−
m∑

n=0

F (n,m)

=

m∑
k=1

( m∑
n=0

F (n, k − 1)−
m∑

n=0

F (n, k)

)

=

m∑
k=1

m∑
n=0

(G(n+ 1, k)−G(n, k)) =

m∑
k=1

G(m+ 1, k),

that is,
m∑

n=1

4n+ 1

(−64)n

(
2n

n

)3

− 4m+ 1

42m

(
4m

2m

)(
2m

m

)

=

m∑
k=1

(−1)m+k+1(2m+ 1)2
(
2m
m

)2
2(m+ 1− k)43m−k

(
2m+ 2k

m+ k

)(m+k
2k

)(
2k
k

) .

(2.6)

For 0 < k 6 m = (p− 1)/2, clearly

1

p

(
2m+ 2k

m+ k

)
=

(p− 1)!(p+ 1) · · · (p+ 2k − 1)

m!2
∏k

j=1((p+ 2j − 1)/2)2

≡(−1)(p−1)/2
(p− 1)!∏(p−1)/2

k=1 k(p− k)
· (2k − 1)!

((2k − 1)!!/2k)2

≡
(
−1

p

)
(2k − 1)!

((2k)!/(k!4k))2
=

(
−1

p

)
42k

2k
(
2k
k

) (mod p)

and(
m+ k

2k

)
≡
(
k − 1/2

2k

)
=

∏k
j=1(−(2j − 1)/2)(2j − 1)/2

(2k)!

=
(−1)k((2k − 1)!!)2

4k(2k)!
=

((2k)!/
∏k

j=1(2j))2

(−4)k(2k)!
=

(
2k
k

)
(−16)k

(mod p).

Note also that

(4m+ 1)

(
4m

2m

)
= (2p− 1)

(
2p− 2

p− 1

)
= p

(
2p− 1

p

)
≡ p (mod p4)
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by the Wolstenholme congruence (2.2). Thus, in view of the above and Mor-
ley’s congruence (2.3), we obtain from (2.6) that

m∑
k=0

(4k + 1)

(
2k
k

)3
(−64)k

− p(−1)(p−1)/2

≡p3
m∑

k=1

(−1)k−142k

2((p+ 1)/2− k)23(p−1)−2k2k
(
2k
k

)
(−16)k

≡p
3

2

(p−1)/2∑
k=1

4k

k(2k − 1)
(
2k
k

) (mod p4)

Combining this with (2.5) we get the second congruence in (1.1).
The proof of Theorem 1.1 is now complete. �

3. Proof of Theorem 1.2

Lemma 3.1. Let p be an odd prime. Then(
(p− 1)/2 + k

2k

)
≡

(
2k
k

)
(−16)k

(mod p2). (3.1)

Remark 3.1. (3.1) is easy, see [S, Lemma 2.2] for a proof.

Recall that the harmonic numbers are those rational numbers

Hn :=

n∑
k=1

1

k
(n = 1, 2, . . . ),

together with H0 = 0. For an odd prime p we write qp(2) for the Fermat
quotient (2p−1 − 1)/p.

Lemma 3.2 (E. Lehmer [L]). For any odd prime p we have

H(p−1)/2 ≡ −2qp(2) + p qp(2)2 (mod p2). (3.2)

Lemma 3.3. Let p be an odd prime. Then

(p−1)/2∑
k=1

Hk−1

k
≡ 2qp(2)2 (mod p). (3.3)
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Proof. For k = 1, . . . , p− 1 we have(
p
k

)
p

=

(
p−1
k−1
)

k
=

(−1)k−1

k

∏
0<j<k

(
1− p

j

)
≡ (−1)k−1

k
(1− pHk−1) (mod p2).

Thus
(p−1)/2∑

k=1

pHk−1 − 1

k
≡ 1

p

(p−1)/2∑
k=1

(−1)k
(
p

k

)
(mod p2).

As
∑(p−1)/2

k=0 (−1)k
(
p
k

)
is the coefficient of x(p−1)/2 in (1 − x)p(1 − x)−1, we

have

1

p

(p−1)/2∑
k=1

(−1)k
(
p

k

)
=

(
p−1

(p−1)/2
)
(−1)(p−1)/2 − 1

p
≡ 4p−1 − 1

p
(mod p2)

with the help of Morley’s congruence (2.3). Therefore, in view of Lehmer’s
congruence (3.2), we have

p

(p−1)/2∑
k=1

Hk−1

k
≡H(p−1)/2 +

2p−1 − 1

p
(2p−1 + 1)

≡− 2qp(2) + p qp(2)2 + qp(2)(2 + p qp(2))

=2p qp(2)2 (mod p2)

and hence (3.3) holds. �

Lemma 3.4. Let p = 2m+ 1 be an odd prime. Then

6m+ 1

28m

(
6m

3m

)(
3m

m

)
≡ p

(
−1

p

)
(mod p4). (3.4)

Proof. Observe that

(6m+ 1)

(
6m

3m

)(
3m

m

)
=

(3m+ 1) · · · (6m+ 1)

m!(2m)!

=
(p+ (p− 1)/2) · · · 2p · · · (3p− 2)

(p− 1)!((p− 1)/2)!
=

(p+ (p+ 1)/2) · · · 2p · · · (3p− 1)

2× (p− 1)!((p− 1)/2)!

=p

(p−1)/2∏
k=1

(2p− k)(2p+ k)

k2
×

∏
p/2<j<p

2p+ j

j

=p(−1)(p−1)/2
(p−1)/2∏

k=1

(
1− 4p2

k2

) ∏
p/2<j<p

(
1 +

2p

j

)
.
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Clearly
(p−1)/2∏

k=1

(
1− 4p2

k2

)
≡ 1− 4p2

(p−1)/2∑
k=1

1

k2
≡ 1 (mod p3)

since

2

(p−1)/2∑
k=1

1

k2
≡

(p−1)/2∑
k=1

(
1

k2
+

1

(p− k)2

)
≡

p−1∑
k=1

1

k2
≡ 0 (mod p).

So it suffices to prove that∏
p/2<j<p

(
1 +

2p

j

)
≡ 24(p−1) (mod p3). (3.5)

Observe that∏
p/2<j<p

(
1 +

2p

j

)
≡1 + 2p

∑
p/2<j<p

1

j
+ 4p2

∑
p/2<i<j<p

1

ij

≡1 + 2p(Hp−1 −H(p−1)/2) + 2p2
(( ∑

p/2<k<p

1

k

)2

−
∑

p/2<k<p

1

k2

)
≡1− 2pH(p−1)/2 + 2p2(−H(p−1)/2)2 (by (2.1))

≡1− 2p(p qp(2)2 − 2qp(2)) + 2p24qp(2)2 (by (3.2))

=1 + 4p qp(2) + 6p2qp(2)2 ≡ (1 + p qp(2))4 = 24(p−1) (mod p3).

This proves (3.5) and hence (3.4) follows. �

Proof of Theorem 1.2. (i) For n, k ∈ N, define

F (n, k) :=
(−1)n+k(20n− 2k + 3)

45n−k
·
(
2n
n

)(
4n+2k
2n+k

)(
2n+k
2k

)(
2n−k

n

)(
2k
k

) .

and

G(n, k) :=
(−1)n+k

45n−4−k
·
n
(
2n−1
n−1

)(
4n+2k−2
2n+k−1

)(
2n+k−1

2k

)(
2n−k−1

n−1
)(

2k
k

) .

Clearly F (n, k) = 0 if n < k. It can be easily verified that

F (n, k − 1)− F (n, k) = G(n+ 1, k)−G(n, k)
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for all nonnegative integers n and k > 0; the WZ-pair F and G stated in [Zu]
was found in the spirit of [EZ] and [PWZ].

As in the proof of Theorem 1.1, for any positive integer N we have

N∑
n=0

F (n, 0)− F (N,N) =

N∑
k=1

G(N + 1, k),

that is,

N∑
n=0

20n+ 3

(−210)n

(
2n

n

)2(
4n

2n

)
− 18N + 3

28N

(
6N

3N

)(
3N

N

)

=(N + 1)

(
2N + 1

N

) N∑
k=1

(−1)N+k+1
(
4N+2k+2
2N+k+1

)(
2N+k+1

2k

)(
2N−k+1

N

)
45(N+1)−4−k

(
2k
k

) .

(3.6)

For 1 6 k 6 N , clearly

(
4N + 2k + 2

2N + k + 1

)(
2N + k + 1

2k

)(
2N − k + 1

N

)
=

(
4N + 2k + 2

2k

)(
4N + 2

2N − k + 1

)(
2N − k + 1

N

)
=

(
4N + 2k + 2

2k

)(
4N + 2

N

)(
3N + 2

N − k + 1

)
.

So we also have

N∑
n=0

20n+ 3

(−210)n

(
2n

n

)2(
4n

2n

)
− 18N + 3

28N

(
6N

3N

)(
3N

N

)

=(N + 1)

(
2N + 1

N

)(
4N + 2

N

) N∑
k=1

(−1)N+k+1
(
4N+2k+2

2k

)(
3N+2
N−k+1

)
45N+1−k

(
2k
k

) .

(3.7)

(ii) Let m = (p− 1)/2. Observe that

(m+ 1)

(
2m+ 1

m

)
= p

(
p− 1

(p− 1)/2

)
≡ p(−1)m4p−1 (mod p4)
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by Morley’s congruence (2.3). Also,

(
4m+ 2

m

)
=

(
2p

(p− 1)/2

)
=

4p

p+ 1

(
2p− 1

p

)(
p− 1

(p− 1)/2

) (p+1)/2∏
k=1

(
1 +

p

k

)−1
≡ 4p

p+ 1
(−1)(p−1)/24p−1

(p+1)/2∏
k=1

(
1− p

k

)
≡p4p(−1)m(1− p)(1− pH(p+1)/2)

≡p4p(−1)m(1− p)(1− 2p+ 2p qp(2))

≡p4p(−1)m(1− 3p+ 2p qp(2)) (mod p3)

by Lehmer’s congruence (3.2). Therefore

(m+ 1)
(
2m+1

m

)(
4m+2

m

)
45m+1

≡p2 42(p−1)(1− 3p+ 2p qp(2))

44m(1 + p qp(2))

≡p2(1− p qp(2))(1− 3p+ 2p qp(2))

≡p2(1− 3p+ p qp(2)) (mod p4).

Observe that

m∑
k=1

(−1)k
(
4m+2k+2

2k

)(
3m+2
m−k+1

)
4−k

(
2k
k

)
≡

m∑
k=1

(−1)k

(
2p+2k

2k

)(
p+(p+1)/2
(p+1)/2−k

)
4−k

(
(p−1)/2+k

2k

)
(−16)k

=

m∑
k=1

(2p+ 1) · · · (2p+ 2k)(p+ k + 1) · · · (p+ (p+ 1)/2)

((p+ 1)/2− k)!4k((p− 1)/2 + k)!/((p− 1)/2− k)!

=
(p+ 1) · · · (p+ (p+ 1)/2)

((p− 1)/2)!

m∑
k=1

∏k
j=1(2p+ 2j − 1)

((p+ 1)/2− k)2k
∏k

j=1((p− 1)/2 + j)

=
3p+ 1

2

(p−1)/2∏
j=1

(
1 +

p

j

) m∑
k=1

∏k
j=1(1 + p/(p+ 2j − 1))

(p+ 1)/2− k
(mod p2)
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and hence

m∑
k=1

(−1)k
(
4m+2k+2

2k

)(
3m+2
m−k+1

)
4−k

(
2k
k

)
≡3p+ 1

2
(1 + pH(p−1)/2)

m∑
s=1

1 + p
∑(p+1)/2−s

j=1 1/(2j − 1)

s

≡1 + 3p− 2p qp(2)

2

(
Hm +

m∑
s=1

p

s

(p−1)/2∑
t=s

1

2((p+ 1)/2− t)− 1

)

≡1 + 3p− 2p qp(2)

2

(
Hm −

p

2

m∑
s=1

Hm −Hs−1

s

)

≡1 + 3p− 2p qp(2)

2

(
Hm −

p

2
H2

m +
p

2

m∑
k=1

Hk−1

k

)
(mod p2).

Applying Lemmas 3.2 and 3.3 we get

m∑
k=1

(−1)k
(
4m+2k+2

2k

)(
3m+2
m−k+1

)
4−k

(
2k
k

)
≡1 + 3p− 2p qp(2)

2

(
−2qp(2) + p qp(2)2 − p

2
· 4qp(2)2 +

p

2
· 2qp(2)2

)
≡− qp(2)(1 + 3p− 2p qp(2)) (mod p2).

Let L and R denote the left-hand side and the right-hand side of (3.7) with
N = m respectively. By the above,

R ≡p2(1− 3p+ p qp(2))(−1)m+1(−qp(2))(1 + 3p− 2pqp(2))

≡p2(−1)mqp(2)(1− p qp(2))

=p

(
−1

p

)
(2p−1 − 1)(1− (2p−1 − 1)) (mod p4).

On the other hand, with the help of Lemma 3.4 we have

L =

(p−1)/2∑
k=0

20k + 3

(−210)k

(
4k

k, k, k, k

)
− 3p

(
−1

p

)
(mod p4).

So (3.7) with N = m yields the desired (1.2). We are done. �
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