ON A SEQUENCE INVOLVING SUMS OF PRIMES

ZHI-WEI SUN

Department of Mathematics, Nanjing University
Nanjing 210093, People’s Republic of China
zwsun@nju.edu.cn
http://math.nju.edu.cn/~zwsun

ABSTRACT. For \(n = 1, 2, 3, \ldots \) let \(S_n \) be the sum of the first \(n \) primes. We mainly show that the sequence \(a_n = \sqrt[n]{S_n} / n \) \((n = 1, 2, 3, \ldots)\) is strictly decreasing, and moreover the sequence \(a_{n+1}/a_n \) \((n = 10, 11, \ldots)\) is strictly increasing. We also formulate similar conjectures involving twin primes or partitions of integers.

1. Introduction

For \(n \in \mathbb{Z}^+ = \{1, 2, 3, \ldots\} \) let \(p_n \) denote the \(n \)th prime. The unsolved Firoozbakht conjecture (cf. [R, p. 185]) asserts that
\[
\sqrt[n]{p_n} > \sqrt[n+1]{p_{n+1}} \quad \text{for all } n \in \mathbb{Z}^+,
\]
i.e., the sequence \((\sqrt[n]{p_n})_{n \geq 1}\) is strictly decreasing. This implies the inequality \(p_{n+1} - p_n < \log^2 p_n - \log p_n + 1 \) for large \(n \), which is even stronger than Cramér’s conjecture \(p_{n+1} - p_n = O(\log^2 p_n) \). Let \(P_n \) be the product of the first \(n \) primes. Then \(P_n < p_n^n \) and hence \(P_{n+1} < p_{n+1}^n \). So the sequence \((\sqrt[n]{P_n})_{n \geq 1}\) is strictly increasing.

Now let us look at a simple example not related to primes.

Example 1.1. Let \(a_n = \sqrt[n]{n} \) for \(n \in \mathbb{Z}^+ \). Then the sequence \((a_n)_{n \geq 3}\) is strictly decreasing, and the sequence \((a_{n+1}/a_n)_{n \geq 4}\) is strictly increasing. To see this we investigate the function \(f(x) = \log(x^{1/x}) = (\log x)/x \) with \(x \geq 3 \). As \(f'(x) = (1 - \log x)/x^2 < 0 \), we have \(f(n) > f(n+1) \) for \(n = 3, 4, \ldots \). Since
\[
f''(x) = \frac{2 \log x - 3}{x^3} > 0 \quad \text{for } x \geq 4.5,
\]

2010 Mathematics Subject Classification. Primary 11A41; Secondary 05A17, 05A20, 11B75, 11B83, 11J99, 11P83.

Keywords. Primes, sums of primes, monotonicity, twin primes, partitions of integers.

Supported by the National Natural Science Foundation (grant 11171140) of China and the PAPD of Jiangsu Higher Education Institutions.
the function $f(x)$ is strictly convex over the interval $(4.5, +\infty)$ and so

$$2f(n + 1) < f(n) + f(n + 2) \quad \text{(i.e., } a_{n+1}^2 < a_n a_{n+2} \text{) for } n = 5, 6, \ldots.$$

The inequality $a_2^2 < a_4 a_6$ can be verified directly.

A sequence $(a_n)_{n\geq 1}$ of nonnegative real numbers is said to be log-convex if $a_{n+1}^2 \leq a_n a_{n+2}$ for all $n = 1, 2, 3, \ldots$. Many combinatorial sequences (such as the sequence of the Catalan numbers) are log-convex, the reader may consult [LW] for some results on log-convex sequences.

For $n \in \mathbb{Z}^+$ let $S_n = \sum_{k=1}^n p_k$ be the sum of the first n primes. For instance, $S_1 = 2$, $S_2 = 2 + 3 = 5$, $S_3 = 2 + 3 + 5 = 10$, $S_4 = 2 + 3 + 5 + 7 = 17$.

Recently the author [S] conjectured that for any positive integer n the interval (S_n, S_{n+1}) contains a prime. As $S_n < n p_{n+1}$ for all $n \in \mathbb{Z}^+$, the sequence $(S_n/n)_{n\geq 1}$ is strictly increasing.

In the next section we will state our theorems involving the sequence $(a_n)_{n\geq 1}$ with $a_n = \sqrt[n]{S_n/n}$, and pose three related conjectures for further research. Section 3 is devoted to our proofs of the theorems.

2. Our results and conjectures

Theorem 2.1. The sequences $(\sqrt[n]{S_n})_{n\geq 2}$ and $(\sqrt[n]{S_n/n})_{n\geq 1}$ are strictly decreasing.

Remark 2.2. Note that S_n/n is just the arithmetic mean of the first n primes. It is interesting to compare Theorem 2.1 with Firoozbakht’s conjecture that $(\sqrt[n]{p_n})_{n\geq 1}$ is strictly decreasing.

For $\alpha > 0$ and $n \in \mathbb{Z}^+$ define

$$S_n^{(\alpha)} = \sum_{k=1}^n p_k^\alpha.$$

We actually obtain the following extension of Theorem 2.1.

Theorem 2.3. Let $\alpha \geq 1$ and $n \in \mathbb{Z}^+$ with $n \geq \max\{100, e^{2 \times 1.348 + 1}\}$. Then

$$\sqrt[n]{S_n^{(\alpha)}} > \sqrt[n+1]{S_{n+1}^{(\alpha)}}$$

and hence

$$\sqrt[n]{S_n^{(\alpha)}} > \sqrt[n+1]{S_{n+1}^{(\alpha)}}.$$ \hspace{1cm} (2.1)

Remark 2.4. In view of Example 1.1, (2.1) implies (2.2) if $n \geq 3$. We conjecture that (2.1) holds for any $\alpha > 0$ and $n \in \mathbb{Z}^+$.

Note that $\lfloor e^{2 \times 1.348 + 1} \rfloor = 40$ and we can easily verify that

$$\sqrt[n]{S_n^n} > \sqrt[n+1]{S_{n+1}^{(\alpha)}}$$

for every $n = 1, \ldots, 99$.

So Theorem 2.1 follows from Theorem 2.3 in the case $\alpha = 1$.

Corollary 2.5. For each \(\alpha \in \{2, 3, 4\} \), the sequences

\[
\left(\sqrt[n+1]{\frac{S_{n+1}}{n+1}} \right)_{n \geq 1} \text{ and } \left(\sqrt[n]{\frac{S_n}{n}} \right)_{n \geq 1}
\]

are strictly decreasing.

Proof. Observe that

\[
\left\lfloor e^{2 \times 1.348^2 + 1} \right\rfloor = 102, \quad \left\lfloor e^{2 \times 1.348^3 + 1} \right\rfloor = 364, \quad \left\lfloor e^{2 \times 1.348^4 + 1} \right\rfloor = 2005.
\]

In light of Theorem 2.3 and Example 1.1, it suffices to verify that

\[
\frac{\sqrt[n]{S_n}}{n} > \frac{\sqrt[n+1]{S_{n+1}}}{n+1}
\]

whenever \(\alpha \in \{2, 3, 4\} \) and \(n \in \{1, \ldots, \left\lfloor e^{2 \times 1.348^\alpha + 1} \right\rfloor\} \). These can be easily done via computer. \(\square \)

Our following theorem is more sophisticated than Theorem 2.3.

Theorem 2.6. Let \(\alpha \geq 1 \). Then the sequence

\[
\left(\frac{n+1}{\sqrt[n+1]{S_{n+1}/(n+1)}} \right) \left(\frac{\sqrt[n]{S_n/n}}{\sqrt[n]{S_n/n}} \right)_{n \geq N(\alpha)}
\]

is strictly increasing, where

\[
N(\alpha) = \max \left\{ 350000, \left\lfloor e^{((\alpha+1)^2 \times 2^{\alpha+1} + (\alpha+1) \times 2^{\alpha+1})/\alpha} \right\rfloor \right\}.
\]

Corollary 2.7. All the sequences

\[
\left(\frac{n}{\sqrt[n+1]{S_{n+1}/(n+1)}} \right)_{n \geq 10}, \quad \left(\frac{n+1}{\sqrt[n+1]{S_{n+1}/n}} \right)_{n \geq 5},
\]

\[
\left(\frac{n+1}{\sqrt[n+1]{S_{n+1}^{(2)}/(n+1)}} \right)_{n \geq 13}, \quad \left(\frac{n}{\sqrt[n]{S_n/n}} \right)_{n \geq 5},
\]

\[
\left(\frac{n+1}{\sqrt[n+1]{S_{n+1}^{(3)}/(n+1)}} \right)_{n \geq 17}, \quad \left(\frac{n}{\sqrt[n]{S_n/n}} \right)_{n \geq 10},
\]

\[
\left(\frac{n+1}{\sqrt[n+1]{S_{n+1}^{(4)}/(n+1)}} \right)_{n \geq 35}, \quad \left(\frac{n}{\sqrt[n]{S_n/n}} \right)_{n \geq 17}
\]

are strictly increasing.
Proof. For \(N(\alpha) \) given by (2.3), via computation we find that
\[
N(1) = 350000, \quad N(2) = 974267, \quad N(3) = 3163983273
\]
and
\[
N(4) = 2271069361863763.
\]
Via computer we can verify that
\[
\frac{n+1}{\sqrt{n+1}} S_n^{\alpha} / (n+1) < \frac{n+2}{\sqrt{n+2}} S_n^{\alpha} / (n+1)
\]
for all \(\alpha \in \{1, 2, 3, 4\} \) and \(n = N_0(\alpha), \ldots, N(\alpha) - 1 \), where
\[
N_0(1) = 10, \quad N_0(2) = 13, \quad N_0(3) = 17, \quad N_0(4) = 35.
\]
Combining this with Theorem 2.3 we obtain that
\[
\left(\frac{n+1}{\sqrt{n+1}} S_n^{\alpha} / (n+1) \right)_{n \geq N_0(\alpha)}
\]
is strictly increasing for each \(\alpha = 1, 2, 3, 4 \). Recall that \(\frac{n+1}{\sqrt{n+1}} \sqrt{n+1} \) is strictly increasing by Example 1.1. So \(\left(\frac{n+1}{\sqrt{n+1}} S_n^{\alpha} / \sqrt{n} \right)_{n \geq N_0(\alpha)} \) is strictly increasing for any \(\alpha \in \{1, 2, 3, 4\} \). It remains to check that
\[
\frac{n+1}{\sqrt{n+1}} S_n^{\alpha} / \sqrt{n} < \frac{n+2}{\sqrt{n+2}} S_n^{\alpha} / \sqrt{n+1}
\]
for all \(\alpha \in \{1, 2, 3, 4\} \) and \(n = n_0(\alpha), \ldots, N_0(\alpha) - 1 \), where \(n_0(1) = 5, \ n_0(2) = n_0(3) = 10, \) and \(n_0(4) = 17 \). This can be easily done via computer. \(\square \)

We conclude this section by posing three conjectures.

Conjecture 2.8. The two constants
\[
s_1 = \sum_{n=1}^{\infty} \frac{1}{S_n} \quad \text{and} \quad s_2 = \sum_{n=1}^{\infty} \frac{(-1)^n}{S_n}
\]
are both transcendental numbers.

Remark 2.9. Our computation shows that \(s_1 \approx 1.023476 \) and \(s_2 \approx -0.3624545778 \).

If \(p \) and \(p+2 \) are both primes, then they are called twin primes. The famous twin prime conjecture states that there are infinitely many twin primes.
Conjecture 2.10. (i) If \(\{t_1, t_1 + 2\}, \ldots, \{t_n, t_n + 2\}\) are the first \(n \) pairs of twin primes, then the first prime \(t_{n+1} \) in the next pair of twin primes is smaller than \(t_n^{1+1/n} \), i.e., \(\sqrt[n]{T_n} > \sqrt[n]{t_{n+1}} \).

(ii) The sequence \(\sqrt[n]{T_{n+1}} / \sqrt[n]{T_n} \) is strictly increasing, and that the sequences \((\sqrt[n]{T_{n+1}} / \sqrt[n]{T_n})_{n \geq 2} \) is strictly increasing with limit 1, where \(T_n = \sum_{k=1}^{n} t_k \).

Remark 2.11. Via Mathematica the author has verified that \(\sqrt[n]{T_n} > \sqrt[n]{t_{n+1}} \) for all \(n = 1, \ldots, 500000 \), and \(\sqrt[n]{T_{n+1}} / \sqrt[n]{T_n} < \sqrt[n]{T_{n+2}} / \sqrt[n]{T_{n+1}} \) for all \(n = 9, \ldots, 500000 \). Note that \(t_{500000} = 115438667 \).

Recall that a partition of a positive integer \(n \) is a way of writing \(n \) as a sum of positive integers with the order of addends ignored. Also, a strict partition of \(n \in \mathbb{Z}^+ \) is a way of writing \(n \) as a sum of distinct positive integers with the order of addends ignored. For \(n = 1, 2, 3, \ldots \) we denote by \(p(n) \) and \(p_\ast(n) \) the number of partitions of \(n \) and the number of strict partitions of \(n \) respectively. It is known that

\[
p(n) \sim \frac{e^{\sqrt{2n/3}}}{4\sqrt{3n^3}} \quad \text{and} \quad p_\ast(n) \sim \frac{e^{\sqrt{n/3}}}{4(3n^3)^{1/4}} \quad \text{as} \quad n \to +\infty
\]

(cf. [HR] and [AS, p. 826]) and hence \(\lim_{n \to +\infty} \sqrt[n]{p(n)} = \lim_{n \to +\infty} \sqrt[n]{p_\ast(n)} = 1 \).

Here we formulate a conjecture similar to Conjecture 2.10.

Conjecture 2.12. For \(n \in \mathbb{Z}^+ \) let

\[
q(n) = \frac{p(n)}{n}, \quad q_\ast(n) = \frac{p_\ast(n)}{n}, \quad r(n) = \sqrt[n]{q(n)}, \quad \text{and} \quad r_\ast(n) = \sqrt[n]{q_\ast(n)}.
\]

Then the sequences \((q(n+1)/q(n))_{n \geq 31} \) and \((q_\ast(n+1)/q_\ast(n))_{n \geq 44} \) are strictly decreasing, and the sequences \((r(n+1)/r(n))_{n \geq 60} \) and \((r_\ast(n+1)/r_\ast(n))_{n \geq 120} \) are strictly increasing.

Remark 2.13. Via Mathematica we have verified the conjecture for \(n \) up to \(10^5 \).

In light of Example 1.1, Conjecture 2.12 implies that all the sequences

\[
\left(\frac{p(n+1)}{p(n)} \right)_{n \geq 25}, \quad \left(\frac{p_\ast(n+1)}{p_\ast(n)} \right)_{n \geq 32}, \quad (\sqrt[n]{p(n)})_{n \geq 26}, \quad (\sqrt[n]{p_\ast(n)})_{n \geq 29}
\]

are strictly decreasing, and that the sequences \((\sqrt[n]{p(n+1)}/\sqrt[n]{p(n)})_{n \geq 26} \) and \((\sqrt[n]{p_\ast(n+1)}/\sqrt[n]{p_\ast(n)})_{n \geq 25} \) are strictly increasing. The fact that \((p(n+1)/p(n))_{n \geq 25} \) is strictly decreasing was conjectured by W.Y.C. Chen [C] and proved by J.E. Janoski [J, pp. 7-23].
3. Proofs of Theorems 2.3 and 2.6

Lemma 3.1. Let $\alpha \geq 1$ and $n \in \{2, 3, \ldots\}$. Then

$$S_n^{(\alpha)} > 2^\alpha + \frac{n^{\alpha+1} \log^{\alpha} n}{\alpha + 1} \left(1 - \frac{\alpha}{(\alpha + 1) \log n}\right). \quad (3.1)$$

Proof. It is known that $p_k \geq k \log k$ for $k = 2, 3, \ldots$ (cf. [Ro] and [RS, (3.12)]). Thus

$$S_n^{(\alpha)} - 2^\alpha = \sum_{k=2}^{n} p_k^\alpha \geq \sum_{k=2}^{n} (k \log k) \alpha > \sum_{k=2}^{n} \int_{k-1}^{k} (x \log x)^\alpha dx = \int_{1}^{n} (x \log x)^\alpha dx$$

Using integration by parts, we find that

$$\int_{1}^{n} (x \log x)^\alpha dx = \left. \frac{x^{\alpha+1}}{\alpha + 1} \log^{\alpha} x \right|_{x=1}^{n} - \int_{1}^{n} \left(\frac{x^{\alpha+1}}{\alpha + 1} \cdot \frac{(\log x)^{\alpha-1}}{x}\right) dx$$

$$= \frac{n^{\alpha+1}}{\alpha + 1} \log^{\alpha} n - \frac{\alpha}{\alpha + 1} \int_{1}^{n} x^{\alpha} (\log x)^{\alpha-1} dx$$

$$\geq \frac{n^{\alpha+1}}{\alpha + 1} \log^{\alpha} n - \frac{\alpha}{\alpha + 1} \int_{1}^{n} x^{\alpha} (\log n)^{\alpha-1} dx$$

$$\geq \frac{n^{\alpha+1}}{\alpha + 1} \log^{\alpha} n - \frac{\alpha n^{\alpha+1}}{(\alpha + 1)^2} (\log n)^{\alpha-1}.$$

Therefore (3.1) holds. \qed

Lemma 3.2. Let $\alpha \geq 1$ and $n \in \mathbb{Z}^+$ with $n \geq 55$. Then

$$\log S_n^{(\alpha)} > (\alpha + 1) \log n. \quad (3.2)$$

Proof. Note that $54 < e^4 < 55 \leq n$. As $\log^{\alpha} n > 4^{\alpha} = (2^\alpha)^2 \geq (\alpha + 1)^2$, by Lemma 3.1 we have

$$S_n^{(\alpha)} > \frac{n^{\alpha+1} \log^{\alpha} n}{\alpha + 1} \left(1 - \frac{\alpha}{\alpha + 1}\right) = \frac{n^{\alpha+1}}{(\alpha + 1)^2} \log^{\alpha} n \geq n^{\alpha+1}$$

and hence (3.2) follows. \qed

Proof of Theorem 2.3. It is known that

$$p_m < m \log m + \log \log m$$

for any $m \geq 6$ (cf. [RS, (3.13)] and [D, Lemma 1]). If $m \geq 101$, then

$$\frac{\log \log m}{\log m} \leq \frac{\log 101}{\log 101} < 0.3314$$
and hence $p_n < 1.3314m \log m$. As $n + 1 \leq 1.01n$, we have

$$\frac{\log(n + 1)}{\log n} = 1 + \frac{\log((n + 1)/n)}{\log n} \leq 1 + \frac{\log 1.01}{\log n} \leq 1 + \frac{\log 1.01}{\log 100} < 1.0022.$$

Therefore

$$p_{n+1} < 1.3314(n + 1) \log(n + 1) < 1.3314 \times 1.01n \times 1.0022 \log n < 1.348n \log n.$$

Combining Lemmas 3.1 and 3.2, we see that

$$S_n^{(\alpha)} \left(\frac{n + 1}{n^{1 + 1/n}} \sqrt[n]{S_n^{(\alpha)} - 1}\right) - S_n^{(\alpha)} \left(e^{(\alpha \log n)/n - 1}\right) \geq S_n^{(\alpha)} \left(e^{(\alpha \log n)/n - 1}\right) - \left(1 + \frac{\log((n + 1)/n)}{\log n}\right) \frac{\alpha \log n}{n} \geq S_n^{(\alpha)} \left(e^{(\alpha \log n)/n - 1}\right) > \frac{n^{\alpha + 1} \log^\alpha n}{\alpha + 1} \left(1 - \frac{\alpha}{\alpha + 1} \frac{\log n}{\log n}\right) - \frac{(n \log n)^\alpha}{\alpha + 1} \left(\log n - \frac{\alpha}{\alpha + 1}\right) > \frac{(n \log n)^\alpha}{2} \left(\log n - 1\right).$$

As $(\log n - 1)/2 \geq 1.348^\alpha$, from the above we get

$$(n + 1) \left(\frac{S_n^{(\alpha)}}{n}\right)^{1 + 1/n} - S_n^{(\alpha)} > (1.348n \log n)^\alpha > p_{n+1}^{\alpha}$$

and hence

$$\left(\frac{S_n^{(\alpha)}}{n}\right)^{(n+1)/n} > \frac{S_{n+1}^{(\alpha)}}{n + 1}$$

which yields (2.1). As mentioned in Remark 2.4, (2.2) follows from (2.1). This concludes the proof. □

Proof of Theorem 2.6. Fix an integer $n \geq N(\alpha)$. For any integer $m \geq 350001$, we have

$$\frac{\log \log m}{\log m} \leq \frac{\log \log 350001}{\log 350001} < 0.1996$$

and hence

$$p_m < m(\log m) \left(1 + \frac{\log \log m}{\log m}\right) < 1.1996m \log m.$$
As \(n \geq 350000 \), we have
\[
\frac{\log(n+1)}{\log n} = 1 + \frac{\log(1 + 1/n)}{\log n} \leq \frac{\log 350001}{\log 350000} < 1 + 10^{-6}.
\]
Therefore
\[
p_{n+1} < 1.1996(n + 1) \log(n + 1)
\]
\[
< 1.1996 \times \frac{350001}{350000} n \times (1 + 10^{-6}) \log n < 1.2n \log n.
\]
Since \(\log n \geq \log 350000 > 1/0.078335 \), Lemma 3.1 implies that
\[
S_n^{(\alpha)} > \frac{n^{\alpha+1} \log^\alpha n}{\alpha + 1} (1 - 0.078335) > \frac{n^{\alpha+1} \log^\alpha n}{1.085(\alpha + 1)}.
\]
Therefore
\[
q_n^{(\alpha)} := \frac{p_{n+1}^{(\alpha)}}{S_n^{(\alpha)}} < \frac{c_\alpha}{n},
\]
where \(c_\alpha = 1.085(\alpha + 1)1.2^\alpha \).

By calculus,
\[
x - \frac{x^2}{2} < \log(1 + x) < x \quad \text{for } x > 0
\]
and
\[
-x - \frac{x^2}{2} < \log(1 - x) < -x \quad \text{for } 0 < x < 0.5.
\]
Thus
\[
\log \frac{S_n^{(\alpha)}(n + 1)}{S_n^{(\alpha)}} = \log \left(1 - \frac{1}{n + 1}\right) + \log(1 + q_n^{(\alpha)}) < -\frac{1}{n + 1} + q_n^{(\alpha)}
\]
and
\[
\log \frac{S_n^{(\alpha)}(n + 2)}{S_n^{(\alpha)}} > \log \left(1 - \frac{2}{n + 2}\right) + \log(1 + 2q_n^{(\alpha)})
\]
\[
> -\frac{2}{n + 2} - \frac{4}{(n + 2)^2} + 2q_n^{(\alpha)} - 2(q_n^{(\alpha)})^2.
\]
Hence
\[
D_n^{(\alpha)} := \frac{2}{n + 1} \log \frac{S_n^{(\alpha)}}{n + 1} - \frac{1}{n} \log \frac{S_n^{(\alpha)}}{n} - \frac{1}{n + 2} \log \frac{S_n^{(\alpha+2)}}{n + 2}
\]
\[
< \frac{2}{n + 1} \left(\log \frac{S_n^{(\alpha)}}{n} - \frac{1}{n + 1} + q_n^{(\alpha)} \right) - \frac{1}{n} \log \frac{S_n^{(\alpha)}}{n}
\]
\[
- \frac{1}{n + 2} \left(\log \frac{S_n^{(\alpha)}}{n} - \frac{2}{n + 2} - \frac{4}{(n + 2)^2} + 2q_n^{(\alpha)} - 2(q_n^{(\alpha)})^2 \right)
\]
\[
= -2 \log(S_n^{(\alpha)}/n) \frac{2}{n(n + 1)(n + 2)} + \frac{2}{(n + 2)^2} + \frac{4}{(n + 2)^3} + \frac{2q_n^{(\alpha)}}{(n + 1)(n + 2)} + \frac{2(q_n^{(\alpha)})^2}{n + 2}.
\]
Combining this with (3.2) and (3.3) and noting that \((350001/350000)n^2 \geq n(n+1)\), we obtain

\[
D_n^{(\alpha)} \leq \frac{-2\alpha \log n}{n(n+1)(n+2)} - \frac{2(2n+3)}{(n+1)^2(n+2)^2} + \frac{4}{(n+2)^3} \\
+ \frac{2c_\alpha}{n(n+1)(n+2)} + \frac{2c_\alpha^2}{n^2(n+2)}
\]

\[
\leq \frac{-2\alpha \log n}{n(n+1)(n+2)} - \frac{4}{(n+1)(n+2)^2} + \frac{4}{(n+1)(n+2)^2} \\
+ \frac{2c_\alpha + 2(350001/350000)c_\alpha^2}{n(n+1)(n+2)}
\]

\[
= \frac{2((350001/350000)c_\alpha^2 + c_\alpha - \alpha \log n)}{n(n+1)(n+2)}
\]

Note that

\[
\frac{350001}{350000}c_\alpha^2 + c_\alpha \\
= \frac{350001}{350000} \times 1.085^2(\alpha+1)^21.2^{2\alpha} + 1.085(\alpha+1)1.2^\alpha \\
< 1.2(\alpha+1)^21.2^{2\alpha} + 1.2(\alpha+1)1.2^\alpha \leq \alpha \log N(\alpha) \leq \alpha \log n.
\]

So we have \(D_n^{(\alpha)} < 0\) and hence

\[
\frac{\sqrt[n+1]{S^{(\alpha)}_{n+1}/(n+1)}}{\sqrt[n]{S^{(\alpha)}_n/n}} < \frac{\sqrt[n+2]{S^{(\alpha)}_{n+2}/(n+2)}}{\sqrt[n+1]{S^{(\alpha)}_{n+1}/(n+1)}} \]

as desired. \(\square\)

Acknowledgment. The work was done during the author’s visit to the University of Illinois at Urbana-Champaign, so the author wishes to thank Prof. Bruce Berndt for his kind invitation and hospitality.

References

