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Abstract. For n = 1, 2, 3, . . . let Sn be the sum of the first n primes. We

mainly show that the sequence an = n
√

Sn/n (n = 1, 2, 3, . . . ) is strictly decreas-

ing, and moreover the sequence an+1/an (n = 10, 11, . . . ) is strictly increasing.

We also formulate similar conjectures involving twin primes or partitions of in-
tegers.

1. Introduction

For n ∈ Z+ = {1, 2, 3, . . . } let pn denote the nth prime. The unsolved
Firoozbakht conjecture (cf. [R, p. 185]) asserts that

n
√
pn > n+1

√
pn+1 for all n ∈ Z+,

i.e., the sequence ( n
√
pn)n>1 is strictly decreasing. This implies the inequality

pn+1−pn < log2 pn−log pn+1 for large n, which is even stronger than Cramér’s
conjecture pn+1−pn = O(log2 pn). Let Pn be the product of the first n primes.
Then Pn < pnn+1 and hence Pn+1

n < Pnn+1. So the sequence ( n
√
Pn)n>1 is strictly

increasing.
Now let us look at a simple example not related to primes.
Example 1.1. Let an = n

√
n for n ∈ Z+. Then the sequence (an)n>3 is

strictly decreasing, and the sequence (an+1/an)n>4 is strictly increasing. To

see this we investigate the function f(x) = log(x1/x) = (log x)/x with x > 3.
As f ′(x) = (1− log x)/x2 < 0, we have f(n) > f(n+ 1) for n = 3, 4, . . . . Since

f ′′(x) =
2 log x− 3

x3
> 0 for x > 4.5,
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the function f(x) is strictly convex over the interval (4.5,+∞) and so

2f(n+ 1) < f(n) + f(n+ 2) (i.e., a2n+1 < anan+2) for n = 5, 6, . . . .

The inequality a25 < a4a6 can be verified directly.

A sequence (an)n>1 of nonnegative real numbers is said to be log-convex if
a2n+1 6 anan+2 for all n = 1, 2, 3, . . . . Many combinatorial sequences (such as
the sequence of the Catalan numbers) are log-convex, the reader may consult
[LW] for some results on log-convex sequences.

For n ∈ Z+ let Sn =
∑n
k=1 pk be the sum of the first n primes. For instance,

S1 = 2, S2 = 2 + 3 = 5, S3 = 2 + 3 + 5 = 10, S4 = 2 + 3 + 5 + 7 = 17.

Recently the author [S] conjectured that for any positive integer n the interval
(Sn, Sn+1) contains a prime. As Sn < npn+1 for all n ∈ Z+, the sequence
(Sn/n)n>1 is strictly increasing.

In the next section we will state our theorems involving the sequence (an)n>1

with an = n
√
Sn/n, and pose three related conjectures for further research.

Section 3 is devoted to our proofs of the theorems.

2. Our results and conjectures

Theorem 2.1. The sequences ( n
√
Sn)n>2 and ( n

√
Sn/n)n>1 are strictly de-

creasing.

Remark 2.2. Note that Sn/n is just the arithmetic mean of the first n primes.
It is interesting to compare Theorem 2.1 with Firoozbakht’s conjecture that
( n
√
pn)n>1 is strictly decreasing.

For α > 0 and n ∈ Z+ define

S(α)
n =

n∑
k=1

pαk .

We actually obtain the following extension of Theorem 2.1.

Theorem 2.3. Let α > 1 and n ∈ Z+ with n > max{100, e2×1.348
α+1}. Then

n

√
S
(α)
n

n
>

n+1

√
S
(α)
n+1

n+ 1
(2.1)

and hence
n

√
S
(α)
n >

n+1

√
S
(α)
n+1. (2.2)

Remark 2.4. In view of Example 1.1, (2.1) implies (2.2) if n > 3. We conjecture
that (2.1) holds for any α > 0 and n ∈ Z+.

Note that be2×1.348+1c = 40 and we can easily verify that

n

√
Sn
n
> n+1

√
Sn+1

n+ 1
for every n = 1, . . . , 99.

So Theorem 2.1 follows from Theorem 2.3 in the case α = 1.
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Corollary 2.5. For each α ∈ {2, 3, 4}, the sequences n

√
S
(α)
n

n


n>1

and

(
n

√
S
(α)
n

)
n>1

are strictly decreasing.

Proof. Observe that

be2×1.348
2+1c = 102, be2×1.348

3+1c = 364, be2×1.348
4+1c = 2005.

In light of Theorem 2.3 and Example 1.1, it suffices to verify that

n

√
S
(α)
n

n
>

n+1

√
S
(2)
n+1

n+ 1

whenever α ∈ {2, 3, 4} and n ∈ {1, . . . , be2×1.348α+1c}. These can be easily
done via computer. �

Our following theorem is more sophisticated than Theorem 2.3.

Theorem 2.6. Let α > 1. Then the sequence(
n+1

√
S
(α)
n+1/(n+ 1)

/
n

√
S
(α)
n /n

)
n>N(α)

is strictly increasing, where

N(α) = max
{

350000, de((α+1)21.22α+1+(α+1)1.2α+1)/αe
}
. (2.3)

Corollary 2.7. All the sequences(
n+1
√
Sn+1/(n+ 1)

/
n
√
Sn/n

)
n>10

,
(
n+1
√
Sn+1

/
n
√
Sn

)
n>5

,(
n+1

√
S
(2)
n+1/(n+ 1)

/ n

√
S
(2)
n /n

)
n>13

,

(
n+1

√
S
(2)
n+1

/ n

√
S
(2)
n

)
n>10

,(
n+1

√
S
(3)
n+1/(n+ 1)

/ n

√
S
(3)
n /n

)
n>17

,

(
n+1

√
S
(3)
n+1

/ n

√
S
(3)
n

)
n>10

,(
n+1

√
S
(4)
n+1/(n+ 1)

/ n

√
S
(4)
n /n

)
n>35

,

(
n+1

√
S
(4)
n+1

/ n

√
S
(4)
n

)
n>17

are strictly increasing.
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Proof. For N(α) given by (2.3), via computation we find that

N(1) = 350000, N(2) = 974267, N(3) = 3163983273

and
N(4) = 2271069361863763.

Via computer we can verify that

n+1

√
S
(α)
n+1/(n+ 1)

n

√
S
(α)
n /n

<

n+2

√
S
(α)
n+2/(n+ 2)

n+1

√
S
(α)
n+1/(n+ 1)

for all α ∈ {1, 2, 3, 4} and n = N0(α), . . . , N(α)− 1, where

N0(1) = 10, N0(2) = 13, N0(3) = 17, N0(4) = 35.

Combining this with Theorem 2.3 we obtain that(
n+1
√
Sn+1/(n+ 1)/ n

√
Sn/n

)
n>N0(α)

is strictly increasing for each α = 1, 2, 3, 4. Recall that ( n+1
√
n+ 1/ n

√
n)n>4

is strictly increasing by Example 1.1. So
(
n+1
√
Sn+1/

n
√
Sn
)
n>N0(α)

is strictly

increasing for any α ∈ {1, 2, 3, 4}. It remains to check that

n+1

√
S
(α)
n+1

n

√
S
(α)
n

<

n+2

√
S
(α)
n+2

n+1

√
S
(α)
n+1

for all α ∈ {1, 2, 3, 4} and n = n0(α), . . . , N0(α)− 1, where n0(1) = 5, n0(2) =
n0(3) = 10, and n0(4) = 17. This can be easily done via computer. �

We conclude this section by posing three conjectures.

Conjecture 2.8. The two constants

s1 =
∞∑
n=1

1

Sn
and s2 =

∞∑
n=1

(−1)n

Sn

are both transcendental numbers.

Remark 2.9. Our computation shows that s1 ≈ 1.023476 and s2 ≈ −0.3624545778.

If p and p+2 are both primes, then they are called twin primes. The famous
twin prime conjecture states that there are infinitely many twin primes.
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Conjecture 2.10. (i) If {t1, t1 + 2}, . . . , {tn, tn + 2} are the first n pairs of
twin primes, then the first prime tn+1 in the next pair of twin primes is smaller

than t
1+1/n
n , i.e., n

√
tn > n+1

√
tn+1.

(ii) The sequence ( n+1
√
Tn+1/

n
√
Tn)n>9 is strictly increasing with limit 1,

where Tn =
∑n
k=1 tk.

Remark 2.11. Via Mathematica the author has verified that n
√
tn > n+1

√
tn+1

for all n = 1, . . . , 500000, and n+1
√
Tn+1/

n
√
Tn < n+2

√
Tn+2/ n+1

√
Tn+1 for all

n = 9, . . . , 500000. Note that t500000 = 115438667.

Recall that a partition of a positive integer n is a way of writing n as a sum
of positive integers with the order of addends ignored. Also, a strict partition
of n ∈ Z+ is a way of writing n as a sum of distinct positive integers with the
order of addends ignored. For n = 1, 2, 3, . . . we denote by p(n) and p∗(n) the
number of partitions of n and the number of strict partitions of n respectively.
It is known that

p(n) ∼ eπ
√

2n/3

4
√

3n
and p∗(n) ∼ eπ

√
n/3

4(3n3)1/4
as n→ +∞

(cf. [HR] and [AS, p. 826]) and hence limn→∞
n
√
p(n) = limn→∞

n
√
p∗(n) = 1.

Here we formulate a conjecture similar to Conjecture 2.10.

Conjecture 2.12. For n ∈ Z+ let

q(n) =
p(n)

n
, q∗(n) =

p∗(n)

n
, r(n) = n

√
q(n), and r∗(n) = n

√
q∗(n).

Then the sequences (q(n+ 1)/q(n))n>31 and (q∗(n+ 1)/q∗(n))n>44 are strictly
decreasing, and the sequences (r(n + 1)/r(n))n>60 and (r∗(n + 1)/r∗(n))n>120

are strictly increasing.

Remark 2.13. Via Mathematica we have verified the conjecture for n up to 105.
In light of Example 1.1, Conjecture 2.12 implies that all the sequences(

p(n+ 1)

p(n)

)
n>25

,

(
p∗(n+ 1)

p∗(n)

)
n>32

, ( n
√
p(n))n>6, ( n

√
p∗(n))n>9

are strictly decreasing, and that the sequences ( n+1
√
p(n+ 1)/ n

√
p(n))n>26 and

( n+1
√
p∗(n+ 1)/ n

√
p∗(n))n>45 are strictly increasing. The fact that (p(n +

1)/p(n))n>25 is strictly decreasing was conjectured by W.Y.C. Chen [C] and
proved by J.E. Janoski [J, pp. 7-23].
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3. Proofs of Theorems 2.3 and 2.6

Lemma 3.1. Let α > 1 and n ∈ {2, 3, . . . }. Then

S(α)
n > 2α +

nα+1 logα n

α+ 1

(
1− α

(α+ 1) log n

)
. (3.1)

Proof. It is known that pk > k log k for k = 2, 3, . . . (cf. [Ro] and [RS, (3.12)]).
Thus

S(α)
n − 2α =

n∑
k=2

pαk >
n∑
k=2

(k log k)α >
n∑
k=2

∫ k

k−1
(x log x)αdx =

∫ n

1

(x log x)αdx

Using integration by parts, we find that∫ n

1

(x log x)αdx =
xα+1

α+ 1
logα x

∣∣∣∣n
x=1

−
∫ n

1

(
xα+1

α+ 1
· α(log x)α−1

x

)
dx

=
nα+1

α+ 1
logα n− α

α+ 1

∫ n

1

xα(log x)α−1dx

>
nα+1

α+ 1
logα n− α

α+ 1

∫ n

1

xα(log n)α−1dx

>
nα+1

α+ 1
logα n− αnα+1

(α+ 1)2
(log n)α−1.

Therefore (3.1) holds. �

Lemma 3.2. Let α > 1 and n ∈ Z+ with n > 55. Then

logS(α)
n > (α+ 1) log n. (3.2)

Proof. Note that 54 < e4 < 55 6 n. As logα n > 4α = (2α)2 > (α + 1)2, by
Lemma 3.1 we have

S(α)
n >

nα+1 logα n

α+ 1

(
1− α

α+ 1

)
=

nα+1

(α+ 1)2
logα n > nα+1

and hence (3.2) follows. �

Proof of Theorem 2.3. It is known that

pm < m(logm+ log logm)

for any m > 6 (cf. [RS, (3.13)] and [D, Lemma 1]). If m > 101, then

log logm

logm
6

log log 101

log 101
< 0.3314
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and hence pm < 1.3314m logm. As n+ 1 6 1.01n, we have

log(n+ 1)

log n
= 1 +

log((n+ 1)/n)

log n
6 1 +

log 1.01

log n
6 1 +

log 1.01

log 100
< 1.0022.

Therefore

pn+1 < 1.3314(n+ 1) log(n+ 1) < 1.3314× 1.01n× 1.0022 log n < 1.348n log n.

Combining Lemmas 3.1 and 3.2, we see that

S(α)
n

(
n+ 1

n1+1/n

n

√
S
(α)
n − 1

)
=S(α)

n

(
e(logS

(α)
n )/n+log(n+1)−(1+1/n) logn − 1

)
>S(α)

n

(
e(logS

(α)
n −logn)/n − 1

)
> S(α)

n

(
e(α logn)/n − 1

)
>
nα+1 logα n

α+ 1

(
1− α

(α+ 1) log n

)
α log n

n

=
α

α+ 1
(n log n)α

(
log n− α

α+ 1

)
>

(n log n)α

2
(log n− 1).

As (log n− 1)/2 > 1.348α, from the above we get

(n+ 1)

(
S
(α)
n

n

)1+1/n

− S(α)
n > (1.348n log n)α > pαn+1

and hence (
S
(α)
n

n

)(n+1)/n

>
S
(α)
n+1

n+ 1

which yields (2.1). As mentioned in Remark 2.4, (2.2) follows from (2.1). This
concludes the proof. �

Proof of Theorem 2.6. Fix an integer n > N(α). For any integer m > 350001,
we have

log logm

logm
6

log log 350001

log 350001
< 0.1996

and hence

pm < m(logm)

(
1 +

log logm

logm

)
< 1.1996m logm.



8 ZHI-WEI SUN

As n > 350000, we have

log(n+ 1)

log n
= 1 +

log(1 + 1/n)

log n
6

log 350001

log 350000
< 1 + 10−6.

Therefore

pn+1 <1.1996(n+ 1) log(n+ 1)

<1.1996× 350001

350000
n× (1 + 10−6) log n < 1.2n log n.

Since log n > log 350000 > 1/0.078335, Lemma 3.1 implies that

S(α)
n >

nα+1 logα n

α+ 1
(1− 0.078335) >

nα+1 logα n

1.085(α+ 1)
.

Therefore

q(α)n :=
pαn+1

S
(α)
n

<
cα
n
, (3.3)

where cα = 1.085(α+ 1)1.2α.
By calculus,

x− x2

2
< log(1 + x) < x for x > 0

and
−x− x2 < log(1− x) < −x for 0 < x < 0.5.

Thus

log
S
(α)
n+1/(n+ 1)

S
(α)
n /n

= log

(
1− 1

n+ 1

)
+ log(1 + q(α)n ) < − 1

n+ 1
+ q(α)n

and

log
S
(α)
n+2/(n+ 2)

S
(α)
n /n

> log

(
1− 2

n+ 2

)
+ log(1 + 2q(α)n )

>− 2

n+ 2
− 4

(n+ 2)2
+ 2q(α)n − 2(q(α)n )2.

Hence

D(α)
n :=

2

n+ 1
log

S
(α)
n+1

n+ 1
− 1

n
log

S
(α)
n

n
− 1

n+ 2
log

S
(α)
n+2

n+ 2

<
2

n+ 1

(
log

S
(α)
n

n
− 1

n+ 1
+ q(α)n

)
− 1

n
log

S
(α)
n

n

− 1

n+ 2

(
log

S
(α)
n

n
− 2

n+ 2
− 4

(n+ 2)2
+ 2q(α)n − 2(q(α)n )2

)

=
−2 log(S

(α)
n /n)

n(n+ 1)(n+ 2)
− 2

(n+ 1)2
+

2

(n+ 2)2
+

4

(n+ 2)3
+

2q
(α)
n

(n+ 1)(n+ 2)
+

2(q
(α)
n )2

n+ 2
.
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Combining this with (3.2) and (3.3) and noting that (350001/350000)n2 >
n(n+ 1), we obtain

D(α)
n <

−2α log n

n(n+ 1)(n+ 2)
− 2(2n+ 3)

(n+ 1)2(n+ 2)2
+

4

(n+ 2)3

+
2cα

n(n+ 1)(n+ 2)
+

2c2α
n2(n+ 2)

<
−2α log n

n(n+ 1)(n+ 2)
− 4

(n+ 1)(n+ 2)2
+

4

(n+ 1)(n+ 2)2

+
2cα + 2(350001/350000)c2α

n(n+ 1)(n+ 2)

=
2((350001/350000)c2α + cα − α log n)

n(n+ 1)(n+ 2)
.

Note that

350001

350000
c2α + cα

=
350001

350000
× 1.0852(α+ 1)21.22α + 1.085(α+ 1)1.2α

<1.2(α+ 1)21.22α + 1.2(α+ 1)1.2α 6 α logN(α) 6 α log n.

So we have D
(α)
n < 0 and hence

n+1

√
S
(α)
n+1/(n+ 1)

n

√
S
(α)
n /n

<

n+2

√
S
(α)
n+2/(n+ 2)

n+1

√
S
(α)
n+1/(n+ 1)

as desired. �
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