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Abstract. In this paper we deduce some new supercongruences modulo powers

of a prime p > 3. Let d ∈ {0, 1, . . . , (p− 1)/2}. We show that

(p−1)/2∑
k=0

(2k
k

)( 2k
k+d

)
8k

≡ 0 (mod p) if d ≡
p+ 1

2
(mod 2),

and

(p−1)/2∑
k=0

(2k
k

)( 2k
k+d

)
16k

≡
(
−1

p

)
+ p2

(−1)d

4
Ep−3

(
d+

1

2

)
(mod p3),

where Ep−3(x) denotes the Euler polynomial of degree p − 3, and (−) stands for
the Legendre symbol. The paper also contains some other results such as

p−1∑
k=0

k
(1+(−1

p
))/2

(6k
3k

)(3k
k

)
864k

≡ 0 (mod p2).

1. Introduction

Let p be an odd prime and let ( ·
p ) be the Legendre symbol. For each d ∈ N =

{0, 1, . . . } and any rational p-adic integer λ, we define

a(d)p (λ) :=

p−1∑
x=0

xd

(
x(x− 1)(x− λ)

p

)
. (1.1)
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Note that a
(0)
p (λ) arises naturally from counting the number of points on the cubic

curve Ep(λ) : y2 = x(x− 1)(x− λ̄) over the finite field Fp = Z/pZ, where λ̄ is the
residue class λ (mod p).

The following theorem in the case d = 0 is a known result (cf. S. Ahlgren [A,
Theorem 2]).

Theorem 1.1. Let p be an odd prime and let d ∈ {0, . . . , (p− 1)/2}. Then, for
any rational p-adic integer λ we have

a(d)p (λ) ≡ (−1)(p+1)/2λ
d

4d

(p−1)/2∑
k=0

(
2k
k

)(
2(k+d)
k+d

)
16k

λk − δd,(p−1)/2 (mod p), (1.2)

where the Kronecker symbol δs,t takes 1 or 0 according as s = t or not.

Remark 1.1. Let d ∈ {0, . . . , (p− 1)/2} with p an odd prime. Clearly

a(d)p (1) =

p−1∑
x=0

xd

(
x

p

)
− 1 ≡

p−1∑
x=1

xd+(p−1)/2 − 1 ≡ −δd,(p−1)/2 − 1 (mod p).

Thus (1.2) with λ = 1 gives the congruence

(p−1)/2∑
k=0

(
2k
k

)(
2k+2d
k+d

)
16k

≡ 4d
(
−1

p

)
(mod p).

Soon we will see that this congruence even holds modulo p2.

Recall that the Euler numbers E0, E1, E2, . . . are integers defined by

E0 = 1 and
n∑

k=0
2|k

(
n

k

)
En−k = 0 for n ∈ Z+ = {1, 2, 3, . . . }.

For each n ∈ N, the Euler polynomial of degree n is given by

En(x) =
n∑

k=0

(
n

k

)
Ek

2k

(
x− 1

2

)n−k

.

Clearly En(1/2) = En/2
n.

Now we state our second theorem.
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Theorem 1.2. Let p > 3 be a prime and let d ∈ {0, . . . , (p− 1)/2}. Then

(p−1)/2∑
k=0

(
2k
k

)(
2k
k+d

)
16k

≡
(
−1

p

)
+ p2

(−1)d

4
Ep−3

(
d+

1

2

)
(mod p3). (1.3)

Remark 1.2. Let p > 3 be a prime. The supercongruence

(p−1)/2∑
k=0

(
2k
k

)2
16k

≡
(
−1

p

)
(mod p2)

was a conjecture of Rodriguez-Villegas [RV] confirmed by E. Mortenson [Mo1]
via an advanced tool involving the p-adic Gamma function and the Gross-Koblitz
formula for character sums. (1.3) with d = 0 yields the congruence

(p−1)/2∑
k=0

(
2k
k

)2
16k

≡
(
−1

p

)
+ p2Ep−3 (mod p3)

which was first proved in [S4] with the help of the software Sigma.

Corollary 1.1. Let p > 3 be a prime. For any d = 0, . . . , (p− 1)/2, we have

(p−1)/2∑
k=0

(
2k
k

)(
2k+2d
k+d

)
16k

≡ 4d
(
−1

p

)
(mod p2). (1.4)

Let p ≡ 1 (mod 4) be a prime. It is well known that p = x2 + y2 for some

x, y ∈ Z with x ≡ 1 (mod 4). A celebrated result of Gauss asserts that
(
(p−1)/2
(p−1)/4

)
≡

2x (mod p) (see, e.g., [BEW, (9.0.1)]). This was refined in [CDE] as follows:(
(p− 1)/2

(p− 1)/4

)
≡ 2p−1 + 1

2

(
2x− p

2x

)
(mod p2).

Recently, J. B. Cosgrave and K. Dilcher [CD] even determined
(
(p−1)/2
(p−1)/4

)
mod p3.

Recall that p = x2+y2 with x ≡ 1 (mod 4). Z.-H. Sun [Su] confirmed the author’s
following conjecture (cf. [S3, Conjecture 5.5]):

(p−1)/2∑
k=0

(
2k
k

)2
8k

≡
(p−1)/2∑

k=0

(
2k
k

)2
(−16)k

≡
(
2

p

) (p−1)/2∑
k=0

(
2k
k

)2
32k

≡
(
2

p

)(
2x− p

2x

)
(mod p2).
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In [S5] the author showed that

(p−1)/2∑
k=0

(
2k
k

)2
(k + 1)8k

≡ −2

p−1∑
k=0

k
(
2k
k

)2
8k

≡ 1

2

(p−1)/2∑
k=0

(
2k
k

)2
(k + 1)(−16)k

≡− 4

(p−1)/2∑
k=0

k
(
2k
k

)2
(−16)k

≡
(
2

p

)(
2x− p

x

)
(mod p2).

Note that those integers
(
2k
k

)
/(k + 1) =

(
2k
k

)
−
(

2k
k+1

)
are called Catalan numbers

and they occur naturally in many enumeration problems in combinatorics (see,
e.g., [St, pp. 219–229]).

Motivated by (1.2) in the cases λ = −1, 2 we obtain the following result.

Theorem 1.3. (i) If p ≡ 3 (mod 4) is a prime, then

(p−1)/2∑
k=0

(
2k
k

)2
(k + 1)8k

≡ −2

(p−1)/2∑
k=0

k
(
2k
k

)2
8k

≡− 1

2

(p−1)/2∑
k=0

(
2k
k

)2
(k + 1)(−16)k

≡ 4

(p−1)/2∑
k=0

k
(
2k
k

)2
(−16)k

≡ (−1)(p+1)/4

2

(
(p+ 1)/2

(p+ 1)/4

)
(mod p)

(1.5)

and
(p−1)/2∑

k=0

(
2k
k

)2
8k

≡ −
(p−1)/2∑

k=0

(
2k
k

)2
(−16)k

≡ (−1)(p+1)/4 2p(
(p+1)/2
(p+1)/4

) (mod p2). (1.6)

(ii) For any odd prime p, we have

(p−1)/2∑
k=0

(
2k
k

)(
2k
k+d

)
8k

≡ 0 (mod p) (1.7)

for all d ∈ {0, . . . , (p− 1)/2} with d ≡ (p+ 1)/2 (mod 2).

Remark 1.3. In 2009 the author conjectured that
∑p−1

k=0

(
2k
k

)(
2k
k+1

)
/8k ≡ 0 (mod p)

for any prime p ≡ 1 (mod 4) and this was confirmed by his student Yong Zhang
in her PhD thesis.

Besides (1.4) with d = 0, Rodriguez-Villegas [RV] also made the following sim-
ilar conjectures (confirmed in [Mo2]) on supercongruences with p a prime greater
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than 3:

p−1∑
k=0

(
3k
k

)(
2k
k

)
27k

≡
(p
3

)
(mod p2), (1.8)

p−1∑
k=0

(
4k
2k

)(
2k
k

)
64k

≡
(
−2

p

)
(mod p2), (1.9)

p−1∑
k=0

(
6k
3k

)(
3k
k

)
432k

≡
(
−1

p

)
(mod p2). (1.10)

Note that the denominators 27, 64, 432 come from the following observation via
the Stirling formula:

(
3k

k

)(
2k

k

)
∼

√
3× 27k

2kπ
,

(
4k

2k

)(
2k

k

)
∼ 64k√

2kπ
,

(
6k

3k

)(
3k

k

)
∼ 432k

2kπ
.

Up to now no simple proofs of (1.8)-(1.10) have been found.

Motivated by the work in [PS] and [ST], the author [S2] determined
∑p−1

k=0

(
2k
k

)
/mk

modulo p2 in terms of Lucas sequences, where p is an odd prime and m is any
integer not divisible by p. In [S3] and [S4] the author posed many conjectures on
sums of terms involving central binomial coefficients.

For a sequence of (an)n∈N of numbers, as in [S1] we introduce its dual sequence
(a∗n)n∈N by defining

a∗n :=
n∑

k=0

(
n

k

)
(−1)kak (n = 0, 1, 2, . . . ).

It is well-known that (a∗n)
∗ = an for all n ∈ N (see, e.g., (5.48) of [GKP, p. 192]).

For Bernoulli numbers B0, B1, B2, . . . , the sequence ((−1)nBn)n∈N is self-dual.

Theorem 1.4. Let p > 3 be a prime and let (an)n∈N be any sequence of p-adic
integers. Then we have

p−1∑
k=0

(
3k
k

)(
2k
k

)
27k

ak ≡
(p
3

) p−1∑
k=0

(
3k
k

)(
2k
k

)
27k

a∗k (mod p2), (1.11)

p−1∑
k=0

(
4k
2k

)(
2k
k

)
64k

ak ≡
(
−2

p

) p−1∑
k=0

(
4k
2k

)(
2k
k

)
64k

a∗k (mod p2), (1.12)

p−1∑
k=0

(
6k
3k

)(
3k
k

)
432k

ak ≡
(
−1

p

) p−1∑
k=0

(
6k
3k

)(
3k
k

)
432k

a∗k (mod p2). (1.13)
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Remark 1.4. Z.-H. Sun [Su] recently proved that

(p−1)/2∑
k=0

(
2k
k

)2
16k

(
ak −

(
−1

p

)
a∗k

)
≡ 0 (mod p2)

for any odd prime p via Legendre polynomials. We can also show, for any prime
p > 3, the following result similar to (1.3) and (1.4): If d ∈ {0, . . . , ⌊p/3⌋} then

1

4d

(p−1)/2∑
k=0

(
3k
k

)(
2k+2d
k+d

)
27k

≡
(p−1)/2∑

k=0

(
3k
k

)(
2k
k+d

)
27k

≡
(p
3

)
(mod p);

if d ∈ {0, . . . , ⌊p/4⌋} then

1

4d

(p−1)/2∑
k=0

(
4k
2k

)(
2k+2d
k+d

)
64k

≡
(p−1)/2∑

k=0

(
4k
2k

)(
2k
k+d

)
64k

≡
(
−2

p

)
(mod p).

Let p be a prime and let f(x) ∈ Fp[x] with deg(f) < p. Then f(x) is identically
zero if f(a) = 0 for all a ∈ Fp. Thus Theorem 1.4 has the following consequence

since (1− x)k =
∑k

j=0

(
k
j

)
(−1)jxj for any k ∈ N.

Corollary 1.2. Let p > 3 be a prime and let Zp be the ring of p-adic integers.
Then, in the ring Zp[x] we have

p−1∑
k=0

(
3k
k

)(
2k
k

)
27k

(
xk −

(p
3

)
(1− x)k

)
≡0 (mod p2), (1.14)

p−1∑
k=0

(
4k
2k

)(
2k
k

)
64k

(
xk −

(
−2

p

)
(1− x)k

)
≡0 (mod p2), (1.15)

p−1∑
k=0

(
6k
3k

)(
3k
k

)
432k

(
xk −

(
−1

p

)
(1− x)k

)
≡0 (mod p2). (1.16)

Also,

p−1∑
k=1

k
(
3k
k

)(
2k
k

)
27k

(
xk−1 +

(p
3

)
(1− x)k−1

)
≡0 (mod p2), (1.17)

p−1∑
k=1

k
(
4k
2k

)(
2k
k

)
64k

(
xk−1 +

(
−2

p

)
(1− x)k−1

)
≡0 (mod p2), (1.18)

p−1∑
k=1

k
(
6k
3k

)(
3k
k

)
432k

(
xk−1 +

(
−1

p

)
(1− x)k−1

)
≡0 (mod p2). (1.19)
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Remark 1.5. (1.17)-(1.19) can be easily deduced from (1.14)-(1.16) by taking
derivatives. Z.-H. Sun [Su, Theorem 2.4] noted that for any prime p > 3 we have

⌊p/3⌋∑
k=0

(
3k
k

)(
2k
k

)
27k

(xk − (−1)⌊p/3⌋(1− x)k) ≡ 0 (mod p).

Taking x = 1/2 in (1.14)-(1.19) we immediately get the following result.

Corollary 1.3. Let p > 3 be a prime. Then

p−1∑
k=0

k
(
3k
k

)(
2k
k

)
54k

≡0 (mod p2) if p ≡ 1 (mod 3),

p−1∑
k=0

(
3k
k

)(
2k
k

)
54k

≡0 (mod p2) if p ≡ 2 (mod 3);

p−1∑
k=0

k
(
4k
2k

)(
2k
k

)
128k

≡0 (mod p2) if p ≡ 1, 3 (mod 8),

p−1∑
k=0

(
4k
2k

)(
2k
k

)
128k

≡0 (mod p2) if p ≡ 5, 7 (mod 8);

p−1∑
k=0

k
(
6k
3k

)(
3k
k

)
864k

≡0 (mod p2) if p ≡ 1 (mod 4),

p−1∑
k=0

(
6k
3k

)(
3k
k

)
864k

≡0 (mod p2) if p ≡ 3 (mod 4).

Remark 1.6. The first and the second congruences mod p were obtained by Z.-H.
Sun [Su]. The author [S4] and Z.-H. Sun [Su] conjectured the first and the second
congruences respectively. Inputting
FullSimplify[Sum[k*Binomial[3k,k]Binomial[2k,k]/54∧k,{k,0,Infty}]],
we obtain from Mathematica the exact result

∞∑
k=0

k
(
3k
k

)(
2k
k

)
54k

=

√
π

9Γ( 43 )Γ(
7
6 )

,

which should follow from certain algorithm hidden in Mathematica.

(1.14) and (1.17) in the case x = 9/8, and (1.15) and (1.18) in the cases
x = 4/3, 8/9, 64/63, yield the following result.
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Corollary 1.4. Let p > 3 be a prime. Then

p−1∑
k=0

(
3k
k

)(
2k
k

)
24k

≡
(p
3

) p−1∑
k=0

(
3k
k

)(
2k
k

)
(−216)k

(mod p2), (1.20)

p−1∑
k=0

k
(
3k
k

)(
2k
k

)
24k

≡9
(p
3

) p−1∑
k=0

k
(
3k
k

)(
2k
k

)
(−216)k

(mod p2). (1.21)

Also,

p−1∑
k=0

(
4k
2k

)(
2k
k

)
48k

≡
(
−2

p

) p−1∑
k=0

(
4k
2k

)(
2k
k

)
(−192)k

(mod p2),

p−1∑
k=0

k
(
4k
2k

)(
2k
k

)
48k

≡4

(
−2

p

) p−1∑
k=0

k
(
4k
2k

)(
2k
k

)
(−192)k

(mod p2);

p−1∑
k=0

(
4k
2k

)(
2k
k

)
72k

≡
(
−2

p

) p−1∑
k=0

(
4k
2k

)(
2k
k

)
576k

(mod p2),

p−1∑
k=0

k
(
4k
2k

)(
2k
k

)
72k

≡− 8

(
−2

p

) p−1∑
k=0

k
(
4k
2k

)(
2k
k

)
576k

(mod p2).

If p ̸= 7, then

p−1∑
k=0

(
4k
2k

)(
2k
k

)
63k

≡
(
−2

p

) p−1∑
k=0

(
4k
2k

)(
2k
k

)
(−4032)k

(mod p2),

p−1∑
k=0

k
(
4k
2k

)(
2k
k

)
63k

≡64

(
−2

p

) p−1∑
k=0

k
(
4k
2k

)(
2k
k

)
(−4032)k

(mod p2).

Remark 1.7. Let p > 3 be a prime. In [S4, Conjecture 5.13] the author conjectured
that

p−1∑
k=0

(
2k
k

)(
3k
k

)
24k

≡
(p
3

) p−1∑
k=0

(
2k
k

)(
3k
k

)
(−216)k

≡

{ (2(p−1)/3
(p−1)/3

)
(mod p2) if p ≡ 1 (mod 3),

p/
(
2(p+1)/3
(p+1)/3

)
(mod p2) if p ≡ 2 (mod 3).

The author [S4] also made conjectures on
∑p−1

k=0

(
4k
2k

)(
2k
k

)
/mk modulo p2 with

m = 48, 63, 72, 128.
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For any prime p > 3 and integer m ̸≡ 0 (mod p), we have

p−1∑
k=0

(
3k
k

)(
2k
k

)
(k + 1)mk

≡p+
m− 27

6

p−1∑
k=0

k
(
3k
k

)(
2k
k

)
mk

(mod p2), (1.22)

p−1∑
k=0

(
4k
2k

)(
2k
k

)
(k + 1)mk

≡p+
m− 64

12

p−1∑
k=0

k
(
4k
2k

)(
2k
k

)
mk

(mod p2), (1.23)

p−1∑
k=0

(
6k
3k

)(
3k
k

)
(k + 1)mk

≡p+
m− 432

60

p−1∑
k=0

k
(
6k
3k

)(
3k
k

)
mk

(mod p2), (1.24)

due to the identities

n−1∑
k=0

(
6
(
2k
k

)
k + 1

+ (27−m)k

(
2k

k

)) (3k
k

)
mk

=
n

mn−1

(
2n

n

)(
3n

n

)
,

n−1∑
k=0

(
12
(
2k
k

)
k + 1

+ (64−m)k

(
2k

k

)) (4k
2k

)
mk

=
n

mn−1

(
4n

2n

)(
2n

n

)
,

n−1∑
k=0

(
60

k + 1
+ (432−m)k

) (6k
3k

)(
3k
k

)
mk

=
n

mn−1

(
6n

3n

)(
3n

n

)
,

which can be easily proved by induction on n. So, the following result follows
from Corollary 1.3 and (1.21).

Corollary 1.5. Let p > 3 be a prime. Then

p−1∑
k=0

(
3k
k

)(
2k
k

)
(k + 1)54k

≡p (mod p2) if p ≡ 1 (mod 3), (1.25)

p−1∑
k=0

(
4k
2k

)(
2k
k

)
(k + 1)128k

≡p (mod p2) if p ≡ 1, 3 (mod 8), (1.26)

p−1∑
k=0

(
6k
3k

)(
3k
k

)
(k + 1)864k

≡p (mod p2) if p ≡ 1 (mod 4). (1.27)

We also have

p−1∑
k=0

(
3k
k

)(
2k
k

)
(k + 1)24k

≡ p+
1

9

(p
3

)( p−1∑
k=0

(
3k
k

)(
2k
k

)
(k + 1)(−216)k

− p

)
(mod p2). (1.28)

Remark 1.8. Similar to the identity in Remark 1.6, Mathematica (version 7) also
yields

∞∑
k=0

(
3k
k

)(
2k
k

)
(k + 1)54k

=
3
√
π

Γ(43 )Γ(
1
6 )

,
∞∑
k=0

(
4k
2k

)(
2k
k

)
(k + 1)128k

=
4
√
π

Γ( 18 )Γ(
11
8 )

,
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and
∞∑
k=0

(
6k
3k

)(
3k
k

)
(k + 1)864k

=
6
√
π

Γ( 1
12 )Γ(

17
12 )

.

Theorem 1.5. Let p > 3 be a prime. Then

p−1∑
k=0

k
(
4k
2k

)(
2k
k

)
72k

≡ 3

2

p−1∑
k=0

(
4k
2k

)(
2k
k

)
(k + 1)72k

≡

{
( 6p )x (mod p) if p = x2 + y2 with x ≡ 1 (mod 4),

3
4 (

6
p )
(
(p+1)/2
(p+1)/4

)
(mod p) if p ≡ 3 (mod 4).

(1.29)

Let A and B be integers. The Lucas sequences un = un(A,B) (n ∈ N) and
vn = vn(A,B) (n ∈ N) are defined as follows:

u0 = 0, u1 = 1, and un+1 = Aun −Bun−1 for n ∈ Z+;

v0 = 2, v1 = A, and vn+1 = Avn −Bvn−1 for n ∈ Z+.

When ∆ = A2 − 4B = 0, by induction we see that un(A,B) = n(A/2)n−1 and
vn(A,B) = 2(A/2)n for all n ∈ Z+. Our following theorem is an analogue of
Corollary 1.3 involving Lucas sequences with ∆ ̸= 0.

Theorem 1.6. Let A,B ∈ Z with A ̸= 0 and A2 ̸= 4B, and let uk = uk(A,B)
and vk = vk(A,B) for all k ∈ N. Let p > 3 be a prime with p - A.

(i) If p ≡ 1 (mod 3), then

p−1∑
k=0

(
3k
k

)(
2k
k

)
(27A)k

uk ≡
p−1∑
k=1

k
(
3k
k

)(
2k
k

)
(27A)k

vk−1 ≡ 0 (mod p2). (1.30)

If p ≡ 2 (mod 3), then

p−1∑
k=0

(
3k
k

)(
2k
k

)
(27A)k

vk ≡
p−1∑
k=1

k
(
3k
k

)(
2k
k

)
(27A)k

uk−1 ≡ 0 (mod p2). (1.31)

(ii) If p ≡ 1, 3 (mod 8), then

p−1∑
k=0

(
4k
2k

)(
2k
k

)
(64A)k

uk ≡
p−1∑
k=1

k
(
4k
2k

)(
2k
k

)
(64A)k

vk−1 ≡ 0 (mod p2). (1.32)

If p ≡ 5, 7 (mod 8), then

p−1∑
k=0

(
4k
2k

)(
2k
k

)
(64A)k

vk ≡
p−1∑
k=1

k
(
4k
2k

)(
2k
k

)
(64A)k

uk−1 ≡ 0 (mod p2). (1.33)



SUPERCONGRUENCES INVOLVING PRODUCTS OF BINOMIAL COEFFICIENTS 11

(iii) If p ≡ 1 (mod 4), then

p−1∑
k=0

(
6k
3k

)(
3k
k

)
(432A)k

uk ≡
p−1∑
k=1

k
(
6k
3k

)(
3k
k

)
(432A)k

vk−1 ≡ 0 (mod p2). (1.34)

If p ≡ 3 (mod 4), then

p−1∑
k=0

(
6k
3k

)(
2k
k

)
(432A)k

vk ≡
p−1∑
k=1

k
(
6k
3k

)(
2k
k

)
(432A)k

uk−1 ≡ 0 (mod p2). (1.35)

We will not list corollaries of Theorem 1.6 with respect to some special Lucas
sequences like the Fibonacci sequence Fn = un(1,−1) (n ∈ N) and its companion
Ln = vn(1,−1) (n ∈ N).

In the next section we are going to show Theorems 1.1-1.3 and Corollary 1.1.
Sections 3 and 4 are devoted to our proofs of Theorem 1.4 and Theorems 1.5-1.6
respectively.

2. Proofs of Theorems 1.1-1.3 and Corollary 1.1

Proof of Theorem 1.1. Set n = (p− 1)/2. Then

a(d)p (λ) ≡
p−1∑
k=0

xd (x(x− 1)(x− λ))
n

=

p−1∑
k=0

xn+d
n∑

k=0

(
n

k

)
(−1)n−kxk

n∑
l=0

(
n

l

)
(−λ)lxn−l

=
n∑

k,l=0

(
n

k

)(
n

l

)
(−1)n−k(−λ)l

p−1∑
x=1

xp−1+d+k−l

≡
n∑

k=0

(
n

k

)
(−1)n−k

∑
06l6n

p−1|l−(d+k)

(
n

l

)
(−λ)l(p− 1)

≡−
n∑

k=0

(
n

k

)
(−1)n−k

(
n

d+ k

)
(−λ)d+k − δd,n

(
n

0

)
(−λ)0 (mod p).

Since(
(p− 1)/2

k

)
≡
(
−1/2

k

)
=

(
2k
k

)
(−4)k

(mod p) for all k = 0, . . . , p− 1, (2.1)

we immediately obtain (1.2) from the above. �
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Proof of Theorem 1.2. By induction, we have

n∑
k=0

(
2k
k

)
16k

((
2k

k +m

)
−
(

2k

k +m+ 1

))
=

2n+ 1

(2m+ 1)16n

(
2n

n

)(
2n+ 1

n−m

)
(2.2)

for each n = m,m+ 1, . . . , where m ∈ N.
Set n = (p − 1)/2. If 0 6 m < n, then for the right-hand side Rm of (2.2) we

have

Rm =
p2

(2m+ 1)((p− 1)/2−m)4p−1

(
p− 1

n

)(
p− 1

n−m− 1

)
≡2p2

(−1)m

(2m+ 1)2
(mod p3)

since(
p− 1

k

)
=

∏
0<j6k

p− j

j
≡ (−1)k (mod p) for all k = 0, . . . , p− 1. (2.3)

As d 6 n, we have

n∑
k=0

(
2k
k

)
16k

((
2k

k

)
−
(

2k

k + d

))

=
∑

06m<d

n∑
k=0

(
2k
k

)
16k

((
2k

k +m

)
−
(

2k

k +m+ 1

))

≡2p2
∑

06m<d

(−1)m

(2m+ 1)2
≡ p2

2

∑
06m<d

(−1)m
(
m+

1

2

)p−3

=
p2

4

∑
06m<d

(−1)m
(
Ep−3

(
m+

1

2

)
+ Ep−3

(
m+ 1 +

1

2

))

=
p2

4

(
Ep−3

(
1

2

)
− (−1)dEp−3

(
d+

1

2

))
(mod p3).

Note that

n∑
k=0

(
2k
k

)(
2k

k+n

)
16k

=

(
2n
n

)
16n

=

(
p−1

(p−1)/2

)
4p−1

≡
(
−1

p

)
= (−1)n (mod p3)

by Morley’s congruence ([M]), and that

Ep−3

(
n+

1

2

)
= Ep−3

(p
2

)
≡ Ep−3(0) = 0 (mod p).
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(It is well known that E2k(0) = 0 for all k ∈ Z+.) Therefore

n∑
k=0

(
2k
k

)2
16k

− (−1)n ≡ p2

4
Ep−3

(
1

2

)
≡ p2Ep−3 (mod p3)

and hence (1.3) follows from the above. �

Proof of Corollary 1.1. For k = 0, 1, . . . , we have

(
2k + 2d

k + d

)
=

d∑
c=−d

(
2k

k + c

)(
2d

d− c

)

by the Chu-Vandermonde identity (cf. [GKP, p. 169]). (Note that
(

2k
k+c

)
is re-

garded as zero if k + c < 0.) In view of this and (1.3),

(p−1)/2∑
k=0

(
2k
k

)(
2k+2d
k+d

)
16k

=

d∑
c=−d

(
2d

d− c

) (p−1)/2∑
k=0

(
2k
k

)(
2k

k+|c|
)

16k

≡
d∑

c=−d

(
2d

d− c

)(
−1

p

)
= 22d

(
−1

p

)
(mod p2).

So (1.4) is valid and we are done. �

Proof of Theorem 1.3. (i) For m ∈ Z \ {0} and n ∈ N we have the combinatorial
identity

n∑
k=0

(
16−m

4
k +

1

k + 1

) (2k
k

)2
mk

=
(2n+ 1)2

(n+ 1)mn

(
2n

n

)2

(2.4)

which can be easily proved by induction on n.
Now let p = 2n+ 1 be a prime with p ≡ 3 (mod 4). Setting n = (p− 1)/2 we

obtain from (2.4) that

n∑
k=0

(
2k
k

)2
(k + 1)mk

≡ m− 16

4

n∑
k=0

k
(
2k
k

)2
mk

(mod p2) (2.5)

for any integer m ̸≡ 0 (mod p).
As n = (p− 1)/2 is odd, by a result of Z.-H. Sun [Su],

n∑
k=0

(
2k
k

)2
16k

(xk + (1− x)k) = p2f(x)



14 ZHI-WEI SUN

for some polynomial f(x) of degree at most (p− 1)/2 with rational p-adic integer
coefficients. In particular,

n∑
k=0

(
2k
k

)2
8k

≡ −
n∑

k=0

(
2k
k

)2
(−16)k

(mod p2). (2.6)

By integration,

n∑
k=0

(
2k
k

)2
(k + 1)16k

xk+1 −
n∑

k=0

(
2k
k

)2
(k + 1)16k

(
(1− x)k+1 − 1

)
= p2

∫ x

0

f(t)dt.

Putting x = −1 we obtain

−
n∑

k=0

(
2k
k

)2
(k + 1)(−16)k

−
n∑

k=0

(
2k
k

)2
(k + 1)16k

(
2k+1 − 1

)
≡ 0 (mod p2).

Since
n∑

k=0

(
2k
k

)2
(k + 1)16k

=
(2n+ 1)2

16n(n+ 1)

(
2n

n

)2

≡ 0 (mod p2),

as observed by van Hamme [vH] (see also (2.5) with m = 16), we have

n∑
k=0

(
2k
k

)2
(k + 1)(−16)k

≡ −2

n∑
k=0

(
2k
k

)2
(k + 1)8k

(mod p2). (2.7)

With the help of (2.1),

n∑
k=0

(
2k
k

)2
(−16)k

=
n∑

k=0

(−1)k
(
−1/2

k

)2

≡
n∑

k=0

(−1)k
(
n

k

)2

= 0 (mod p).

(Note that (−1)n−k = −(−1)k.) Thus

p−1∑
h=0

2h+ 1

(−16)h

h∑
k=0

(
2k

k

)2(
2(h− k)

h− k

)2

≡
n∑

k=0

(
2k
k

)2
(−16)k

n∑
j=0

(2(k + j) + 1)
(
2j
j

)2
(−16)j

≡ 4
n∑

k=0

(
2k
k

)2
(−16)k

n∑
j=0

j
(
2j
j

)2
(−16)j

(mod p2).

By [S5, Lemma 3.2],

p−1∑
h=0

2h+ 1

(−16)h

h∑
k=0

(
2k

k

)2(
2(h− k)

h− k

)2

≡ p

(
−1

p

)
= −p (mod p2).



SUPERCONGRUENCES INVOLVING PRODUCTS OF BINOMIAL COEFFICIENTS 15

Therefore

1

p

n∑
k=0

(
2k
k

)2
(−16)k

n∑
k=0

k
(
2k
k

)2
(−16)k

≡ −1

4
(mod p). (2.8)

In view of (2.5)-(2.8), both (1.5) and (1.6) hold if

n∑
k=0

(
2k
k

)2
(k + 1)8k

≡ (−1)(p+1)/4

2

(
(p+ 1)/2

(p+ 1)/4

)
(mod p). (2.9)

For d ∈ {0, 1}, clearly

a(d)p (2) =

p∑
x=1

xd

(
x(x− 1)(x− 2)

p

)
=

p−1∑
r=0

(r + 1)d
(
r(r2 − 1)

p

)
and

a(d)p (−1) =

p−1∑
r=0

rd
(
r(r2 − 1)

p

)

≡
p−1∑
r=0

rd+n(r2 − 1)n =
n∑

k=0

(
n

k

)
(−1)n−k

p−1∑
r=1

rn+d+2k

≡−
∑

06k6n
p−1|n+d+2k

(
n

k

)
(−1)n−k

≡

{
0 (mod p) if d = 0,

(−1)(p−3)/4
(

n
(n−1)/2

)
− δp,3 (mod p) if d = 1.

Thus we have
a(0)p (2) = a(0)p (−1) ≡ 0 (mod p)

and

a(1)p (2) = a(0)p (−1) + a(1)p (−1) ≡ (−1)(p−3)/4

(
n

(n− 1)/2

)
− δp,3 (mod p).

Applying Theorem 1.1 with λ = 2 and d = 0, 1, and noting that

1

2

(
2k + 2

k + 1

)
=

(
2k + 1

k + 1

)
= 2

(
2k

k

)
−
(
2k
k

)
k + 1

for all k ∈ N,

we get
n∑

k=0

(
2k
k

)2
(k + 1)8k

+ δp,3 ≡ 2a(0)p (2)− a(1)p (2) (mod p).
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So (2.9) follows.
(ii) Let p = 2n+1 be an odd prime. Now we prove (1.7) for all d ∈ {0, . . . , n}

with d ≡ n+ 1 (mod 2). (1.7) is valid for d = n− 1 since

n∑
k=0

(
2k
k

)(
2k

k+n−1

)
8k

=

(
2(n−1)
n−1

)
8n−1

+
2n
(
2n
n

)
8n

=
2n+ 1

2× 8n−1

(
2n− 2

n− 1

)
≡ 0 (mod p).

Define

f(d) :=

n∑
k=0

(
n+ k

2k

)(
2k

k + d

)
(−2)k for d = 0, 1, . . . .

Since (
n+ k

2k

)
≡

(
2k
k

)
(−16)k

(mod p2) for k = 0, . . . , n (2.10)

(see, e.g., [Su, Lemma 2.2]), we have

f(d) ≡
n∑

k=0

(
2k
k

)(
2k
k+d

)
8k

(mod p2)

for all d = 0 . . . , n. By applying the Zeilberger algorithm (cf. [PWZ, pp. 101–119])
via Mathematica (version 7), we find the recurrence relation

(n− d− 1)(n+ d+ 2)(2d+ 1)f(d+ 2)

=(2n+ 1)2(d+ 1)f(d+ 1)− (n− d)(n+ d+ 1)(2d+ 3)f(d).

Note that 2n+ 1 = p. So, if 0 6 d 6 n− 2, then

f(d) ≡ − (n− d− 1)(n+ d+ 2)(2d+ 1)

(n− d)(n+ d+ 1)(2d+ 3)
f(d+ 2) (mod p2)

and hence
f(d+ 2) ≡ 0 (mod p) =⇒ f(d) ≡ 0 (mod p).

Now it is clear that (1.7) holds for all d ∈ {0, . . . , n} with d ≡ n+ 1 (mod 2).

3. Proof of Theorem 1.4

Proof of (1.11). Observe that

p−1∑
k=0

(
3k
k

)(
2k
k

)
27k

a∗k =

p−1∑
k=0

(
3k
k

)(
2k
k

)
27k

k∑
m=0

(
k

m

)
(−1)mam

=

p−1∑
m=0

(−1)mam

p−1∑
k=m

(
3k
k

)(
2k
k

)
27k

(
k

m

)
.
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So it suffices to show that

p−1∑
k=m

(
3k
k

)(
2k
k

)
27k

(
k

m

)
≡
(p
3

) (3m
m

)(
2m
m

)
(−27)m

(mod p2)

for all m = 0, 1, . . . , p− 1.
For 0 6 m < n define

fn(m) =
n−1∑
k=m

(
3k
k

)(
2k
k

)
27k

(
k

m

)
.

By Zeilberger’s algorithm via Mathematica (version 7), we find that

9(m+ 1)2fn(m+ 1) + (3m+ 1)(3m+ 2)fn(m)

=
(3n− 1)(3n− 2)

27n−1

(
n− 1

m

)(
2n− 2

n− 1

)(
3n− 3

n− 1

)
.

Applying this with n = p > m+ 1 > 1 and noting that

(
2p− 2

p− 1

)
=

p

2p− 1

p−1∏
k=1

p+ k

k
≡ −p (mod p2) (3.1)

and (
3p− 3

p− 1

)
=

p

3p− 2

2p−2∏
k=1

p+ k

k
≡ −p (mod p2), (3.2)

we get

9(m+ 1)2fp(m+ 1) + (3m+ 1)(3m+ 2)fp(m)

≡ (3p− 1)(3p− 2)

27p−1

(
p− 1

m

)
p2 ≡ (−1)m2p2 (mod p3)

and hence

fp(m+ 1)−
(p
3

) (3m+3
m+1

)(
2m+2
m+1

)
(−27)m+1

+
(3m+ 1)(3m+ 2)

9(m+ 1)2

(
fp(m)−

(
p

3

) (3m
m

)(
2m
m

)
(−27)m

)
=fp(m+ 1) +

(3m+ 1)(3m+ 2)

9(m+ 1)2
fp(m) ≡ p2

2(−1)m

9(m+ 1)2
(mod p3).
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Thus, for every m = 0, . . . , p− 2, we have

fp(m) ≡
(p
3

) (3m
m

)(
2m
m

)
(−27)m

(mod p2)

=⇒ fp(m+ 1) ≡
(p
3

) (3(m+1)
m+1

)(
2(m+1)
m+1

)
(−27)m+1

(mod p2).

(3.3)

Since

fp(0) =

p−1∑
k=0

(
3k
k

)(
2k
k

)
27k

≡
(p
3

) (3×0
0

)(
2×0
0

)
(−27)0

(mod p2)

by (1.8), with the help of (3.3) we obtain that

fp(m) ≡
(p
3

) (3m
m

)(
2m
m

)
(−27)m

(mod p2) for all m = 0, 1, . . . , p− 1.

This concludes the proof. �
Proof of (1.12). Similar to the proof of (1.11), we only need to show that

p−1∑
k=m

(
4k
2k

)(
2k
k

)
64k

(
k

m

)
≡
(
−2

p

) (4m
2m

)(
2m
m

)
(−64)m

(mod p2)

for all m = 0, 1, . . . , p − 1. Since this congruence holds for m = 0 by (1.9), it
suffices to prove that for any fixed 0 6 m < p− 1 we have

gp(m) ≡
(
−2

p

) (4m
2m

)(
2m
m

)
(−64)m

(mod p2)

=⇒ gp(m+ 1) ≡
(
−2

p

) (4(m+1)
2(m+1)

)(
2(m+1)
m+1

)
(−64)m+1

(mod p2),

(3.4)

where

gn(m) :=

n−1∑
k=m

(
4k
2k

)(
2k
k

)
64k

(
k

m

)
with n > m. By the Zeilberger algorithm, we find that

16(m+ 1)2gn(m+ 1) + (4m+ 1)(4m+ 3)gn(m)

=
(4n− 1)(4n− 3)

64n−1

(
n− 1

m

)(
2n− 2

n− 1

)(
4n− 4

2n− 2

)
.

(3.5)

Clearly (
4p− 2

2p− 2

)
=

2p−2∏
k=1

2p+ k

k
=

3p

p

2p−2∏
k=1
k ̸=p

(
1 +

2p

k

)
≡ 3 (mod p)
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and hence (
4p− 4

2p− 2

)
=

2p(2p− 1)

(4p− 2)(4p− 3)

(
4p− 2

2p− 2

)
≡ −p (mod p2).

In view of this and (3.1), from (3.5) with n = p we get

16(m+ 1)2gp(m+ 1) + (4m+ 1)(4m+ 3)gp(m) ≡ 3(−1)mp2 (mod p3).

This implies (3.4) since

− (4m+ 1)(4m+ 3)

16(m+ 1)2
·
(
4m
2m

)(
2m
m

)
(−64)m

=

(
4(m+1)
2(m+1)

)(
2(m+1)
m+1

)
(−64)m+1

.

We are done. �
Proof of (1.13). For 0 6 m < n define

hn(m) :=
n−1∑
k=m

(
6k
3k

)(
3k
k

)
432k

(
k

m

)
.

By the Zeilberger algorithm, for m,n ∈ N with m < n− 1, we have

36(m+ 1)2hn(m+ 1) + (6m+ 1)(6m+ 5)hn(m)

=
(6n− 1)(6n− 5)

432n−1

(
n− 1

m

)(
3n− 3

n− 1

)(
6n− 6

3n− 3

)
.

Recall the congruence (3.2) and note that if p > 5 then(
6p− 6

3p− 3

)
=

3p(3p− 1)(3p− 2)

(6p− 3)(6p− 4)(6p− 5)

(
6p− 3

3p− 3

)
≡− p

10

3p−3∏
k=1

3p+ k

k
≡ − p

10
· 3p+ p

p
· 3p+ 2p

2p
= −p (mod p2).

So, no matter p = 5 or not, for every m = 0, . . . , p− 2 we have

36(m+ 1)2hp(m+ 1) + (6m+ 1)(6m+ 5)hp(m) ≡ 0 (mod p2). (3.6)

For 0 6 m < p− 1, since

− (6m+ 1)(6m+ 5)

36(m+ 1)2
·
(
6m
3m

)(
3m
m

)
(−432)m

=

(
6(m+1)
3(m+1)

)(
3(m+1)
m+1

)
(−432)m+1

,
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by (3.6) we have

hp(m) ≡
(
−1

p

) (6m
3m

)(
3m
m

)
(−432)m

(mod p2)

=⇒ hp(m+ 1) ≡
(
−1

p

) (6(m+1)
3(m+1)

)(
3(m+1)
m+1

)
(−432)m+1

(mod p2).

(3.7)

This, together with (1.10), yields that

hp(m) ≡
(
−1

p

) (6m
3m

)(
3m
m

)
(−432)m

(mod p2)

for all m = 0, . . . , p− 1. It follows that

p−1∑
k=0

(
6k
3k

)(
3k
k

)
432k

k∑
m=0

(
k

m

)
(−1)mam

=

p−1∑
m=0

(−1)mamhp(m) ≡
(
−1

p

) p−1∑
m=0

am

(
6m
3m

)(
3m
m

)
432m

(mod p2).

This proves (1.13). �

4. Proofs of Theorems 1.5–1.6

Proof of Theorem 1.5. By (1.23),

p−1∑
k=0

(
4k
2k

)(
2k
k

)
(k + 1)72k

≡ p+
72− 64

12

p−1∑
k=0

k
(
4k
2k

)(
2k
k

)
72k

(mod p2)

and hence
p−1∑
k=0

k
(
4k
2k

)(
2k
k

)
72k

≡ 3

2

p−1∑
k=0

(
4k
2k

)(
2k
k

)
(k + 1)72k

(mod p).

So it suffices to determine
∑n

k=0 k
(
4k
2k

)(
2k
k

)
/72k mod p, where n = (p−1)/2. (Note

that p |
(
2k
k

)
for k = n+ 1, . . . , p− 1.)

The Legendre polynomial of degree n is given by

Pn(x) :=
n∑

k=0

(
n

k

)(
n+ k

k

)(
x− 1

2

)k

=
n∑

k=0

(
n+ k

2k

)(
2k

k

)(
x− 1

2

)k

.

It is known (see, e.g., [N]) that

n∑
k=0

(
n

2k

)(
2k

k

)
xk = (

√
1− 4x)nPn

(
1√

1− 4x

)
.



SUPERCONGRUENCES INVOLVING PRODUCTS OF BINOMIAL COEFFICIENTS 21

Taking derivatives of both sides of this identity, we get

n∑
k=0

(
n

2k

)(
2k

k

)
kxk−1

=− 2n(1− 4x)n/2−1
n∑

k=0

(
n+ k

2k

)(
2k

k

)(
(1− 4x)−1/2 − 1

2

)k

+ (1− 4x)(n−3)/2
n∑

k=0

(
n+ k

2k

)(
2k

k

)
k

(
(1− 4x)−1/2 − 1

2

)k−1

.

In view of (2.1) and (2.10), by putting x = 2/9 in the last equality we obtain

1

2

n∑
k=0

k
(
4k
2k

)(
2k
k

)
72k

≡ 1

3n

n∑
k=0

(
2k
k

)2
(−16)k

+
3

3n

n∑
k=0

k
(
2k
k

)2
(−16)k

(mod p)

and hence(
3

p

) n∑
k=0

k
(
4k
2k

)(
2k
k

)
72k

≡ 2

n∑
k=0

(
2k
k

)2
(−16)k

+ 6

n∑
k=0

k
(
2k
k

)2
(−16)k

(mod p).

Since
∑n

k=0

(
2k
k

)2
/(−16)k and

∑n
k=0 k

(
2k
k

)2
/(−16)k modulo p have been deter-

mined (cf. Theorem 1.3(i) and the paragraph after (1.4)), we finally obtain the

desired result for
∑n

k=0 k
(
4k
2k

)(
2k
k

)
/72k modulo p.

The proof of Theorem 1.5 is now complete. �

Proof of Theorem 1.6. We just show the first part in detail. Parts (ii) and (iii)
can be proved similarly.

By (1.14) and (1.17), there are p-adic integers a0, . . . , ap−1, b0, . . . , bp−2 such
that

p−1∑
k=0

(
3k
k

)(
2k
k

)
27k

(
xk −

(p
3

)
(1− x)k

)
= p2

p−1∑
k=0

akx
k (4.1)

and
p−1∑
k=1

k
(
3k
k

)(
2k
k

)
27k

(
xk−1 +

(p
3

)
(1− x)k−1

)
= p2

p−2∑
k=0

bkx
k. (4.2)

Let α and β be the two distinct roots of the equation x2 −Ax+B = 0. It is well
known that

uk =
αk − βk

α− β
and vk = αk + βk for all k ∈ N.



22 ZHI-WEI SUN

As α/A+ β/A = 1, by (4.1) and (4.2) we have

p−1∑
k=0

(
3k
k

)(
2k
k

)
(27A)k

(
uk +

(p
3

)
uk

)
= p2

p−1∑
k=0

ak
Ak

uk,

p−1∑
k=0

(
3k
k

)(
2k
k

)
(27A)k

(
vk −

(p
3

)
vk

)
= p2

p−1∑
k=0

ak
Ak

vk,

p−1∑
k=1

k
(
3k
k

)(
2k
k

)
27kAk−1

(
uk−1 −

(p
3

)
uk−1

)
= p2

p−2∑
k=0

bk
Ak

uk,

p−1∑
k=1

k
(
3k
k

)(
2k
k

)
27kAk−1

(
vk−1 +

(p
3

)
vk−1

)
= p2

p−2∑
k=0

bk
Ak

vk.

Thus (1.30) holds when p ≡ 1 (mod 3), and (1.31) holds when p ≡ 2 (mod 3). We
are done. �

Acknowledgment. The author is grateful to the referee for helpful comments.

References

[A] S. Ahlgren, Gaussian hypergeometric series and combinatorial congruences, in: Sym-
bolic Computation, Number Theory, Special Functions, Physics and Combinatorics
(Gainesville, FI, 1999), pp. 1-12, Dev. Math., Vol. 4, Kluwer, Dordrecht, 2001.

[BEW] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, John Wiley &
Sons, 1998.

[CDE] S. Chowla, B. Dwork and R. J. Evans, On the mod p2 determination of
((p−1)/2
(p−1)/4

)
, J.

Number Theory 24 (1986), 188–196.

[CD] J. B. Cosgrave and K. Dilcher, Mod p3 analogues of theorems of Gauss and Jacobi on
binomial coefficients, Acta Arith. 142 (2010), 103–118.

[GKP] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed., Addison-
Wesley, New York, 1994.

[M] F. Morley, Note on the congruence 24n ≡ (−1)n(2n)!/(n!)2, where 2n + 1 is a prime,

Ann. Math. 9 (1895), 168–170.

[Mo1] E. Mortenson, A supercongruence conjecture of Rodriguez-Villegas for a certain trun-

cated hypergeometric function, J. Number Theory 99 (2003), 139–147.

[Mo2] E. Mortenson, Supercongruences between truncated 2F1 by geometric functions and their
Gaussian analogs, Trans. Amer. Math. Soc. 355 (2003), 987–1007.

[N] T. D. Noe, On the divisibility of generalized central trinomial coefficients, J. Integer Seq.
9 (2006), Article 06.2.7, 12pp.

[PS] H. Pan and Z.-W. Sun, A combinatorial identity with application to Catalan numbers,
Discrete Math. 306 (2006), 1921–1940.
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