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Abstract

Let 4” denote the set of all formulas 3x,...3x,[P{xy, ..., x,) = 0], where P is a polynomial
with integer coefficients. We prove a new raiatmmmmhmmg theorem fmm which it fol-

lows that if 37 {s undecidable over N, then F#"*~ is undecidable over Z.
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In 1970 Ju. V.MatuaseviC [3] took the last step to solve HILBERT's tenth problem
negatively. Consequently it follows that 37, the set of formulas of the form
3x;3%,...3x,[P(xy, ..., x,) = 0], where P is a polynomial with integer coefficients, is undecid-
able over N =1{0, 1, 2 ..} for sufficiently large n. In 1975 Martuasevi¢ and J. RoBiNsoN [6]
proved that every Dmphanti‘ﬁa equation with natural number unknowns is reducible to
one in 13 unknowns, therefore 3'° is undecidable over N. In this reduction a relation-combin-
ing theorem plays an important role. In [5] MaTtuaseviC announced further that 3° is undecid-
able over N, a complete proof can be found in J. P. Jongs {2]. In the proof of the 9-unknowns
theorem the relation-combining theorem is again an important tool. Can we replace 9 by a
smaller number? It is believed so. In fact, A. BAKER, MATASEVIC and J. ROBINSON even con-
jectured that 3° is undecidable over N (cf. [1], [6]).

Concerning integer unknowns, S. P. Tunc [11] conjectured the decidability of 3% over Z,
and he showed in [10] that 3% is undecidable over Z. (From MaTnasevi¢ [4] we know that
xeN < dq, b, ce Z(x= a*+ b*+ ¢? + ¢), and hence the undecidability of 3” over N implies
the undecidability of 3°” over Z.)

In this paper we will present a new relation-combining theorem, from which it follows that
if 4" is undecidable over N, then 3***? is undecidable over Z.

By [ ] we denote the set of all squares. Let us first recall the famous

Matijasevic-Robinson Relation-Combining Theorem. For each k there is a poly-

nomial M, with integer coefficients such that for all integers A1 s oony Ay, B, C, D with B = 0 the con-
ditions }

Ave[], ..., A.€[], BIC D>0
all hold if and only if
Mk(ﬂéh “xsy Aﬁ:& B:e Cﬁ B& H) =0

Jor some natural number n.

This relation-combining theorem is about Diophantine representations with natural num-
ber unknowns. In the following we will present a new one concerned with integer unknowns.
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For this purpose in the following all variables range over Z. As auxiliary we need
Lemma l. m=*=0 < dxdylm=_2x— 13y~ 1)].
This 1s a simple fact due to S. P. Tung [10].
Lemma 2. mz0e=3y=*=0[dm+2y*+1e[]]

Proof. =) Let m=0. Since 4m+2 =0, 1 (mod 4) we have 4dm+2e N — [ |. By a well-
known theorem in number theory, there are infinitely many x and y such that
x*—(@dm+2)y*=1, and hence dm + 2)y>+ 1e[ | for some y =*0.

(=) Suppose that y +0 satisfies dm+2Dy*+1lel . f m<0, then 0= @dm+2)y? + 1
< —-2y*+ 1= -2+ 1<0. This contradiction shows that m is nonnegative.

Our Lemma 2 is much simpler than the following result due to R. M. Rosinson [7]:

mz0 < Ix3yim = x? v (x° = x + mxy? A x? £ x)].
Below we will see the key role of Lemma 2.

Lemma 3. Let

H(.x t"VA}, + .A.z Wx... & VA;C -kai) = xzk“f‘“ F}Xﬁkwl + o sz....fzx + Fgﬁ:;

k

where W =1 + Z A? and the product extends over all combinations of signs. Then whenever S * ()
i=1

we have

Ay, o, Ave A SIT = 3x[He(Ay, ..., A, S. T, x) = 0],

where the polynomial H, (with integer coefficients) is given by
Hi(A,, ..., A, S, T, x) = (Sx + T)* + F.S(Sx + Ty~ + ...
+ Py 8¥ Y Sx + T) + FpS*.
This lemma can be easily seen from Sectign 1 of [6]. A direct proof was given in Sun [8].
Now we are ready to present
New Relation-Combining Theorem. Whenever D+ 0 we have
Ay, ..., Ace[JABy,....,B,#0AC,,...,C,20AD|E
& IxXoAxX1. X a[P(Ay, s A By, oo, B Gy e, G D E X, X, 0, X 40) = 0]
where
P(Ay, ..., A; By, ooty By Gy, o, G Dy By Xy Xy, vey Xpe 1)
= Hevnldy, oo, 4, GC+2Dx5+1, .., 4C, ., +Dx3_, + 1,
(4(C, + 1)B%--Bx%--x2_ = 2) X (2%, — 1)*(3%,+,— 12+ 1, D, E, xy).

Proot.
A;_} . AkE'D A B}, Cwuy 3??1 *+ 0 A C}_, cee s Cngﬂ A\ DIE

= A-i:: ooy A € D N\ C;” ‘o y Cgm; =0 A B%B%H(CH"JF‘ 1) >0 A DiE
e A;,,H,Ak c ___I \ Exﬁxznixnmi[(ﬁfcl + 2))‘:% + 1€ D LA A (4Cnm1 +- 2)x'i_1 +1le D
A B2B2(C,+ 1)xt-xt_ —120 A D|E]
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= Ix;...3x,_ ;’:”zy#O{Ai,H Ay, (AC, +Dx3+1, ..., (4C,_, +Dx:_, +1e[]
A (4B B:(C,+ Dx7-xi_,=2y*+1e[ JAD|E]

= 3% 3%, 1 3%, 3%, 4 13X Hes (A1, oo, Ap, G+ 2)xT+ 1,0, (4G, + Dx)_ + 11,
(4(C,+ DBY--Bhxtxi_ = 2) 2%, — 1)*Bx, 1 — )2+ 1, D, E, x0) = 0].

This concludes the proof.

From the theorem we see that

3x,20...3x, 2 0[Q(x,, ..., x,) = 0]
< 3x;...3%,3¥0. .. 3Ve+ 1[QH Xy, ooy X)) T HA((Axy + 2y + 1, ..., (Bx, - +2)y2_, + 1,
A(x, + Dytyi 1 =22y — D*CByps 1 — D+ 1, 1,0, y) =0].

This observation yields the following application:

Corollary. If 3" is undecidable over N, then 3°"*? is undecidable over Z.
Hence we have

(i) If 3% is decidable over Z, then 3* is decidable over N.
(1i) The Baker-Matijasevic-Robinson conjecture implies the undecidability of 3° over Z.
(iii) 3%*° is undecidable over Z (by the 9-unknowns theorem).

By A.Baker [1] we can effectively determine whether the Diophantine eguation
F(x, y) = m 1s solvable or not, where m is a positive integer and F is a homogeneous poly-
nomial with degree at least 3 and with integer coefficients, irreducible over the rational field.
So, perhaps 32 is decidable over N. .

As for (iii) we mention that it is better than the current result that 327 is undecidable over
Z. The number 20 is certainly not the best, it was announced in [8], [9] that 3!! is undecidable
over Z, however the proof is much more complicated and still unpublished.
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