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ABSTRACT. Let p > 5 be a prime. Motivated by the known formulae

,;1 k(2R _7C (8) and Z (21<:+1)16k e

(where G = >°32 o (—1)%/(2k + 1)? is the Catalan constant), we show that

(p—1)/2 (_1),I<;

>

k=1 k3 (Qk:k)

p—1 (2k)2

= —2Bp_3 (mod p),

7 2 3
- d
> @kt D16 = 1P B (mod p°)

k=(p+1)/2

and
(p—3)/2 (2k)2 5
. = —2¢p(2) —pgp(2)® + Eszp—ii (mod p?),

kL =
= (2k+1)16

where By, B1, B2, ... are Bernoulli numbers and g¢p(2) is the Fermat quotient
(2P~ —1)/p.

1. INTRODUCTION

Let p > 3 be a prime. In 2010 the author and R. Tauraso [ST] proved that

1(2)

"?

P Bp_g (mod pg),

>
I
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where By, By, B, ... are Bernoulli numbers. Note that
2K 2GR _ nod ) for k= 22 1
v )= e = P ==L

The author [S11lc] managed to show that

(r—1)/2 (2K
8
Z (Z) = (-1)P*D2_pE, 5 (mod p?)

k=1 3
and
(=172 4
Z = (-1)®"V2ZF o (mod p)
2k ( p 3 p7
k=1 k2( k ) 3
where Ey, E1, Fo, ... are Euler numbers. It is interesting to compare the last

congruence with the known formula
i 12 _
2k\ g
- keG) 3 18

Note that van Hamme [vH] and his followers ever considered p-adic analogues
of some hypergeometric series related to the Gamma function or m = I'(1/2)?
but Bernoulli numbers or Euler numbers never appeared in their work.

In 1979 Apéry (cf. [Ap] and [vP]) proved the irrationality of ¢(3) = >_r-, 1/n®
and his following formula

00 Nk
> = —2¢®)

iz B ()

plays an important role in the proof. Motivated by this, Tauraso [T10] showed
that if p > 5 is a prime then

and

=l (2k) _ % CHp (mod p?),

where H, = 3 ;< 1/k (n = 0,1,2,...) are harmonic numbers. It is well
known (cf. [G1] or [Su, Theorem 5.1(a)]) that
2

Hy,_ | = —%Bp_g, (mod p®)  for any prime p > 3.
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3

k
Actually Tauraso obtained Zk 1 2) (2:) mod p* for each prime p > 5 via

putting n = p in the following 1dent1ty

—~ \k 4n4+k4 4n4+j ~ 5n2

conjectured by J. M. Borwein and D. M. Bradley [BB] and proved by G.

Almkvist and A. Granville [AG].
Let p > 3 be a prime. The author [S1lc] proved that

p—l
1)E=D/2 _ p2E, 5 (mod p°).

k=1
Recently Tauraso [T12] showed that
p—1 (2k)2
Z kliﬁk = —2H(,_1)/2 (mod p3).
k=1

Inputting the command

FullSimplify[Sum[Binomial [2k,k]"2/(k*16"k),{k,1,Infty}]],

we get from Mathematica (version 7) the identity

k2

> 8G
k
—4log2 — =
D pior =4log2—
k=1

where G is the Catalan constant given by
(D"
G =
2 okt P

Now we state our first theorem.

Theorem 1.1. Let p > 5 be a prime. Then

(p_Zl)/2 (_1)k
=—2B,_3 (mod p)
2k p )
= B
P2 (C)k ok 56
k2 k :1_5po_3 (mOdp )7
k=1
(p—1)/2 (2k)2 7
k
l; ]{316k = — 2H(p_1)/2 — §p Bp 3 (mod p )
-1

4 p (2:)2 (p—1)/2 16%
T2 L16* Z

5 =
p k=(p+1)/2 k=1 kS(Qkk)

(1.1)

(1.2)

(1.3)
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Remark 1.1. Both (1.1) and (1.2) were conjectured in [Sllc Conjecture 1.1].
The reader may consult [S10] and [S11a] for > 5_ ( ) /m* modulo powers of
p, where p is an odd prime and m is an integer not divisible by p.

Motivated by the formulae

i (Zkk) _T d Z (215) _ 7T_2
< @k+ 116k 3 2k + 1)2(—16)F _ 10

the author [Sllb] showed that

(p—3)/2 (zk) p—1 (Qk) »
k — 2 k — 2
E = 0 (mod p~) and E = -FE,_3 (mod p)
k k p ’
2o (2k+1)16 o7 @R DIEF 3

and conjectured that

(p—3)/2 2k
Z ( k ) — Hp—l
P (2k: + 1)2(—16)"’ op

(mod p°)

(which was recently confirmed by K. Hessami Pilehrood, T. Hessami Pilehrood
and R. Tauraso [HPT]) and

p—1 <2kz> P
k — 2
2 : 2(__ k p ’
(o 1)/2 (2k +1)2(—16) Z

where p is any prime greater than 5.
Theorem 1.1 has the following consequence.

Corollary 1.1. Let p > 5 be a prime. Then

- —3)/2
1 pzjl (lec) o (pi/ (—16)" _ By (mod p)
= S = )
P y(priyys (2R D2 (-16)F = k+12(%) 4
(1.5)
Since

2 4
o (G) 2+ "L (1 - 4k) (%) C)
kZ:O (2k — 1)16F 167 <n) nd kZ:O 9k — 1)4256F = (Sndnt1) o
by induction, we find that
2
= () _ 2 HEHt s
kzzo k- Di6F ~ x nd Z (2k — 4256k i

by Stirling’s formula n! ~ v/27n(n/e)™. (The latter was first obtained by J. W.
L. Glaisher [G2].) Via Mathematica (version 7) we find that

o0 (2k)2 -
k—:_ and = —((3) — Gr.
kZ_O(Qk:Jrl)le T kzo ok + 1) (%)’ 3¢~ G

Motivated by this we establish the following theorem.
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Theorem 1.2. Let p > 3 be a prime. Then

- 2 (p—3)/2
1 = (%) 16+ 7
Ly G . v =B,y (mod p),
P _ iy (2k +1)16 = (2k+ 1)3(2kk) 4
(1.6)
and

(p—3)/2 (2k)2 5
k =-2¢,(2) —pq(2)* + =p°Bp—3 (mod p*), (1.7

E _\kJ = _9
k

P (2k +1)16 12

where q,(2) denotes the Fermat quotient (2P~1 —1)/p.

Now we pose two conjectures for further research.

Conjecture 1.1. (i) If p > 5 is a prime, then

p—1 2k
21
> = e o 1),
h=(p11)/2
PP (e 3 H,, 4T ,
2 @) 4t e el

k=0

(ii) If p > 3 is a prime, then

(p— 1)/2( ) Hop
y o = = (—1)PV24E, 5 (mod p),

k
— k16
(p—1)/2 Qk) 7
16k (Ho — Hy) = —ngp_g (mod p2),

p—1l k1 _1\(p—1)/2
165~ Hy,_ 1P
2 i (=) Hp-1y2 + pEp—3 (mod p?).

= Ry 2

We also have the identity

p

(e 9 e’ H2l<:
Hy) == 1.
Z 2 3,;) 2k+1 16%° (18)
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Conjecture 1.2. Let p be an odd prime. Then

s ()G

7
=—-3H@p_1)2 + Zp2Bp_3 (mod p?),

k
£ k64
(p—1)/2 (2ky (4k
CHE) SN :
vok = 3He-npt (1) 2Eps (mod )
k=1
(p—1)/2 k-1 (p—1)/2
64 (=
D BN Ak Ep—3 (mod p).
=R 2
If p > 3, then
2k (4k\
— (Qk—l)kz(k>(2k) !

and

(P—1)/2 (2k\ (4k
> (]IZ()az(jc—k) (Hop — Hy) = (-1)P*V/24E, 5 (mod p).
k=1

In the next section we are going to show Theorem 1.1 and Corollary 1.1.
Theorem 1.2 will be proved in Section 3. Our proofs involve certain combina-
torial identities and harmonic numbers of higher orders given by

1
H™ = )" = (n=0,1,2,...).
0<k<n
2. PrROOF OF THEOREM 1.1

Lemma 2.1. Let p = 2n+ 1 be an odd prime. For any k =1,... ,p—1, we

have k(?:) (2259_—:)) = (—1)[20/Pl=19p  (mod p?) (2.1)
and
() =Bk moasn o

Proof. Congruence (2.1) was formulated in [S11lc, Lemma 2.1]; see also [T10]
for such a trick. Congruence (2.2) is known and easy (see p.231 of [vH, §3.4));
in fact,

o= () () = (3 = G ot

We are done. [
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Lemma 2.2. Let p > 3 be a prime. Then

1 3
(P ) = e s med) @3
and
Hipvys = ~202) + 202~ 7 (30,20 4 5By ) (mod 7). (20
Also,
H((;ll)/Q = ngp_g (mod p?) and H((S) 12 = —2Bp—s (mod p).  (2.5)

Remark 2.1. (2.3) and (2.4) are refinements of Morley’s congruence [Mo] and
Lehmer’s congruence [L] given by L. Carlitz [C] and Z.-H. Sun [Su, Theorem
5.2(c)] respectively. (2.5) follows from [Su, Corollary 5.2].

Lemma 2.3. For eachn=1,2,3,... we have
—~  (=DF ~ (=1)* 3
P o G o VAP 9103 (26)
n\ (n+k k n
e (OIS B G
and
k)\ k oot ”k_2:k:2 non A

k=1 k=1

Proof. (2.6) is due to Apéry [Ap] (see also [vP]). The author found (2.7) via the
math. software Sigma. (The reader may consult [OS, §5] for how to use Sigma
to produce combinatorial identities.) In fact, if we let s,, denote the left-hand
side or the right-hand side of (2.7) then Sigma yields the recurrence relation

) (n=1,2,3,...).

2n+1
n

<n+1fwm4—a»=2—5«4w(

So (2.7) can be proved by induction. [
Lemma 2.4. Let p > 3 be a prime. Then

p—1 (2k)
Z k2k16k: = _2H(2p—1)/2 (mod p*)
k=1

and ) )
p— (2k> 4 2
- 3 (3)
gk = 3He-12 7 3Hpmp (modp).
k=1

Remark 2.2. Lemma 2.4 is known, see [T12, Theorem 7] and its proof.
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Lemma 2.5. We have the new identity

3 (%) GO v
2(2(n+k)+1)16k_ 16n ];)2]{;+1' (2.8)

k=0

Proof. Let u,, denote the left-hand side or the right-hand side of (2.8). Applying
the Zeilberger algorithm (cf. [PWZ, pp.101-119]) via Mathematica (version 7),
we find the recurrence relation

8(4n® + 8n% 4+ 5n 4 1) (2n 2

on+1)%u, —4(n+1)%upe = — =0,1,2,...).
2012, A )P = = LI () 01

n

So (2.8) holds by induction. O

Proof of Theorem 1.1. For convenience we set n = (p — 1)/2 and S =
Sh_ (=D)F /(K3 (2:)) Below we divide the proof into two parts.

(i) In light of Lemma 2.1,

1 = 2K\ _ K= 2(-DF N 21k
( )_ Z k:3(2(p k Z k) =25 (mod p).

Hence (1.1) and (1.2) are equivalent since

-1

bS]

Nk
(1:2) (if) E_%po_g (mod p?) (2.9)

k=1

by [T10].
By [Sllc, (3.2)], for k =1,... ,n we have

)T )~ B s

This, together with (2.7) and the known identity

B0

k=1

(cf. [Pr, §2.1]), yields that

n 2K\ 2 n k
2:(1@) _ _p(>d (=1)" (2k 2 4
k=1
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Thus, in view of the first congruence in (2.5), we have

= 5 = (=D)F 2K\ 7
Zk +2H :—8pz(k2) (k> V' Bp-s (mod ). (2.10)

k=1 k=1

Therefore (1.2) and (1.3) are equivalent.
In light of Lemma 2.1,

i IS (Qkk)Q _ IS 4 - n 4
p2 e k16 _k:n+1 1316k (227:15))2 — (p— k)316r—* (Qkk)2
1<~ 16F
=_ - (mod p)
=)

With the help of (2.2) and (2.5), we obtain from (2.6) the congruence

n

16’“
Z 2y =55 —4B, 3 (mod p).

Therefore (1.1) and (1.4) are equivalent.

Note that
p—1 2k 2 p—l k
_ P _ 5 (=" (2k

> Eglfgk = 6SABs) =~ D, e )10 Bps (mod p?).
k=n+1 k=n+1
Combining this with (2.10) we get

p—1 ( p—1 k 2

5 (=1)" (2k p 3
2H, = —— ——B,_ d . 2.11
k16k+ 8172 L2 (k) g P3 (mod p”) ( )

k=1 k=1

So Tauraso’s result Y P_] (Qkk)Q/(klﬁk) = —2H, (mod p?) in [T12] actually

follows from his earlier result (2.9).

(ii) By the above, it suffices to show (1.3). Note that

2n p—1
1 Hy, 1 1 Hy_
=H =
Z%"‘ dn+1 — p1+p+zp+k: 9

and
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we see that

2n

1 1 3 p? 2
Z 2%k+1 p = §Hp71_pH;()2—)1 =5 p73——p2Bp73 = ——pQBpfg (mod p?)
k=0 p

since H,—1 = —p?B,_3/3 (mod p?®) and H]§2_)1 = 2pB,_3/3 (mod p?) by Glaisher
[G1] (see also [Su, Theorem 5.1(a)]). In view of (2.3),

2n\ 2 _
(n) (471 (1 + p°Bp-3/12))* — yr—1 p°
16™ 4r—1 - p—3

3
(1+pgy(2)* + %Bp_g, (mod p?).

Therefore

(Qﬁ)zi 1 1_@(:2:3 1 _1>+(2§)2/16n—1

2k+1 p 167

L — 2k+1 p D
7 1 9 2 3B /6 —1
__Tpep L 1+Pgp(2)"+p"Bps/
6 p
=24,(2) + pqy(2)*> = p°Bp—3 (mod p°®)

and hence (2.8) yields the congruence

n 2k 2
G) _ 2 o 3
Z— =2¢,(2) +pqp(2)° —p"Bp—3 (mod p°). (2.12)
k p p P
pt (2k +p)16
Note that
n 2 n
Z (2:) _ Z (4k* — 2kp + p?) (Zkk)
£ 2k +p)I6F = ((2k)® + p*)16F
2 2 2
_1 - (215) P (215) P’ ¢ (Qkk) 3
=52 hior 4 2= gt T g 2o paigr (mod r)
k=1 k=1 k=1
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and
_ 4 , 2 32 4
Z kglﬁk = —5(-20(2))° ~ 5(-2Bys) = 5 4p(2)° + 3 Bp—s  (mod p).
(2.15)
Combining (2.12)-(2.15) we obtain
Ly G =2,(2) + pay(2)? — P*Bp s + = (—84,(2) + 8p4,(2)%)
2 £ K16k 1P p p=3 7Ty p P

2
p* (32 4
— g (gqp(2)3 + ngg) (mod p3)

In view of (2.4), this yields the desired (1.3).
The proof of Theorem 1.1 is now complete. [J

Proof of Corollary 1.1. Write p = 2n + 1. In view of Lemma 2.1,

1 ( )

1;;@:2%1 2k +1)2(—16)*
< (o= /v
=) Q=R T 1o
_ n _2/ k(Zkk) n—1 )
=2 @) 2 2k:+1 )( 17)

(;i/i) (mod p) forall k=0,...,n

ah
N <
)
~—
Il
~~
> 3
N
I
A~
S
I3
=
N
Il

4k
o @R+ 13() = @37
n—1

_ 4k -
=2 s G 2 G s eE
1; W - g Z kg 2k:

B3 (mod p) by (1.1).

Therefore (1.5) holds. O
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3. PROOF OF THEOREM 1.2

Lemma 3.1. For any positive integer n we have

SO G R (3.1)
_ k= g2n—1 '
S (n—k)16F 4271 L= 2k 41
and
(= DF N\ n+k) 1 L2 ”z‘:l 1 (3.2)
2k +1)? \k E ) (2n+1)2 2n+1 = 2k+1 ‘
Proof. Let (z)o = 1 and (x), = H;:é(x + j) for k = 1,2,3,.... Then
(1/2)2 /(D)7 = (Zkk)2/16’“ for k = 0,1,2,.... Thus (3.1) is just (21) of [Lu,

Ch.5.2] with x = 1/2 (see also [T12, (1)]).

Identity (3.2) is new and it can be proved via the Zeilberger algorithm (cf.
[PWZ, pp.101-119]). It is easy to verify (3.2) for n = 1,2. Applying the
Zeilberger algorithm via Mathematica (version 7), we find that if a,, denotes
the left-hand side or the right-hand side of (3.2) then

(n4+1)(2n + 5)%ans2 = (2n + 3)(4n? + 12n + Taps1 — (n + 2)(2n + 1)3a,

for all m =1,2,3,.... So (3.2) follows by induction. O
Lemma 3.2. Let p > 3 be a prime. Then

X (%)2 4 B, 3
k _ 3 _
Z m = —§Qp(2) - % (mod p). (3.3)

k=0

Proof. Set n = (p—1)/2. For k =0,... ,n we clearly have

(1= ()= ()= () -G

S Ch’ S M S/
S 2k + 13168 T = 2k +1)° = (2(n — k) +1)°

Thus

Combining this with (2.15) we obtain the desired (3.3). O
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Lemma 3.3. Let p > 3 be a prime. Then

(p—3)/2 (Qk)z 5 »
2 (2k +k1)216k = —20p(2)" + 3p4p(2)° — G Bp-s (mod p*).  (34)
k=0

Proof. Write p = 2n + 1. By (3.2) we have

o () () S (e )

k=0
_1- (—=1)"(*") — pH, 2

M

P oyt
In light of Lemma 2.2,
n (21 p?
1—(-1) (n) —pH, =1 - (1+pg(2))* - EBP_;g

+200,(2) = P02+ (502 + 15B00a)

2

Bp—3
- _ 2p2qp(2)2 +p3 (_ p

(20 + P (mod )

So, with the help of (2.2), we get
Qk)

(2k +1 216k

M |

2
= _2‘113(2)2 +p <§qp
k=0

which gives (3.4) since H,_1/p = —pB,_3/3 (mod p?). O

Proof of Theorem 1.2. For convenience we set n = (p —1)/2.
We first prove (1.6). By Lemma 2.1,

= 1 (%)2 - n ((2(10 k))/p)
P 2 T 2 R i

L2/ k()6 16*

= = — mod p).
— 1—2k kZ:O (2]{7 + 1)3(2kk)2 ( p)

Note also that

5

n—1 1 n 1
2%k + 1 ()2 ;(2k+1)3(’,§2_2 "

n

~—

0| = <
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Thus, with the help of (1.4) we get (1.6). (In the case p = 5, (1.6) can be
verified directly.)

Since (2:)2 = 44" (mod p?) by (2.3), we have

ey H\ )
42n—1 Z 2%k + 1 =4 Hp—l - 7 =4 Hp—l - 2(1 +qu(2)) H,
k=0

4
- _p2BP—3 —2(1+2p q}?(z) +p2Qp(2)2>Hn

3
4 B,_
=44,(2) + 6pgp(2)* +p° <§Qp(2)3 - % 3) (mod p?)
with the help of (2.4). Note also that
n—1 2k 2 n—1 ok 9
2 & (n—k)16F £ (p— (2k + 1))16*
:n—l (Zkk)z(p2 +p(2k+ 1) + (2]€+ 1)2)
=0 (p® — (2k +1)3)16F
n—1 (2k)2 n—1 (Qk)Z n_1 (2k)2
= ’ k— - k— — k— 3
=—p kZ:() (2k+ 1)316k ka:O (2]€+ 1)216k kZ:O (2]€—|— 1)16k (mOdp )

Combining these with (3.1), (3.3) and (3.4) we finally obtain the desired (1.7). O

Acknowledgment. The author is grateful to the referee for helpful comments.
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