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Abstract. Let p > 5 be a prime. Motivated by the known formulae

∞∑
k=1

(−1)k

k3
(2k
k

) = −
2

5
ζ(3) and

∞∑
k=0

(2k
k

)2
(2k + 1)16k

=
4G

π

(where G =
∑∞

k=0(−1)k/(2k + 1)2 is the Catalan constant), we show that

(p−1)/2∑
k=1

(−1)k

k3
(2k
k

) ≡ −2Bp−3 (mod p),

p−1∑
k=(p+1)/2

(2k
k

)2
(2k + 1)16k

≡ −
7

4
p2Bp−3 (mod p3)

and

(p−3)/2∑
k=0

(2k
k

)2
(2k + 1)16k

≡ −2qp(2) − p qp(2)2 +
5

12
p2Bp−3 (mod p3),

where B0, B1, B2, . . . are Bernoulli numbers and qp(2) is the Fermat quotient

(2p−1 − 1)/p.

1. Introduction

Let p > 3 be a prime. In 2010 the author and R. Tauraso [ST] proved that

p−1∑
k=1

(
2k
k

)
k
≡ 8

9
p2Bp−3 (mod p3),
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where B0, B1, B2, . . . are Bernoulli numbers. Note that(
2k

k

)
=

(2k)!

k!2
≡ 0 (mod p) for k =

p+ 1

2
, . . . , p− 1.

The author [S11c] managed to show that

(p−1)/2∑
k=1

(
2k
k

)
k
≡ (−1)(p+1)/2 8

3
pEp−3 (mod p2)

and
(p−1)/2∑

k=1

1

k2
(
2k
k

) ≡ (−1)(p−1)/2
4

3
Ep−3 (mod p),

where E0, E1, E2, . . . are Euler numbers. It is interesting to compare the last
congruence with the known formula

∞∑
k=1

1

k2
(
2k
k

) =
ζ(2)

3
=
π2

18
.

Note that van Hamme [vH] and his followers ever considered p-adic analogues
of some hypergeometric series related to the Gamma function or π = Γ(1/2)2

but Bernoulli numbers or Euler numbers never appeared in their work.
In 1979 Apéry (cf. [Ap] and [vP]) proved the irrationality of ζ(3) =

∑∞
k=1 1/n3

and his following formula

∞∑
k=1

(−1)k

k3
(
2k
k

) = −2

5
ζ(3)

plays an important role in the proof. Motivated by this, Tauraso [T10] showed
that if p > 5 is a prime then

p−1∑
k=1

(−1)k

k3
(
2k
k

) ≡ −2

5
· Hp−1

p2
(mod p3)

and
p−1∑
k=1

(−1)k

k2

(
2k

k

)
≡ 4

5
· Hp−1

p
(mod p3),

where Hn =
∑

0<k6n 1/k (n = 0, 1, 2, . . . ) are harmonic numbers. It is well

known (cf. [G1] or [Su, Theorem 5.1(a)]) that

Hp−1 ≡ −
p2

3
Bp−3 (mod p3) for any prime p > 3.
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Actually Tauraso obtained
∑p−1

k=1
(−1)k
k2

(
2k
k

)
mod p4 for each prime p > 5 via

putting n = p in the following identity

n∑
k=1

(
2k

k

)
k2

4n4 + k4

k−1∏
j=1

n4 − j4

4n4 + j4
=

2

5n2

conjectured by J. M. Borwein and D. M. Bradley [BB] and proved by G.
Almkvist and A. Granville [AG].

Let p > 3 be a prime. The author [S11c] proved that

p−1∑
k=1

(
2k
k

)2
16k

≡ (−1)(p−1)/2 − p2Ep−3 (mod p3).

Recently Tauraso [T12] showed that

p−1∑
k=1

(
2k
k

)2
k16k

≡ −2H(p−1)/2 (mod p3).

Inputting the command
FullSimplify[Sum[Binomial[2k,k]∧2/(k*16∧k),{k,1,Infty}]],

we get from Mathematica (version 7) the identity

∞∑
k=1

(
2k
k

)2
k16k

= 4 log 2− 8G

π
,

where G is the Catalan constant given by

G :=
∞∑
k=0

(−1)k

(2k + 1)2
.

Now we state our first theorem.

Theorem 1.1. Let p > 5 be a prime. Then

(p−1)/2∑
k=1

(−1)k

k3
(
2k
k

) ≡− 2Bp−3 (mod p), (1.1)

(p−1)/2∑
k=1

(−1)k

k2

(
2k

k

)
≡56

15
pBp−3 (mod p2), (1.2)

(p−1)/2∑
k=1

(
2k
k

)2
k16k

≡− 2H(p−1)/2 −
7

2
p2Bp−3 (mod p3), (1.3)

− 4

p2

p−1∑
k=(p+1)/2

(
2k
k

)2
k16k

≡
(p−1)/2∑

k=1

16k

k3
(
2k
k

)2 ≡ −14Bp−3 (mod p). (1.4)
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Remark 1.1. Both (1.1) and (1.2) were conjectured in [S11c, Conjecture 1.1].

The reader may consult [S10] and [S11a] for
∑p−1

k=0

(
2k
k

)
/mk modulo powers of

p, where p is an odd prime and m is an integer not divisible by p.

Motivated by the formulae
∞∑
k=0

(
2k
k

)
(2k + 1)16k

=
π

3
and

∞∑
k=0

(
2k
k

)
(2k + 1)2(−16)k

=
π2

10
,

the author [S11b] showed that

(p−3)/2∑
k=0

(
2k
k

)
(2k + 1)16k

≡ 0 (mod p2) and

p−1∑
k=(p+1)/2

(
2k
k

)
(2k + 1)16k

≡ p

3
Ep−3 (mod p2),

and conjectured that

(p−3)/2∑
k=0

(
2k
k

)
(2k + 1)2(−16)k

≡ Hp−1

5p
(mod p3)

(which was recently confirmed by K. Hessami Pilehrood, T. Hessami Pilehrood
and R. Tauraso [HPT]) and

p−1∑
k=(p+1)/2

(
2k
k

)
(2k + 1)2(−16)k

≡ −p
4
Bp−3 (mod p2),

where p is any prime greater than 5.
Theorem 1.1 has the following consequence.

Corollary 1.1. Let p > 5 be a prime. Then

1

p

p−1∑
k=(p+1)/2

(
2k
k

)
(2k + 1)2(−16)k

≡ −
(p−3)/2∑

k=0

(−16)k

(2k + 1)3
(
2k
k

) ≡ −Bp−3

4
(mod p).

(1.5)

Since
n∑

k=0

(
2k
k

)2
(2k − 1)16k

= −2n+ 1

16n

(
2n

n

)2

and
n∑

k=0

(1− 4k)
(
2k
k

)4
(2k − 1)4256k

= (8n2+4n+1)

(
2n
n

)4
256n

by induction, we find that

∞∑
k=0

(
2k
k

)2
(2k − 1)16k

= − 2

π
and

∞∑
k=0

(4k − 1)
(
2k
k

)4
(2k − 1)4256k

= − 8

π2

by Stirling’s formula n! ∼
√

2πn(n/e)n. (The latter was first obtained by J. W.
L. Glaisher [G2].) Via Mathematica (version 7) we find that

∞∑
k=0

(
2k
k

)2
(2k + 1)16k

=
4G

π
and

∞∑
k=0

16k

(2k + 1)3
(
2k
k

)2 =
7

2
ζ(3)−Gπ.

Motivated by this we establish the following theorem.
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Theorem 1.2. Let p > 3 be a prime. Then

1

p2

p−1∑
k=(p+1)/2

(
2k
k

)2
(2k + 1)16k

≡ −
(p−3)/2∑

k=0

16k

(2k + 1)3
(
2k
k

)2 ≡ −7

4
Bp−3 (mod p),

(1.6)
and

(p−3)/2∑
k=0

(
2k
k

)2
(2k + 1)16k

≡ −2qp(2)− p qp(2)2 +
5

12
p2Bp−3 (mod p3), (1.7)

where qp(2) denotes the Fermat quotient (2p−1 − 1)/p.

Now we pose two conjectures for further research.

Conjecture 1.1. (i) If p > 5 is a prime, then

p−1∑
k=(p+1)/2

(
2k
k

)2
k16k

≡ −21

2
Hp−1 (mod p4),

(p−3)/2∑
k=0

(−16)k

(2k + 1)3
(
2k
k

) ≡ −3

4
· Hp−1

p2
− 47

400
p2Bp−5 (mod p3).

(ii) If p > 3 is a prime, then

(p−1)/2∑
k=1

(
2k
k

)2
H2k

k16k
≡ (−1)(p−1)/24Ep−3 (mod p),

(p−1)/2∑
k=1

(
2k
k

)2
k16k

(H2k −Hk) ≡ −7

3
pBp−3 (mod p2),

p2
p−1∑
k=1

16k−1Hk−1

k2
(
2k
k

)2 ≡ (−1)(p−1)/2

2
H(p−1)/2 + pEp−3 (mod p2).

We also have the identity

∞∑
k=1

(
2k
k

)2
k16k

(H2k −Hk) =
2

3

∞∑
k=0

(
2k
k

)2
H2k

(2k + 1)16k
. (1.8)
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Conjecture 1.2. Let p be an odd prime. Then

p−1∑
k=1

(
2k
k

)(
4k
2k

)
k64k

≡− 3H(p−1)/2 +
7

4
p2Bp−3 (mod p3),

(p−1)/2∑
k=1

(
2k
k

)(
4k
2k

)
k64k

≡− 3H(p−1)/2 + (−1)(p+1)/2 2pEp−3 (mod p2),

p

(p−1)/2∑
k=1

64k−1

k3
(
2k
k

)(
4k
2k

) ≡ (−1)(p−1)/2

2
Ep−3 (mod p).

If p > 3, then

p

(p−1)/2∑
k=1

64k−1

(2k − 1)k2
(
2k
k

)(
4k
2k

) ≡ (−1)(p+1)/2qp(2) + pEp−3

4
(mod p2)

and
(p−1)/2∑

k=1

(
2k
k

)(
4k
2k

)
k64k

(H2k −Hk) ≡ (−1)(p+1)/24Ep−3 (mod p).

In the next section we are going to show Theorem 1.1 and Corollary 1.1.
Theorem 1.2 will be proved in Section 3. Our proofs involve certain combina-
torial identities and harmonic numbers of higher orders given by

H(m)
n =

∑
0<k6n

1

km
(n = 0, 1, 2, . . . ).

2. Proof of Theorem 1.1

Lemma 2.1. Let p = 2n + 1 be an odd prime. For any k = 1, . . . , p − 1, we
have

k

(
2k

k

)(
2(p− k)

p− k

)
≡ (−1)b2k/pc−12p (mod p2) (2.1)

and (
n

k

)(
n+ k

k

)
≡

(
2k
k

)2
(−16)k

(mod p2). (2.2)

Proof. Congruence (2.1) was formulated in [S11c, Lemma 2.1]; see also [T10]
for such a trick. Congruence (2.2) is known and easy (see p. 231 of [vH, §3.4]);
in fact,(
n

k

)(
n+ k

k

)
(−1)k =

(
(p− 1)/2

k

)(
(−p− 1)/2

k

)
≡
(
−1/2

k

)2

=

(
2k
k

)2
16k

(mod p2).

We are done. �
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Lemma 2.2. Let p > 3 be a prime. Then

(−1)(p−1)/2
(

p− 1

(p− 1)/2

)
≡ 4p−1 +

p3

12
Bp−3 (mod p4) (2.3)

and

H(p−1)/2 ≡ −2qp(2) + p qp(2)2 − p2
(

2

3
qp(2)3 +

7

12
Bp−3

)
(mod p3). (2.4)

Also,

H
(2)
(p−1)/2 ≡

7

3
pBp−3 (mod p2) and H

(3)
(p−1)/2 ≡ −2Bp−3 (mod p). (2.5)

Remark 2.1. (2.3) and (2.4) are refinements of Morley’s congruence [Mo] and
Lehmer’s congruence [L] given by L. Carlitz [C] and Z.-H. Sun [Su, Theorem
5.2(c)] respectively. (2.5) follows from [Su, Corollary 5.2].

Lemma 2.3. For each n = 1, 2, 3, . . . we have

n∑
k=1

(−1)k

k3
(
n
k

)(
n+k
k

) = 5
n∑

k=1

(−1)k

k3
(
2k
k

) + 2H(3)
n (2.6)

and
n∑

k=1

(
n

k

)(
n+ k

k

)
(−1)k

k
(Hn+k −Hn−k) =

5

2

n∑
k=1

(−1)k

k2

(
2k

k

)
+ 2H(2)

n . (2.7)

Proof. (2.6) is due to Apéry [Ap] (see also [vP]). The author found (2.7) via the
math. software Sigma. (The reader may consult [OS, §5] for how to use Sigma

to produce combinatorial identities.) In fact, if we let sn denote the left-hand
side or the right-hand side of (2.7) then Sigma yields the recurrence relation

(n+ 1)2(sn+1 − sn) = 2− 5(−1)n
(

2n+ 1

n

)
(n = 1, 2, 3, . . . ).

So (2.7) can be proved by induction. �

Lemma 2.4. Let p > 3 be a prime. Then

p−1∑
k=1

(
2k
k

)2
k216k

≡ −2H2
(p−1)/2 (mod p2)

and
p−1∑
k=1

(
2k
k

)2
k316k

≡ −4

3
H3

(p−1)/2 −
2

3
H

(3)
(p−1)/2 (mod p).

Remark 2.2. Lemma 2.4 is known, see [T12, Theorem 7] and its proof.
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Lemma 2.5. We have the new identity

n∑
k=0

(
2k
k

)2
(2(n+ k) + 1)16k

=

(
2n
n

)2
16n

2n∑
k=0

1

2k + 1
. (2.8)

Proof. Let un denote the left-hand side or the right-hand side of (2.8). Applying
the Zeilberger algorithm (cf. [PWZ, pp. 101-119]) via Mathematica (version 7),
we find the recurrence relation

(2n+1)2un−4(n+1)2un+1 = −8(4n3 + 8n2 + 5n+ 1)

(4n+ 3)(4n+ 5)16n

(
2n

n

)2

(n = 0, 1, 2, . . . ).

So (2.8) holds by induction. �

Proof of Theorem 1.1. For convenience we set n = (p − 1)/2 and S :=∑n
k=1(−1)k/(k3

(
2k
k

)
). Below we divide the proof into two parts.

(i) In light of Lemma 2.1,

1

p

p−1∑
k=n+1

(−1)k

k2

(
2k

k

)
≡

p−1∑
k=n+1

2(−1)k

k3
(
2(p−k)
p−k

) =
n∑

k=1

2(−1)p−k

(p− k)3
(
2k
k

) ≡ 2S (mod p).

Hence (1.1) and (1.2) are equivalent since

p−1∑
k=1

(−1)k

k2

(
2k

k

)
≡ − 4

15
pBp−3 (mod p2) (2.9)

by [T10].
By [S11c, (3.2)], for k = 1, . . . , n we have

(
n

k

)(
n+ k

k

)
(−1)k

(
1− p

4
(Hn+k −Hn−k)

)
≡
(
2k
k

)2
16k

(mod p4).

This, together with (2.7) and the known identity

n∑
k=1

(
n

k

)(
n+ k

k

)
(−1)k

k
= −2Hn

(cf. [Pr, §2.1]), yields that

n∑
k=1

(
2k
k

)2
k16k

+ 2Hn ≡ −
p

4

(
5

2

n∑
k=1

(−1)k

k2

(
2k

k

)
+ 2H(2)

n

)
(mod p4).
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Thus, in view of the first congruence in (2.5), we have

n∑
k=1

(
2k
k

)2
k16k

+ 2Hn ≡ −
5

8
p

n∑
k=1

(−1)k

k2

(
2k

k

)
− 7

6
p2Bp−3 (mod p3). (2.10)

Therefore (1.2) and (1.3) are equivalent.
In light of Lemma 2.1,

1

p2

p−1∑
k=n+1

(
2k
k

)2
k16k

≡
p−1∑

k=n+1

4

k316k
(
2(p−k)
p−k

)2 =
n∑

k=1

4

(p− k)316p−k
(
2k
k

)2
≡− 1

4

n∑
k=1

16k

k3
(
2k
k

)2 (mod p).

With the help of (2.2) and (2.5), we obtain from (2.6) the congruence

n∑
k=1

16k

k3
(
2k
k

)2 ≡ 5S − 4Bp−3 (mod p).

Therefore (1.1) and (1.4) are equivalent.
Note that

p−1∑
k=n+1

(
2k
k

)2
k16k

≡ −p
2

4
(5S−4Bp−3) ≡ −5

8
p

p−1∑
k=n+1

(−1)k

k2

(
2k

k

)
+p2Bp−3 (mod p3).

Combining this with (2.10) we get

p−1∑
k=1

(
2k
k

)2
k16k

+ 2Hn ≡ −
5

8
p

p−1∑
k=1

(−1)k

k2

(
2k

k

)
− p2

6
Bp−3 (mod p3). (2.11)

So Tauraso’s result
∑p−1

k=1

(
2k
k

)2
/(k16k) ≡ −2Hn (mod p3) in [T12] actually

follows from his earlier result (2.9).

(ii) By the above, it suffices to show (1.3). Note that

2n∑
k=0

1

2k + 1
= H4n+1 −

H2n

2
= Hp−1 +

1

p
+

p−1∑
k=1

1

p+ k
− Hp−1

2

and

p−1∑
k=1

1

p+ k
=

p−1∑
k=1

k2 − kp+ p2

k3 + p3

≡
p−1∑
k=1

k2 − kp+ p2

k3
= Hp−1 − pH(2)

p−1 + p2H
(3)
p−1 (mod p3).
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As

H
(3)
p−1 =

(p−1)/2∑
k=1

(
1

k3
+

1

(p− k)3

)
≡ 0 (mod p),

we see that

2n∑
k=0

1

2k + 1
−1

p
≡ 3

2
Hp−1−pH(2)

p−1 ≡ −
p2

2
Bp−3−

2

3
p2Bp−3 = −7

6
p2Bp−3 (mod p3)

sinceHp−1 ≡ −p2Bp−3/3 (mod p3) andH
(2)
p−1 ≡ 2pBp−3/3 (mod p2) by Glaisher

[G1] (see also [Su, Theorem 5.1(a)]). In view of (2.3),(
2n
n

)2
16n

≡ (4p−1(1 + p3Bp−3/12))2

4p−1
≡ 4p−1

(
1 +

p3

6
Bp−3

)
≡(1 + p qp(2))2 +

p3

6
Bp−3 (mod p4).

Therefore(
2n
n

)2
16n

2n∑
k=0

1

2k + 1
− 1

p
=

(
2n
n

)2
16n

( 2n∑
k=0

1

2k + 1
− 1

p

)
+

(
2n
n

)2
/16n − 1

p

≡− 7

6
p2Bp−3 +

(1 + p qp(2))2 + p3Bp−3/6− 1

p

=2qp(2) + p qp(2)2 − p2Bp−3 (mod p3)

and hence (2.8) yields the congruence

n∑
k=1

(
2k
k

)2
(2k + p)16k

≡ 2qp(2) + p qp(2)2 − p2Bp−3 (mod p3). (2.12)

Note that

n∑
k=1

(
2k
k

)2
(2k + p)16k

=

n∑
k=1

(4k2 − 2kp+ p2)
(
2k
k

)2
((2k)3 + p3)16k

≡1

2

n∑
k=1

(
2k
k

)2
k16k

− p

4

n∑
k=1

(
2k
k

)2
k216k

+
p2

8

n∑
k=1

(
2k
k

)2
k316k

(mod p3).

(2.13)
By Lemma 2.4 and (2.4)-(2.5),

n∑
k=1

(
2k
k

)2
k216k

≡ −2(−2qp(2)+p qp(2)2)2 ≡ −8qp(2)2+8p qp(2)3 (mod p2) (2.14)
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and

n∑
k=1

(
2k
k

)2
k316k

≡ −4

3
(−2qp(2))3 − 2

3
(−2Bp−3) =

32

3
qp(2)3 +

4

3
Bp−3 (mod p).

(2.15)
Combining (2.12)-(2.15) we obtain

1

2

n∑
k=1

(
2k
k

)2
k16k

≡2qp(2) + p qp(2)2 − p2Bp−3 +
p

4
(−8qp(2)2 + 8p qp(2)3)

− p2

8

(
32

3
qp(2)3 +

4

3
Bp−3

)
(mod p3).

In view of (2.4), this yields the desired (1.3).
The proof of Theorem 1.1 is now complete. �

Proof of Corollary 1.1. Write p = 2n+ 1. In view of Lemma 2.1,

1

p

p−1∑
k=n+1

(
2k
k

)
(2k + 1)2(−16)k

=
n∑

k=1

(
2(p−k)
p−k

)
/p

(2(p− k) + 1)2(−16)p−k

≡
n∑

k=1

−2/(k
(
2k
k

)
)

(2(k − 1) + 1)2(−16)1−k
= −

n−1∑
k=0

(−16)k

(2k + 1)3
(
2k
k

) (mod p).

Since(
−1/2

k

)
≡
(
n

k

)
=

(
n

n− k

)
≡
(
−1/2

n− k

)
(mod p) for all k = 0, . . . , n,

we have

n−1∑
k=0

(−16)k

(2k + 1)3
(
2k
k

) =
n−1∑
k=0

4k

(2k + 1)3
(−1/2

k

)
≡

n−1∑
k=0

4k

(2k + 1)3
(−1/2
n−k

) =

n∑
k=1

4n−k

(2(n− k) + 1)3
(−1/2

k

)
≡− 1

8

n∑
k=1

1

k3
(−1/2

k

)
4k

= −1

8

n∑
k=1

(−1)k

k3
(
2k
k

)
≡Bp−3

4
(mod p) (by (1.1)).

Therefore (1.5) holds. �
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3. Proof of Theorem 1.2

Lemma 3.1. For any positive integer n we have

n−1∑
k=0

(
2k
k

)2
(n− k)16k

=

(
2n
n

)2
42n−1

n−1∑
k=0

1

2k + 1
(3.1)

and

n∑
k=0

(−1)k

(2k + 1)2

(
n

k

)(
n+ k

k

)
=

1

(2n+ 1)2
+

2

2n+ 1

n−1∑
k=0

1

2k + 1
. (3.2)

Proof. Let (x)0 = 1 and (x)k =
∏k−1

j=0 (x + j) for k = 1, 2, 3, . . . . Then

(1/2)2k/(1)2k =
(
2k
k

)2
/16k for k = 0, 1, 2, . . . . Thus (3.1) is just (21) of [Lu,

Ch. 5.2] with x = 1/2 (see also [T12, (1)]).
Identity (3.2) is new and it can be proved via the Zeilberger algorithm (cf.

[PWZ, pp. 101–119]). It is easy to verify (3.2) for n = 1, 2. Applying the
Zeilberger algorithm via Mathematica (version 7), we find that if an denotes
the left-hand side or the right-hand side of (3.2) then

(n+ 1)(2n+ 5)2an+2 = (2n+ 3)(4n2 + 12n+ 7)an+1 − (n+ 2)(2n+ 1)2an

for all n = 1, 2, 3, . . . . So (3.2) follows by induction. �

Lemma 3.2. Let p > 3 be a prime. Then

(p−3)/2∑
k=0

(
2k
k

)2
(2k + 1)316k

≡ −4

3
qp(2)3 − Bp−3

6
(mod p). (3.3)

Proof. Set n = (p− 1)/2. For k = 0, . . . , n we clearly have(
n+ k

k

)
(−1)k =

(
−n− 1

k

)
≡
(
n

k

)
≡
(
−1/2

k

)
=

(
2k
k

)
(−4)k

(mod p).

Thus

n−1∑
k=0

(
2k
k

)2
(2k + 1)316k

≡
n−1∑
k=0

(
n
k

)2
(2k + 1)3

=
n∑

k=1

(
n
k

)2
(2(n− k) + 1)3

≡− 1

8

n∑
k=1

(
2k
k

)2
k316k

(mod p).

Combining this with (2.15) we obtain the desired (3.3). �
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Lemma 3.3. Let p > 3 be a prime. Then

(p−3)/2∑
k=0

(
2k
k

)2
(2k + 1)216k

≡ −2qp(2)2 +
2

3
p qp(2)3 − p

6
Bp−3 (mod p2). (3.4)

Proof. Write p = 2n+ 1. By (3.2) we have

n−1∑
k=0

(−1)k

(2k + 1)2

(
n

k

)(
n+ k

k

)
=

1− (−1)n
(
2n
n

)
p2

+
2

p

(
Hp−1 −

Hn

2

)

=
1− (−1)n

(
2n
n

)
− pHn

p2
+

2

p
Hp−1.

In light of Lemma 2.2,

1− (−1)n
(

2n

n

)
− pHn ≡1− (1 + p qp(2))2 − p3

12
Bp−3

+ 2p qp(2)− p2qp(2)2 + p3
(

2

3
qp(2)3 +

7

12
Bp−3

)
=− 2p2qp(2)2 + p3

(
2

3
qp(2)3 +

Bp−3

2

)
(mod p4).

So, with the help of (2.2), we get

n−1∑
k=0

(
2k
k

)2
(2k + 1)216k

≡ −2qp(2)2 + p

(
2

3
qp(2)3 +

Bp−3

2

)
+

2

p
Hp−1 (mod p2),

which gives (3.4) since Hp−1/p ≡ −pBp−3/3 (mod p2). �

Proof of Theorem 1.2. For convenience we set n = (p− 1)/2.
We first prove (1.6). By Lemma 2.1,

1

p2

p−1∑
k=n+1

(
2k
k

)2
(2k + 1)16k

=
n∑

k=1

(
(
2(p−k)
p−k

)
/p)2

(2(p− k) + 1)16p−k

≡
n∑

k=1

(−2/(k
(
2k
k

)
))216k−1

1− 2k
= −

n−1∑
k=0

16k

(2k + 1)3
(
2k
k

)2 (mod p).

Note also that

n−1∑
k=0

16k

(2k + 1)3
(
2k
k

)2 ≡ n−1∑
k=0

1

(2k + 1)3
(
n
k

)2 =

n∑
k=1

1

(2(n− k) + 1)3
(
n
k

)2
≡− 1

8

n∑
k=1

1

k3
(
n
k

)2 ≡ −1

8

n∑
k=1

16k

k3
(
2k
k

)2 (mod p).
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Thus, with the help of (1.4) we get (1.6). (In the case p = 5, (1.6) can be
verified directly.)

Since
(
2n
n

)2 ≡ 44n (mod p3) by (2.3), we have

(
2n
n

)2
42n−1

n−1∑
k=0

1

2k + 1
≡4p

(
Hp−1 −

Hn

2

)
= 4pHp−1 − 2(1 + p qp(2))2Hn

≡− 4

3
p2Bp−3 − 2(1 + 2p qp(2) + p2qp(2)2)Hn

≡4qp(2) + 6p qp(2)2 + p2
(

4

3
qp(2)3 − Bp−3

6

)
(mod p3)

with the help of (2.4). Note also that

1

2

n−1∑
k=0

(
2k
k

)2
(n− k)16k

=
n−1∑
k=0

(
2k
k

)2
(p− (2k + 1))16k

=
n−1∑
k=0

(
2k
k

)2
(p2 + p(2k + 1) + (2k + 1)2)

(p3 − (2k + 1)3)16k

≡− p2
n−1∑
k=0

(
2k
k

)2
(2k + 1)316k

− p
n−1∑
k=0

(
2k
k

)2
(2k + 1)216k

−
n−1∑
k=0

(
2k
k

)2
(2k + 1)16k

(mod p3).

Combining these with (3.1), (3.3) and (3.4) we finally obtain the desired (1.7). �
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