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Abstract. For integers b and c the generalized central trinomial coef-

ficient Tn(b, c) denotes the coefficient of xn in the expansion of (x2 +

bx + c)n. Those Tn = Tn(1, 1) (n = 0, 1, 2, . . . ) are the usual central
trinomial coefficients, and Tn(3, 2) coincides with the Delannoy number

Dn =
∑n

k=0

(n
k

)(n+k
k

)
in combinatorics. We investigate congruences in-

volving generalized central trinomial coefficients systematically. Here are
some typical results: For each n = 1, 2, 3, . . . we have

n−1∑
k=0

(2k + 1)Tk(b, c)2(b2 − 4c)n−1−k ≡ 0 (mod n2)

and in particular n2 |
∑n−1

k=0 (2k + 1)D2
k; if p is an odd prime then

p−1∑
k=0

T 2
k ≡

(
−1

p

)
(mod p) and

p−1∑
k=0

D2
k ≡

(
2

p

)
(mod p),

where (−) denotes the Legendre symbol. We also raise several conjec-

tures some of which involve parameters in the representations of primes
by certain binary quadratic forms.

2010 Mathematics Subject Classification. Primary 11A07, 11B75; Secondary 05A10,
05A15, 11B65, 11E25.

Keywords. Congruences, central trinomial coefficients, Motzkin numbers, central

Delannoy numbers.
The work was supported by the National Natural Science Foundation (grant 11171140)

of China and the PAPD of Jiangsu Higher Education Institutions, and the initial ver-

sion of this paper was posted to arXiv in August 2010 as a preprint with the ID
arXiv:1008.3887.

1



2 ZHI-WEI SUN

1. Introduction

For n ∈ N = {0, 1, 2, . . . }, the nth central trinomial coefficient

Tn = [xn](1 + x+ x2)n

is the coefficient of xn in the expansion of (1 + x + x2)n. Since Tn is the
constant term of (1 + x+ x−1)n, by the multi-nomial theorem we see that

Tn =

bn/2c∑
k=0

n!

k!k!(n− 2k)!
=

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
=

n∑
k=0

(
n

k

)(
n− k
k

)
.

Central trinomial coefficients arise naturally in enumerative combinatorics
(cf. Sloane [Sl]), e.g., Tn is the number of lattice paths from the point
(0, 0) to (n, 0) with only allowed steps (1, 0), (1, 1) and (1,−1). As G. E.
Andrews [A] pointed out, central trinomial coefficients were first studied
by L. Euler. In 1987, Andrews and R. J. Baxter [AB] found that the
q-analogues of central trinomial coefficients have applications in the hard
hexagon model.

For n ∈ N the nth Motzkin number is defined by

Mn =

bn/2c∑
k=0

(
n

2k

)
Ck,

where Ck denotes the kth Catalan number 1
k+1

(
2k
k

)
=
(

2k
k

)
−
(

2k
k+1

)
. It

is known that Mn equals the number of paths from (0, 0) to (n, 0) which
never dip below the line y = 0 and are made up of the only allowed steps
(1, 0), (1, 1) and (1,−1) (cf. [Sl]).

Surprisingly we find that central trinomial coefficients and Motzkin
numbers have nice congruence properties despite their combinatorial back-
grounds. For example, we have the following conjecture. (As usual, for an
integer a and an odd prime p, the notation (a

p ) stands for the Legendre

symbol.)

Conjecture 1.1. (i) For any n ∈ Z+ = {1, 2, 3, . . . } we have

n−1∑
k=0

(8k + 5)T 2
k ≡ 0 (mod n).

If p is a prime, then

p−1∑
k=0

(8k + 5)T 2
k ≡ 3p

(p
3

)
(mod p2).
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(ii) Let p > 3 be a prime. Then

p−1∑
k=0

M2
k ≡ (2− 6p)

(p
3

)
(mod p2),

p−1∑
k=0

kM2
k ≡ (9p− 1)

(p
3

)
(mod p2),

p−1∑
k=0

MkTk ≡
4

3

(p
3

)
+
p

6

(
1− 9

(p
3

))
(mod p2),

p−1∑
k=0

MkTk
(−3)k

≡ p

2

((p
3

)
− 1
)

(mod p2),

and
p−1∑
k=0

TkHk

3k
≡

3 + (p
3 )

2
− p

(
1 +

(p
3

))
(mod p2),

where Hk denotes the harmonic number
∑

0<j6k 1/j.

Given b, c ∈ Z, we define the generalized central trinomial coefficients

Tn(b, c) :=[xn](x2 + bx+ c)n = [x0](b+ x+ cx−1)n

=

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
bn−2kck =

bn/2c∑
k=0

(
n− k
k

)(
n

k

)
bn−2kck

and introduce the generalized Motzkin numbers

Mn(b, c) :=

bn/2c∑
k=0

(
n

2k

)
Ckb

n−2kck =

bn/2c∑
k=0

(
n− k
k

)(
n

k

)
bn−2kck

k + 1

(n = 0, 1, 2, . . . ). Note that

Tn = Tn(1, 1), Mn = Mn(1, 1),

Tn(2, 1) = [xn](x+ 1)2n =

(
2n

n

)
,

and

Mn(2, 1) =

bn/2c∑
k=0

(
n

2k

)
Ck2n−2k = Cn+1.

Thus Tn(b, c) can be viewed a natural common extension of central bino-
mial coefficients and central trinomial coefficients, while Mn(b, c) can be
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viewed as a natural common extension of Catalan numbers and Motzkin
numbers. Let d = b2 − 4c. H. S. Wilf [W, p. 159] observed that if ε > 0 is
sufficiently small then

∞∑
n=0

Tn(b, c)xn =
1√

1− 2bx+ dx2

for |x| < ε. This implies the recurrence

(n+ 1)Tn+1(b, c) = (2n+ 1)bTn(b, c)− dnTn−1(b, c) (n ∈ Z+).

(See also T. D. Noe [N].) Also, the Zeilberger algorithm (cf. [PWZ,
pp. 101–119]) yields the recursion

(n+ 3)Mn+1(b, c) = b(2n+ 3)Mn(b, c)− dnMn−1(b, c) (n = 1, 2, 3, . . . )

which implies that

2cx2
∞∑

n=0

Mn(b, c)xn = 1− bx−
√

1− 2bx+ dx2.

The central Delannoy numbers (see [CHV]) are defined by

Dn =
n∑

k=0

(
n

k

)(
n+ k

k

)
=

n∑
k=0

(
n+ k

2k

)(
2k

k

)
(n ∈ N).

Such numbers also arise in many enumeration problems in combinatorics
(cf. [Sl]); for example, Dn is the number of lattice paths from the point
(0, 0) to (n, n) with steps (1, 0), (0, 1) and (1, 1). For n ∈ N we define the
polynomial

Dn(x) =
n∑

k=0

(
n

k

)(
n+ k

k

)
xk.

Note that Dn((x− 1)/2) coincides with the well-known Legendre polyno-
mial Pn(x) of degree n. It is known that

∞∑
n=0

Pn(t)xn =
1√

1− 2tx+ x2
.

Thus, if b, c ∈ Z and d = b2 − 4c 6= 0 then

∞∑
n=0

Tn(b, c)

(
x√
d

)n

=
1√

1− 2bx/
√
d+ d(x/

√
d)2

=
∞∑

n=0

Pn

(
b√
d

)
xn
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and hence

Tn(b, c) = (
√
d)nPn

(
b√
d

)
.

It follows that Tn(2x+ 1, x2 + x) = Pn(2x+ 1) = Dn(x) for all x ∈ Z; in
particular, Dn = Tn(3, 2).

Motivated by Conjecture 1.1 we investigate congruences involving gen-
eralized central trinomial coefficients as well as generalized Motzkin num-
bers.

Now we state the main results of this paper.

Theorem 1.2. Let p be an odd prime and let b, c ∈ Z.
(i) For any integer m 6≡ 0 (mod p), we have

p−1∑
k=0

Tk(b, c)

mk
≡
(

(m− b)2 − 4c

p

)
(mod p) (1.1)

and

2c

p−1∑
k=0

Mk(b, c)

mk
≡ (m− b)2 − ((m− b)2 − 4c)

(
(m− b)2 − 4c

p

)
(mod p).

(1.2)
(ii) If p does not divide d = b2 − 4c, then we have

p−1∑
k=0

Tk(b, c)2

dk
≡
(
cd

p

)
(mod p). (1.3)

If b 6≡ 2c (mod p), then

p−1∑
k=0

Tk(b, c2)2

(b− 2c)2k
≡
(
−c2

p

)
(mod p). (1.4)

(iii) Assume that p - c. If d = b2 − 4c 6≡ 0 (mod p), then

p−1∑
k=0

Tk(b, c)Mk(b, c)

dk
≡ 0 (mod p). (1.5)

If D = b2 − 4c2 6≡ 0 (mod p), then

p−1∑
k=0

Tk(b, c2)Mk(b, c2)

(b− 2c)2k
≡ 4b

b+ 2c

(
D

p

)
(mod p). (1.6)
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Example 1.3. Let p > 3 be a prime. Applying Theorem 1.2(ii)-(iii) with
b = c = 1 we get

p−1∑
k=0

T 2
k

(−3)k
≡
(p

3

)
(mod p),

p−1∑
k=0

TkMk

(−3)k
≡ 0 (mod p), (1.7)

p−1∑
k=0

T 2
k ≡

(
−1

p

)
(mod p),

p−1∑
k=0

TkMk ≡
4

3

(p
3

)
(mod p). (1.8)

Corollary 1.4. Let p be an odd prime. For any integer x we have

p−1∑
k=0

Dk(x)2 ≡
(
x(x+ 1)

p

)
(mod p). (1.9)

In particular,
p−1∑
k=0

D2
k ≡

(
2

p

)
(mod p). (1.10)

Proof. It suffices to recall that Dk(x) = Tk(2x + 1, x2 + x) and apply
Theorem 1.2(ii). �

Theorem 1.5. Let b, c ∈ Z and d = b2 − 4c.
(i) For any n ∈ Z+ we have

n−1∑
k=0

Tk(b, c2)(b− 2c)n−1−k ≡ 0 (mod n) (1.11)

and

6

n−1∑
k=0

kTk(b, c2)(b− 2c)n−1−k ≡ 0 (mod n). (1.12)

If p is an odd prime not dividing b− 2c, then

2c

p

p−1∑
k=0

Tk(b, c2)

(b− 2c)k
≡ −b+ (b+ 2c)

(
b2 − 4c2

p

)
(mod p) (1.13)

and

12c2

p

p−1∑
k=0

kTk(b, c2)

(b− 2c)k
≡ (b+ 2c)2

(
1−

(
b2 − 4c2

p

))
− 4c2 (mod p). (1.14)
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(ii) Suppose that d = 1, i.e., there is an m ∈ Z such that b = 2m + 1,
c = m2 +m, and hence Tk(b, c) = Dk(m). Then

1

n

n−1∑
k=0

(2k + 1)Tk(b, c) =

n−1∑
k=0

(
n

k + 1

)(
n+ k

k

)(
b− 1

2

)k

∈ Z (1.15)

for all n ∈ Z+. If p is a prime not dividing b− 1 = 2m, then

p−1∑
k=0

(2k + 1)Tk(b, c) ≡ p+
b+ 1

b− 1
p

((
b+ 1

2

)p−1

− 1

)
(mod p3) (1.16)

and

p−1∑
k=0

(2k + 1)2Tk(b, c) ≡ 2

b− 1

(
(1− b)/2

p

)
=

1

m

(
−m
p

)
(mod p). (1.17)

Example 1.6. Putting b = 1 and c = ±1 in (1.11) we get

n−1∑
k=0

(−1)kTk ≡ 0 (mod n) and
n−1∑
k=0

3n−1−kTk ≡ 0 (mod n),

where n is any positive integer. Also, for a prime p > 3, (1.13) with b = 1

and c = ±1 yields
∑p−1

k=0(−1)kTk and
∑p−1

k=0 Tk/3
k modulo p2 given by H.

Q. Cao and H. Pan [CP].

Remark 1.7. For any n ∈ Z+, we have

1

n

n−1∑
k=0

(2k + 1)Tk3n−1−k =

n−1∑
k=0

(
n− 1

k

)
(−1)n−1−k(k + 1)

(
2k

k

)
,

for, if an denotes the left-hand side or the right-hand side of the last
equality, then by the Zeilberger algorithm [PWZ, pp. 101-119], we have
the recurrence

(n+1)(2n+1)an+2 = (4n2+10n+3)an+1+3n(2n+3)an, n = 0, 1, 2, . . . .

If b, c ∈ Z with b2 − 4c = 1, then for any prime p - c, by (1.16) we have

p−1∑
k=0

(2k + 1)Tk(b, c) ≡ p (mod p2).
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Theorem 1.8. Let b, c ∈ Z and d = b2 − 4c.
(i) For any n ∈ Z+ we have

n−1∑
k=0

(2k + 1)Tk(b, c)2(−d)n−1−k ≡ 0 (mod n), (1.18)

and furthermore

b
n−1∑
k=0

(2k + 1)Tk(b, c)2(−d)n−1−k = nTn(b, c)Tn−1(b, c). (1.19)

(ii) For any n ∈ Z+ we have

1

n2

n−1∑
k=0

(2k + 1)Tk(b, c)2dn−1−k =
n−1∑
k=0

(
n− 1

k

)(
n+ k

k

)
Ckc

kdn−1−k ∈ Z.

(1.20)
If c is nonzero and p is an odd prime not dividing d, then

1

p2

p−1∑
k=0

(2k + 1)
Tk(b, c)2

dk
≡ 1 +

b2

c
·

(d
p )− 1

2
(mod p). (1.21)

Now we give one more theorem.

Theorem 1.9. Let p > 3 be a prime. Then

p−1∑
k=0

Tk(6,−3)2

48k
≡
(
−1

p

)
+
p2

3
Ep−3 (mod p3), (1.22)

p−1∑
k=0

Tk(2,−1)2

8k
≡
(
−2

p

)
(mod p2), (1.23)

p−1∑
k=0

Tk(2,−3)2

16k
≡
(p

3

)
(mod p2), (1.24)

p−1∑
k=1

D2
k

k2
≡− 2qp(2)2 (mod p), (1.25)

where E0, E1, E2, . . . are Euler numbers, and qp(2) denotes the Fermat
quotient (2p−1 − 1)/p.

Remark 1.10. (1.25) was conjectured by the author in [Su3].

We will show Theorems 1.2 and 1.5 in Sections 2 and 3 respectively.
Section 4 is devoted to our proofs of Theorems 1.8 and 1.9. In Section 5
we are going to pose more conjectures for further research.
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2. Proof of Theorem 1.2

The following lemma essentially follows from [ST, (1.5)], but we will
give a direct proof.

Lemma 2.1. Let p be an odd prime and let m ∈ Z with m 6≡ 0 (mod p).
Then

(p−1)/2∑
k=0

(
2k
k

)
mk
≡
(
m(m− 4)

p

)
(mod p) (2.1)

and
(p−1)/2∑

k=0

Ck

mk
≡ m

2
− m− 4

2

(
m(m− 4)

p

)
(mod p). (2.2)

Proof. Clearly(
2k

k

)
=

(
−1/2

k

)
(−4)k ≡

(
(p− 1)/2

k

)
(−4)k (mod p)

for all k = 0, . . . , p− 1. Thus

(p−1)/2∑
k=0

(
2k
k

)
mk
≡

(p−1)/2∑
k=0

(
(p− 1)/2

k

)
(−4)k

mk
=

(
1− 4

m

)(p−1)/2

=
(m(m− 4))(p−1)/2

mp−1
≡
(
m(m− 4)

p

)
(mod p).

This proves (2.1).
Observe that

(p−1)/2∑
k=0

(
2k+1

k

)
mk

=

(
p

(p−1)/2

)
m(p−1)/2

+
1

2

(p−3)/2∑
k=0

(
2k+2
k+1

)
mk

≡m
2

(p−1)/2∑
k=0

(
2k
k

)
mk
− m

2
(mod p).

Hence

(p−1)/2∑
k=0

Ck

mk
=

(p−1)/2∑
k=0

2
(

2k
k

)
−
(

2k+1
k

)
mk

≡
(

2− m

2

) (p−1)/2∑
k=0

(
2k
k

)
mk

+
m

2

≡m
2
− m− 4

2

(
m(m− 4)

p

)
(mod p).
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So (2.2) also holds. We are done. �

Proof of Theorem 1.2(i). In the case c ≡ 0 (mod p), as Tk(b, c) ≡ bk (mod c)
for all k ∈ N, we have

p−1∑
k=0

Tk(b, c)

mk
≡

p−1∑
k=0

bk

mk
≡
(

(m− b)2

p

)
(mod p).

So (1.1) holds if p | c. Note that (1.2) is trivial when p | c.
Suppose that c 6≡ 0 (mod p). For any n ∈ N, clearly,

Tn(b, c) =

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
bn−2kck ≡

{ (
n

n/2

)
cn/2 (mod b) if 2 | n,

0 (mod b) if 2 - n,

and similarly,

Mn(b, c) =

bn/2c∑
k=0

(
n

2k

)
Ckb

n−2kck ≡
{
Cn/2c

n/2 (mod b) if 2 | n,
0 (mod b) if 2 - n.

In the case b ≡ 0 (mod p), by applying Lemma 2.1 we obtain

p−1∑
k=0

Tk(b, c)

mk
≡

(p−1)/2∑
k=0

(
2k
k

)
ck

m2k
≡

(p−1)/2∑
k=0

(
2k
k

)
(m2cp−2)k

≡
(
m2 − 4c

p

)
(mod p)

and

p−1∑
k=0

Mk(b, c)

mk
≡

(p−1)/2∑
k=0

Ckc
k

m2k
≡

(p−1)/2∑
k=0

Ck

(m2cp−2)k

≡m
2

2c
− m2 − 4c

2c

(
m2 − 4c

p

)
(mod p).

So (1.1) and (1.2) hold when p | b.
Below we assume that p - bc. Observe that

p−1∑
n=0

Tn(b, c)

mn
=

p−1∑
n=0

1

mn

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
bn−2kck

=

(p−1)/2∑
k=0

(
2k

k

)
ck

b2k

p−1∑
n=0

bn

mn

(
n

2k

)
;

similarly,
p−1∑
n=0

Mn(b, c)

mn
=

(p−1)/2∑
k=0

Ck
ck

b2k

p−1∑
n=0

bn

mn

(
n

2k

)
.
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Now we consider the case m ≡ b (mod p). For k ∈ {0, 1, . . . , (p− 1)/2}
we have

p−1∑
n=0

bn

mn

(
n

2k

)
≡

p−1∑
n=2k

(
n

2k

)
=

(
p

2k + 1

)
(mod p)

with the help of a well-known identity of Chu (see, (1.52) of H. Gould [G,
p, 7] or (5.26) of [GKP, p. 169]). Thus, by the above,

p−1∑
n=0

Tn(b, c)

mn
≡
(

p− 1

(p− 1)/2

)
c(p−1)/2

bp−1
≡
(
−c
p

)
=

(
(m− b)2 − 4c

p

)
(mod p)

and

p−1∑
n=0

Mn(b, c)

mn
≡ C(p−1)/2

c(p−1)/2

bp−1
≡ 2

(
−c
p

)
= 2

(
(m− b)2 − 4c

p

)
(mod p).

So (1.1) and (1.2) are true.
Below we consider the remaining case m 6≡ b (mod p). Observe that

p−1∑
n=0

bn

mn

(
n

2k

)
= [x2k]

p−1∑
n=0

bn

mn
(1 + x)n

≡[x2k]

p−1∑
n=0

(b+ bx)nmp−1−n = [x2k]
(b+ bx)p −mp

b+ bx−m

=[x2k]
(b+ bx)p −mp

−(m− b)p
· (bx)p − (m− b)p

bx− (m− b)

≡[x2k]
bp + bpxp −mp

−(m− b)p
p−1∑
j=0

(bx)j(m− b)p−1−j ≡ b2k

(m− b)2k
(mod p).

Therefore, with the help of Lemma 2.1,

p−1∑
k=0

Tn(b, c)

mn
≡

(p−1)/2∑
k=0

(
2k

k

)
ck

b2k
· b2k

(m− b)2k
≡
(

(m− b)2 − 4c

p

)
(mod p).

This proves (1.1).
In a similar way,

p−1∑
n=0

Mn(b, c)

mn
≡

(p−1)/2∑
k=0

Ck
ck

(m− b)2k
≡

(p−1)/2∑
k=0

Ck

Mk
(mod p),

where M := (m − b)2cp−2. Applying Lemma 2.1 we get the desired
(1.2). �
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Lemma 2.2. Let b, c ∈ Z and d = b2 − 4c. Let p be any odd prime and
let n ∈ {0, . . . , p− 1}. If p - d or p/2 < n < p, then

Tn(b, c) ≡
(
d

p

)
dnTp−1−n(b, c) (mod p). (2.3)

Proof. If p | d, then

Tn(b, c) ≡ [xn]

(
x2 + bx+

b2

4

)n

= [xn]

(
x+

b

2

)2n

=

(
2n

n

)
bn

2n
(mod p).

Note that for n = (p+ 1)/2, . . . , p− 1 we have(
2n

n

)
=

(2n)!

(n!)2
≡ 0 (mod p).

Now assume that p - d. Then

dnTp−1−n(b, c) = dn(
√
d)p−1−nPp−1−n

(
b√
d

)

=d(p−1)/2

p−1−n∑
k=0

(
p− 1− n+ k

2k

)(
2k

k

)(
b/
√
d− 1

2

)k

(
√
d)n

=d(p−1)/2

p−1∑
k=0

(
n+ k − p

2k

)(
2k

k

)(
b−
√
d

2
√
d

)k

(
√
d)n

≡d(p−1)/2
n∑

k=0

(
n+ k

2k

)(
2k

k

)(
b−
√
d

2
√
d

)k

(
√
d)n

≡
(
d

p

)
(
√
d)nPn

(
b√
d

)
=

(
d

p

)
Tn(b, c) (mod p).

This concludes the proof. �

Remark 2.3. Lemma 2.2 in the case p - d is essentially known (see, e.g., [N,
(14)]), but our proof is simple and direct. By Lemma 2.2, for any prime
p > 3 we have

p−1∑
k=0

T 2
k

9k
=

p−1∑
k=0

(
Tk

(−3)k

)2

≡
p−1∑
k=0

((
−3

p

)
Tp−1−k

)2

=

p−1∑
j=0

T 2
j (mod p)

and hence
∑p−1

k=0 T
2
k /9

k ≡ (−1
p ) (mod p) in light of Example 1.3.
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Let A and B be integers. The Lucas sequence un = un(A,B) (n ∈ N)
is defined by

u0 = 0, u1 = 1, and un+1 = Aun −Bun−1 (n = 1, 2, 3, . . . ).

Let α and β be the two roots of the equation x2 − Ax + B = 0. It is
well-known that if ∆ = A2 − 4B 6= 0 then

un =
αn − βn

α− β
for all n = 0, 1, 2, . . . .

Lemma 2.4. Let A and B be integers. For any odd prime p we have

up(A,B) ≡
(
A2 − 4B

p

)
(mod p).

Proof. Though this is a known result, here we provide a simple proof.
If ∆ = A2 − 4B ≡ 0 (mod p), then

un(A,B) ≡ un
(
A,

A2

4

)
= n

(
A

2

)n−1

(mod p) for n = 1, 2, 3, . . .

and in particular up(A,B) ≡ 0 (mod p).
When ∆ 6≡ 0 (mod p), we have

∆up(A,B) = (α− β)(αp − βp) ≡ (α− β)(α− β)p = ∆(p+1)/2 (mod p)

with α and β the two roots of the equation x2 − Ax + B = 0, hence
up(A,B) ≡ (∆

p ) (mod p) as desired. �

Proof of Theorem 1.2(ii). Suppose that d = b2 − 4c 6≡ 0 (mod p). By
Lemma 2.2,(
d

p

) p−1∑
k=0

Tk(b, c)2

dk
≡

p−1∑
k=0

Tk(b, c)Tp−1−k(b, c) = [xp−1]

( ∞∑
n=0

Tn(b, c)xn
)2

=[xp−1]
1

1− 2bx+ dx2
= [xp]

x

1− 2bx+ dx2
(mod p).

Write
x

1− 2bx+ dx2
=
∞∑

n=0

unx
n.

Then u0 = 0 and u1 = 1. Since (1− 2bx+ dx2)
∑∞

n=0 unx
n = x, we have

un − 2bun−1 + dun−2 = 0 for n = 2, 3, . . . , hence un = un(2b, d) for all
n ∈ N. Thus, with the help of Lemma 2.3, from the above we obtain(

d

p

) p−1∑
k=0

Tk(b, c)2

dk
≡ up(2b, d) ≡

(
4b2 − 4d

p

)
=

(
c

p

)
(mod p).



14 ZHI-WEI SUN

This proves (1.3).
Now suppose that b 6≡ 2c (mod p) and set D = b2−4c2 = (b−2c)(b+2c).

If p | D, then b ≡ −2c 6≡ 0 (mod p) and Tk(b, c2) ≡ [xk](x2 + bx+ b2/4)k =
[xk](x+ b/2)2k, hence

p−1∑
k=0

Tk(b, c2)2

(b− 2c)2k
≡

p−1∑
k=0

(
(

2k
k

)
(b/2)k)2

(2b)2k
=

p−1∑
k=0

(
2k
k

)2
16k

≡
(
−1

p

)
(mod p).

The last step can be easily explained as follows:

p−1∑
k=0

(
2k
k

)2
16k

≡
(p−1)/2∑

k=0

(
−1/2

k

)2

≡
(p−1)/2∑

k=0

(
(p− 1)/2

k

)(
(p− 1)/2

(p− 1)/2− k

)
=[x(p−1)/2](1 + x)(p−1)/2+(p−1)/2

=

(
p− 1

(p− 1)/2

)
≡
(
−1

p

)
(mod p).

Below we assume that p - D. By Lemma 2.2 and Fermat’s little theorem,(
D

p

) p−1∑
k=0

Tk(b, c2)2

(b− 2c)2k
≡ C (mod p),

where

C =

p−1∑
k=0

DkTk(b, c2)(b− 2c)2(p−1−k)Tp−1−k(b, c2)

=[xp−1]

( ∞∑
k=0

Tk(b, c2)(Dx)k
) ∞∑

l=0

Tl(b, c
2)(b− 2c)2lxl

=[xp−1]
1√

1− 2b(Dx) +D(Dx)2
· 1√

1− 2b(b− 2c)2x+D(b− 2c)4x2

=[yp−1]
(b− 2c)p−1√

(1− 2b(b+ 2c)y + (b+ 2c)2Dy2)(1− 2b(b− 2c)y +D(b− 2c)2y2)
.

(Note that y corresponds to (b− 2c)x.) Therefore

C ≡[yp−1]
1

1−Dy
· 1√

(1− (b+ 2c)2y)(1− (b− 2c)2y)

=[yp−1]

∞∑
n=0

(Dy)n
1√

1− 2(b2 + 4c2)y +D2y2
(mod p).
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Observe that (b2 + 4c2)2 − 4(4b2c2) = (b2 − 4c2)2 = D2 and hence

1√
1− 2(b2 + 4c2)y +D2y2

=

∞∑
k=0

Tk(b2 + 4c2, 4b2c2)yk.

So we have

C ≡
p−1∑
k=0

Tk(b2 + 4c2, 4b2c2)Dp−1−k ≡
p−1∑
k=0

Tk(b2 + 4c2, 4b2c2)

Dk

≡
(

(D − (b2 + 4c2))2 − 4(4b2c2)

p

)
=

(
−16c2D

p

)
(mod p)

with the help of the first part of Theorem 1.2.
Combining the above, we finally obtain (1.4). We are done. �

Lemma 2.5. Let b and c be integers. For any odd prime p, we have

Tp(b, c) ≡ b (mod p), Tp+1(b, c) ≡ b2 (mod p), (2.4)

and

Tp−1(b, c) ≡
(
b2 − 4c

p

)
(mod p). (2.5)

Proof. Since
(
p
k

)
≡ 0 (mod p) for all k = 1, . . . , p− 1, we have

Tp(b, c) =

(p−1)/2∑
k=0

(
p

2k

)(
2k

k

)
bp−2kck ≡

(
p

0

)
bp ≡ b (mod p)

with the help of Fermat’s little theorem. If 1 < k < p, then(
p+ 1

k

)
=
p(p+ 1)

k(k − 1)

(
p− 1

k − 2

)
≡ 0 (mod p).

Thus

Tp+1(b, c) =

(p+1)/2∑
k=0

(
p+ 1

k

)(
p+ 1− k

k

)
bp+1−2kck

≡bp+1 +

(
p+ 1

1

)(
p

1

)
bp−1c ≡ b2 (mod p).

If p | b, then (2.5) is valid since

Tp−1(b, c) =

(p−1)/2∑
k=0

(
p− 1

2k

)(
2k

k

)
bp−1−2kck

≡
(

p− 1

(p− 1)/2

)
c(p−1)/2 ≡

(
−c
p

)
=

(
b2 − 4c

p

)
(mod p).
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When p - b, we have

Tp−1(b, c) ≡
(p−1)/2∑

k=0

(
2k

k

)
ck

b2k
=

(p−1)/2∑
k=0

(
−1/2

k

)
(−4)k

ck

b2k

≡
(p−1)/2∑

k=0

(
(p− 1)/2

k

)(
−4c

b2

)k

=

(
1− 4c

b2

)(p−1)/2

≡
(
b2 − 4c

p

)
(mod p).

This concludes the proof. �

Proof of Theorem 1.2(iii). Suppose that d = b2 − 4c 6≡ 0 (mod p). By
Lemma 2.2,

p−1∑
k=0

Tk(b, c)Mk(b, c)

dk
≡
(
d

p

)
S1 (mod p)

where

S1 =

p−1∑
k=0

Tp−1−k(b, c)Mk(b, c) = [xp−1]
∞∑
j=0

Tj(b, c)x
j
∞∑
k=0

Mk(b, c)xk

=[xp−1]
1√

1− 2bx+ dx2
× 1− bx−

√
1− 2bx+ dx2

2cx2

=
1

2c
[xp+1]

(
1− bx√

1− 2bx+ dx2
− 1

)
=
Tp+1(b, c)− bTp(b, c)

2c
.

In light of Lemma 2.5, S1 ≡ 0 (mod p) and hence (1.5) follows.

Now suppose that D = b2 − 4c2 6≡ 0 (mod p). In view of Lemma 2.2
and Fermat’s little theorem,

p−1∑
k=0

Tk(b, c2)Mk(b, c2)

(b− 2c)2k

≡
(
D

p

) p−1∑
k=0

DkTp−1−k(b, c2)

(b− 2c)2k
Mk(b, c2) ≡

(
D

p

)
S2 (mod p),
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where

S2 =

p−1∑
k=0

(b− 2c)p−1−kTp−1−k(b, c2)Mk(b, c2)(b+ 2c)k

=[xp−1]
∞∑
j=0

Tj(b, c
2)((b− 2c)x)j

∞∑
k=0

Mk(b, c2)((b+ 2c)x)k

=[xp−1]
1− b(b+ 2c)x−

√
1− 2b(b+ 2c)x+D(b+ 2c)2x2

2c2((b+ 2c)x)2
√

1− 2b(b− 2c)x+D(b− 2c)2x2

=
1

2c2(b+ 2c)2
[xp+1]

1− b(b+ 2c)x√
1− 2b(b− 2c)x+D(b− 2c)2x2

− 1

2c2(b+ 2c)2
[xp+1]

√
(1−Dx)(1− (b+ 2c)2x)√
(1−Dx)(1− (b− 2c)2x)

.

Recall the identity (b2 + 4c2)2 − 4(4b2c2) = D2 and observe that

2c2(b+ 2c)2S2 =[yp+1]
(b− 2c)p+1√
1− 2by +Dy2

− b(b+ 2c)[yp]
(b− 2c)p√

1− 2by +Dy2

− [xp+1]
1− (b+ 2c)2x√

1− 2(b2 + 4c2)x+D2x2

≡(b− 2c)2Tp+1(b, c2)− b(b+ 2c)(b− 2c)Tp(b, c2)

− Tp+1(b2 + 4c2, 4b2c2) + (b+ 2c)2Tp(b2 + 4c2, 4b2c2) (mod p).

Applying Lemma 2.5 we get

2c2(b+ 2c)2S2 ≡(b− 2c)2b2 − b2D − (b2 + 4c2)2 + (b+ 2c)2(b2 + 4c2)

=8bc2(b+ 2c) (mod p).

Thus S2 ≡ 4b/(b+ 2c) (mod p) and this concludes the proof of (1.6). �

3. Proof of Theorem 1.5

Lemma 3.1. Let b and c be integers. For all n = 1, 2, 3, . . . we have

2c

n−1∑
k=0

Tk(b, c2)(b− 2c)n−1−k = −nTn(b, c2) + (b+ 2c)nTn−1(b, c2). (3.1)

Proof. In the case n = 1 both sides of (3.1) coincide with 2c. Denote by
f(n) the right-hand side of (3.1). Clearly it suffices to show that for any
positive integer n we have

f(n+ 1)− (b− 2c)f(n)

=2c
n∑

k=0

Tk(b, c2)(b− 2c)n−k − 2c
n−1∑
k=0

Tk(b, c2)(b− 2c)n−k = 2cTn(b, c2).
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Observe that

f(n+ 1)− (b− 2c)f(n)

=− (n+ 1)Tn+1(b, c2) + (b+ 2c)(n+ 1)Tn(b, c2)

− (b− 2c)
(
−nTn(b, c2) + (b+ 2c)nTn−1(b, c2)

)
=− (n+ 1)Tn+1(b, c2) + (4c2 − b2)nTn−1(b, c2)

+ (n(b− 2c) + (n+ 1)(b+ 2c))Tn(b, c2)

=− (2n+ 1)bTn(b, c2) + (n(b− 2c) + (n+ 1)(b+ 2c))Tn(b, c2) = 2cTn(b, c2)

with the help of the recursion for Tn(b, c2).
The above proof of (3.1) is simple. However, the reader might wonder

how (3.1) was found. Set D = b2 − 4c2. Then

n−1∑
k=0

Tk(b, c2)(b− 2c)n−1−k =[xn−1]
1√

1− 2bx+Dx2
· 1

1− (b− 2c)x

=[xn−1](1− (b− 2c)x)−3/2(1− (b+ 2c)x)−1/2

and hence

−2c
n−1∑
k=0

Tk(b, c2)(b− 2c)n−1−k = [xn−1]
d

dx

√
1− (b+ 2c)x

1− (b− 2c)x
.

Observe that√
1− (b+ 2c)x

1− (b− 2c)x
=

1− (b+ 2c)x√
1− 2bx+Dx2

= (1− (b+ 2c)x)
∞∑
k=0

Tk(b, c2)xk

=1 +
∞∑
k=1

(Tk(b, c2)− (b+ 2c)Tk−1(b, c2))xk

and thus

[xn−1]
d

dx

√
1− (b+ 2c)x

1− (b− 2c)x
= n

(
Tn(b, c2)− (b+ 2c)Tn−1(b, c2)

)
.

Therefore (3.1) follows. �

Lemma 3.2. Let b ∈ Z, c ∈ Z \ {0} and n ∈ Z+. Then

3

n

n−1∑
k=0

kTk(b, c2)(b− 2c)n−1−k −
n−1∑
k=0

Tk(b, c2)(b− 2c)n−1−k

=
(b+ 4c)Tn(b, c2)− (b+ 2c)2Tn−1(b, c2)

4c2
.

(3.2)
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Proof. Note that for any k ∈ N we have

Tk(2c, c2) = [xk](x2 + 2cx+ c2)k = [xk](x+ c)2k =

(
2k

k

)
ck.

In the case b = 2c, we can easily verify that both sides of (3.2) coincide
with (2− 3/n)

(
2n−2
n−1

)
cn−1.

Below we assume b 6= 2c and define

σn :=
n−1∑
k=0

(n− k)Tk(b, c2)(b− 2c)n−1−k.

Clearly

σn = [xn−1]

( ∞∑
k=0

Tk(b, c2)xk
) ∞∑

l=0

(l + 1)(b− 2c)lxl.

For |z| < 1 we have

1

(1− z)2
=

∞∑
l=0

(
−2

l

)
(−z)l =

∞∑
l=0

(
l + 1

l

)
zl.

Thus

σn =[xn−1]
1√

1− 2bx+ (b2 − 4c2)x2
× 1

(1− (b− 2c)x)2

=[xn−1](1− (b+ 2c)x)−1/2(1− (b− 2c)x)−5/2 = [xn−1]
d

dx
f(x),

where

f(x) =

(
− b(b+ 2c)

12c2(b− 2c)
+

(b+ 2c)2

12c2
x+

2

3(b− 2c)(1− (b− 2c)x)

)
× 1√

1− 2bx+ (b2 − 4c2)x2

=

(
− b(b+ 2c)

12c2(b− 2c)
+

(b+ 2c)2

12c2
x+

2

3(b− 2c)

∞∑
j=0

(b− 2c)jxj
)

×
∞∑
k=0

Tk(b, c2)xk.

Therefore

σn
n

= [xn]f(x) =− b(b+ 2c)

12c2(b− 2c)
Tn(b, c2) +

(b+ 2c)2

12c2
Tn−1(b, c2)

+
2

3(b− 2c)

n∑
k=0

Tk(b, c2)(b− 2c)n−k,
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i.e.,

n−1∑
k=0

Tk(b, c2)(b− 2c)n−1−k − 1

n

n−1∑
k=0

kTk(b, c2)(b− 2c)n−1−k

=
2

3

n−1∑
k=0

Tk(b, c2)(b− 2c)n−1−k +
2

3
· Tn(b, c2)

b− 2c

+
b+ 2c

12c2(b− 2c)

(
(b2 − 4c2)Tn−1(b, c2)− bTn(b, c2)

)
.

This yields the desired (3.2). �

Proof of Theorem 1.5(i). Let n be any positive integer. Since Tk(b, 0) =
[xk]xk(x + b)k = bk for all k ∈ N, (1.11) and (1.12) hold trivially when
c = 0.

Now assume that c 6= 0. By Lemma 3.1 we have

1

n

n−1∑
k=0

Tk(b, c2)(b− 2c)n−1−k =
bTn−1(b, c2)− Tn(b, c2)

2c
+ Tn−1(b, c2).

Observe that

Tn(b, c2)− bTn−1(b, c2)

=
∑
k∈N

(
n

2k

)(
2k

k

)
bn−2k(c2)k −

∑
k∈N

(
n− 1

2k

)(
2k

k

)
bn−2k(c2)k

=
n∑

k=1

(
n− 1

2k − 1

)(
2k

k

)
bn−2kc2k = 2c

n∑
k=1

(
n− 1

2k − 1

)(
2k − 1

k − 1

)
bn−2kc2k−1

=2c
∑

0<k6bn/2c

(
n− 1

k − 1

)(
n− k
k

)
bn−2kc2k−1 ≡ 0 (mod 2c).

Therefore (1.11) holds. In light of Lemma 3.2, (1.12) is reduced to the
congruence

(b+ 4c)Tn(b, c2) ≡ (b+ 2c)2Tn−1(b, c2) (mod 2c2).

In fact, as
(

2k
k

)
= 2
(

2k−1
k−1

)
for all k ∈ Z+, we have

(b+ 4c)Tn(b, c2)− (b+ 2c)2Tn−1(b, c2)

=(b+ 4c)

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
bn−2kc2k

− (b+ 2c)2

b(n−1)/2c∑
k=0

(
n− 1

2k

)(
2k

k

)
bn−1−2kc2k

≡(b+ 4c)bn − (b+ 2c)2bn−1 ≡ 0 (mod 2c2).
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So (1.12) is valid.
Now write D = b2−4c2 and suppose that p is an odd prime not dividing

b − 2c. In view of Lemmas 2.4 and 3.1 and Fermat’s little theorem, we
have

2c

p

p−1∑
k=0

Tk(b, c2)

(b− 2c)k
=

(b+ 2c)Tp−1(b, c2)− Tp(b, c2)

(b− 2c)p−1

≡(b+ 2c)

(
D

p

)
− b (mod p).

This proves (1.13). If p | c, then (D
p ) = ( b2

p ) = 1 and hence (1.14) becomes

obvious. When p - c, by (3.2), (1.11) and Lemma 2.5 we get

3

p

p−1∑
k=0

kTk(b, c2)

(b− 2c)k
≡ (b+ 4c)Tp(b, c2)− (b+ 2c)2Tp−1(b, c2)

4c2

≡
(b+ 4c)b− (b+ 2c)2(D

p )

4c2
(mod p)

and hence (1.14) follows. �

Lemma 3.3. For k ∈ N and n ∈ Z+ we have
n−1∑
m=0

(2m+ 1)2

(
m+ k

2k

)
= (4n2 − 1)

n− k
2k + 3

(
n+ k

2k

)
. (3.3)

Proof. Observe that

(4n2 − 1)
n− k
2k + 3

(
n+ k

2k

)
+ (2n+ 1)2

(
n+ k

2k

)
=(4n2 + 8n+ 3)

n+ 1 + k

2k + 3

(
n+ k

2k

)
=(4(n+ 1)2 − 1)

n+ 1− k
2k + 3

(
n+ 1 + k

2k

)
.

So we can easily prove (3.3) by induction on n. �

Proof of Theorem 1.5(ii). We prove (1.15) by induction. (1.15) is obvious
when n = 1.

Now suppose the validity of (1.15) for a fixed n ∈ Z+. Observe that

(n+ 1)
n∑

k=0

(
n+ 1

k + 1

)(
n+ 1 + k

k

)(
b− 1

2

)k

− n
n−1∑
k=0

(
n

k + 1

)(
n+ k

k

)(
b− 1

2

)k

=

n∑
k=0

(
(n+ 1 + k)

(
n+ 1

k + 1

)
− n

(
n

k + 1

))(
n+ k

k

)(
b− 1

2

)k

=(2n+ 1)
n∑

k=0

(
n

k

)(
n+ k

k

)(
b− 1

2

)k

= (2n+ 1)Dn(m) = (2n+ 1)Tn(b, c).
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Therefore, by the induction hypothesis, we have

(n+ 1)

n∑
k=0

(
n+ 1

k + 1

)(
n+ 1 + k

k

)(
b− 1

2

)k

=
n−1∑
k=0

(2k + 1)Tk(b, c) + (2n+ 1)Tn(b, c) =
n∑

k=0

(2k + 1)Tk(b, c).

This proves (1.15) with n replaced by n+ 1.
Let p be a prime not dividing b− 1 = 2m. It is easy to see that(

2p− 1

p− 1

)
=

p−1∏
j=1

(
1 +

p

j

)
≡ 1+p

p−1∑
j=1

1

j
= 1+p

(p−1)/2∑
j=1

(
1

j
+

1

p− j

)
≡ 1 (mod p2).

In light of (1.15),

1

p

p−1∑
k=0

(2k + 1)Tk(b, c) =

p−1∑
k=0

(
p

k + 1

)(
p+ k

k

)
mk

=

(
2p− 1

p− 1

)
mp−1 +

p−2∑
k=0

(
p

k + 1

)(
p+ k

k

)
mk

≡mp−1 +

p−2∑
k=0

(
p

k + 1

)
mk = mp−1 +

(m+ 1)p −mp − 1

m

≡1 +
(m+ 1)p − (m+ 1)

m
= 1 +

b+ 1

b− 1

((
b+ 1

2

)p−1

− 1

)
(mod p2)

and hence (1.16) follows.
Now we show (1.17). In view of Lemma 3.3,

p−1∑
n=0

(2n+ 1)2Tn(b, c) =

p−1∑
n=0

(2n+ 1)2
n∑

k=0

(
n+ k

2k

)(
2k

k

)
mk

=

p−1∑
k=0

(
2k

k

)
mk

p−1∑
n=0

(2n+ 1)2

(
n+ k

2k

)

=(4p2 − 1)

p−1∑
k=0

p− k
2k + 3

(
p+ k

2k

)(
2k

k

)
mk

=(4p2 − 1)

p−1∑
k=0

pmk

2k + 3

∏
0<j6k

(
p2

j2
− 1

)

≡−
p−1∑
k=0

p(−m)k

2k + 3
(mod p2)

≡− (−m)(p−3)/2 ≡ 1

m

(
−m
p

)
(mod p).
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This proves (1.17). �

4. Proofs of Theorems 1.8 and 1.9

Proof of Theorem 1.8(i). We first prove (1.19) by induction.
When n = 1, both sides of (1.19) are equal to b.
Now assume that (1.19) holds for a fixed integer n > 1. Then

b

(n+1)−1∑
k=0

(2k + 1)Tk(b, c)2(−d)(n+1)−1−k

=b(2n+ 1)Tn(b, c)2 − bd
n−1∑
k=0

(2k + 1)Tk(b, c)2(−d)n−1−k

=b(2n+ 1)Tn(b, c)2 − dnTn(b, c)Tn−1(b, c)

=(n+ 1)Tn(b, c)Tn+1(b, c).

This concludes the induction step.
Now we fix a positive integer n and want to show (1.18). As in the

proof of Theorem 1.2(i),

Tn(b, c) ≡

{ (
n

n/2

)
cn/2 (mod b) if 2 | n,

0 (mod b) if 2 - n.

When b 6= 0, b divides Tn(b, c) or Tn−1(b, c) since n or n − 1 is odd,
therefore (1.18) follows from (1.19).

Now it remains to consider the case b = 0. Note that Tk(0, c) = 0 for

k = 1, 3, 5, . . . , and Tk(0, c) =
(

k
k/2

)
ck/2 for k = 0, 2, 4, . . . . Thus

n−1∑
k=0

(2k + 1)Tk(0, c)2(4c− 02)n−1−k

=

b(n−1)/2c∑
k=0

(4k + 1)

((
2k

k

)
ck
)2

(4c)n−1−2k

=(4c)n−1

b(n−1)/2c∑
k=0

(4k + 1)

(
2k
k

)2
16k

.

By induction, for any m ∈ N we have the identity

m∑
k=0

(4k + 1)

(
2k
k

)2
16k

=
(m+ 1)2

16m

(
2m+ 1

m

)2

=
(2m+ 1)2

16m

(
2m

m

)2

,
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which was pointed out to the author by R. Tauraso. It follows that

4n−1

b(n−1)/2c∑
k=0

(4k + 1)

(
2k
k

)2
16k

= n2

(
n− 1

bn/2c

)2

.

Therefore

n−1∑
k=0

(2k + 1)Tk(0, c)2(4c− 02)n−1−k ≡ 0 (mod n2)

and hence (1.18) holds when b = 0. We are done. �

Lemma 4.1. Let b, c ∈ Z and d = b2 − 4c. For any n ∈ N we have

Tn(b, c)2 =
n∑

k=0

(
n+ k

2k

)(
2k

k

)2

ckdn−k. (4.1)

Proof. If d = 0 (i.e., b2 = 4c), then

Tn(b, c) = [xn]

(
x2 + bx+

b2

4

)n

= [xn]

(
x+

b

2

)2n

=

(
2n

n

)
bn

2n

and hence (4.1) holds.
Now assume that d 6= 0. It is known that

n∑
k=0

(
n+ k

2k

)(
2k

k

)2

xk(x+ 1)k =

( n∑
k=0

(
n

k

)(
n+ k

k

)
xk
)2

(cf. [S2, Lemma 3.2]), which is actually a special case of the famous
Clausen identity for hypergeometric series. Therefore

Tn(b, c)2 =

(
(
√
d)nPn

(
b√
d

))2

= dnDn

(
b/
√
d− 1

2

)2

=dn
n∑

k=0

(
n+ k

2k

)(
2k

k

)2
(
b/
√
d− 1

2

)k(
b/
√
d+ 1

2

)k

=dn
n∑

k=0

(
n+ k

2k

)(
2k

k

)2(
b2/d− 1

4

)k

=

n∑
k=0

(
n+ k

2k

)(
2k

k

)2

ckdn−k.

This completes the proof. �
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Lemma 4.2. For any k ∈ N and n ∈ Z+ we have

n−1∑
m=0

(2m+ 1)

(
m+ k

2k

)
=
n(n− k)

k + 1

(
n+ k

2k

)
. (4.2)

Proof. (4.2) can be easily proved by induction on n. �

Proof of Theorem 1.8(ii). Let n ∈ Z+. In view of Lemmas 4.1 and 4.2, we
have

n−1∑
m=0

(2m+ 1)Tm(b, c)2dn−1−m

=

n−1∑
m=0

(2m+ 1)dn−1−m
m∑

k=0

(
m+ k

2k

)(
2k

k

)2

ckdm−k

=
n−1∑
k=0

(
2k

k

)2

ckdn−1−k
n−1∑
m=0

(2m+ 1)

(
m+ k

2k

)

=

n−1∑
k=0

(
2k

k

)2

ckdn−1−k n(n− k)

k + 1

(
n+ k

2k

)

=n
n−1∑
k=0

(n− k)

(
n

k

)(
n+ k

k

)
Ckc

kdn−1−k

=n2
n−1∑
k=0

(
n− 1

k

)(
n+ k

k

)
Ckc

kdn−1−k.

This proves (1.20).
Now assume c 6= 0 and let p be an odd prime not dividing d. By (1.20),

1

p2

p−1∑
k=0

(2k + 1)
Tk(b, c)2

dk
=

p−1∑
k=0

(
p− 1

k

)(
p+ k

k

)
Ck

ck

dk
.

For k = 0, 1, . . . , p− 1, clearly(
p− 1

k

)(
p+ k

k

)
=
∏

0<j6k

(
p− j
j
· p+ j

j

)
= (−1)k

∏
0<j6k

(
1− p2

j2

)
≡(−1)k

(
1− p2H

(2)
k

)
(mod p4),

where H
(2)
k =

∑
0<j6k 1/j2. Thus

1

p2

p−1∑
k=0

(2k + 1)
Tk(b, c)2

dk
≡

p−1∑
k=0

Ck

(
− c
d

)k
(1− p2H

(2)
k ) (mod p4)

≡
p−1∑
k=0

Ck

(
− c
d

)k
(mod p2).
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If p | c, then (d
p ) = ( b2

p ) = 1 and hence (1.21) follows. In the case p - c, we

take an integer m ≡ −d/c (mod p2) and then get

1

p2

p−1∑
k=0

(2k + 1)
Tk(b, c)2

dk
≡

p−1∑
k=0

Ck

mk
(mod p2).

By [Su3, Lemma 2.1],
p−1∑
k=1

Ck

mk
≡m− 4

2

(
1−

(
m(m− 4)

p

))
≡− d+ 4c

2c

(
1−

(
d(d+ 4c)

p

))
=
b2

2c

((
d

p

)
− 1

)
(mod p).

(Moreover, the author [Su1] determined
∑p−1

k=1 Ck/m
k mod p2 in terms of

Lucas sequences.) So (1.21) is valid. We are done. �

Remark 4.3. Let p > 3 be a prime. As Dk = Tk(3, 2), by refining the proof
of Theorem 1.8(ii) and using two auxiliary congruences

p−1∑
k=1

(−2)kCk ≡ −4p qp(2) (mod p3)

and
p−1∑
k=1

(−2)kCkH
(2)
k ≡ 2qp(2)2 (mod p)

(the author has a proof of them), we get
p−1∑
k=0

(2k + 1)D2
k ≡ p2 − 4p3qp(2)− 2p4qp(2)2 (mod p5).

Lemma 4.4. Let b, c ∈ Z. Suppose that p > 3 is a prime not dividing
d = b2 − 4c. Then

p−1∑
k=0

Tk(b, c)2

dk
≡
(

16c

d

)(p−1)/2

+ p

p−1∑
k=0

k 6=(p−1)/2

(
2k
k

)
2k + 1

(
− c
d

)k
(mod p3).

(4.3)

Proof. With the help of (4.1), we have
p−1∑
n=0

Tn(b, c)2

dn
=

p−1∑
n=0

1

dn

n∑
k=0

(
n+ k

2k

)(
2k

k

)2

ckdn−k

=

p−1∑
k=0

(
2k

k

)2
ck

dk

p−1∑
n=k

(
n+ k

2k

)
=

p−1∑
k=0

(
2k

k

)2(
p+ k

2k + 1

)( c
d

)k
=

p−1∑
k=0

p

2k + 1

(
2k

k

)( ∏
0<j6k

p2 − j2

j2

)( c
d

)k
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and hence

p−1∑
n=0

Tn(b, c)2

dn
≡

p−1∑
k=0

p(−1)k

2k + 1

(
2k

k

)(
1− p2H

(2)
k

)( c
d

)k
(mod p4)

≡(−1)(p−1)/2

(
p− 1

(p− 1)/2

)(
1− p2H

(2)
(p−1)/2

)( c
d

)(p−1)/2

+ p

p−1∑
k=0

k 6=(p−1)/2

(
2k
k

)
2k + 1

(
− c
d

)k
(mod p3).

As Wolstenholme observed, H
(2)
p−1 ≡ 0 (mod p) since

∑p−1
j=1 1/(2j)2 ≡∑p−1

k=1 1/k2 (mod p). Therefore

H
(2)
(p−1)/2 ≡

1

2

(p−1)/2∑
k=1

(
1

k2
+

1

(p− k)2

)
=
H

(2)
p−1

2
≡ 0 (mod p).

Recall Morley’s congruence (cf. [M])(
p− 1

(p− 1)/2

)
≡ (−1)(p−1)/24p−1 (mod p3).

So we have

(−1)(p−1)/2

(
p− 1

(p− 1)/2

)(
1− p2H

(2)
(p−1)/2

)
≡ 4p−1 (mod p3)

and hence (4.3) follows. �

Proof of Theorem 1.9. (i) Applying Lemma 4.4 with b = 6 and c = −3 we
get

p−1∑
k=0

Tk(6,−3)2

48k
≡
(
−1

p

)
+ p

p−1∑
k=0

k 6=(p−1)/2

(
2k
k

)
(2k + 1)16k

(mod p3).

By [Su2, (1.4)-(1.5)],

(p−3)/2∑
k=0

(
2k
k

)
(2k + 1)16k

≡ 0 (mod p2)

and
p−1∑

k=(p+1)/2

(
2k
k

)
(2k + 1)16k

≡ p

3
Ep−3 (mod p2).
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So (1.22) follows.

(ii) Now we prove (1.23) and (1.24). Since p |
(

2k
k

)
for every k =

(p+1)/2, . . . , p−1, by Lemma 4.4 with b = 2 and c ∈ {−1,−3} we obtain

p−1∑
k=0

Tk(2,−1)2

8k
≡ (−2)(p−1)/2 + p

(p−3)/2∑
k=0

(
2k
k

)
(2k + 1)8k

(mod p2) (4.4)

and

p−1∑
k=0

Tk(2,−3)2

16k
≡ (−3)(p−1)/2+p

(p−3)/2∑
k=0

(
2k
k

)
(2k + 1)

(
3

16

)k

(mod p2). (4.5)

For n ∈ N define

un = (2n+ 1)
n∑

k=0

(
n+ k

2k

)
(−2)k

2k + 1
and vn = (2n+ 1)

n∑
k=0

(
n+ k

2k

)
(−3)k

2k + 1
.

Via the Zeilberger algorithm (cf. [PWZ]) we find the recurrence relations

un + un+2 = 0 and vn + vn+1 + vn+2 = 0.

So, by induction we have

un = (−1)n(n−1)/2 =

(
−2

2n+ 1

)
and vn =

(
2n+ 1

3

)
for every n = 0, 1, 2, . . . . Taking n = (p − 1)/2 and noting that

(
n+k
2k

)
≡(

2k
k

)
/(−16)k (mod p2) for k = 0, . . . , n (cf. [S1, Lemma 2.2]), we then

obtain

(−2)(p−1)/2 + p

(p−3)/2∑
k=0

(
2k
k

)
(2k + 1)8k

≡ u(p−1)/2 =

(
−2

p

)
(mod p3)

and

(−3)(p−1)/2 + p

(p−3)/2∑
k=0

(
2k
k

)
(2k + 1)

(
3

16

)k

≡ v(p−1)/2 =
(p

3

)
(mod p3).

Combining these with (4.4) and (4.5) we immediately get (1.23) and (1.24).

(iii) Finally we show (1.25). Applying (4.1) with b = 3 and c = 2 we
obtain

n∑
k=0

(
n+ k

2k

)(
2k

k

)2

2k = D2
n.
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Therefore

p−1∑
n=1

D2
n − 1

n2
=

p−1∑
n=1

1

n2

n∑
k=1

(
n+ k

2k

)(
2k

k

)2

2k

=

p−1∑
k=1

2k
(

2k

k

)2 p−1∑
n=k

(
n+k
2k

)
n2

=

p−1∑
k=1

2k
(

2k

k

)2 p−1−k∑
r=0

(
2k+r

r

)
(k + r)2

.

If k ∈ {(p+ 1)/2, . . . , p− 1} then p |
(

2k
k

)
. For each k = 1, . . . , (p− 1)/2,

clearly

p−1−k∑
r=0

(
2k+r

r

)
(k + r)2

= 4

p−1−k∑
r=0

(−1)r
(−2k−1

r

)
(−2k − 2r)2

≡ 4

p−1−2k∑
r=0

(−1)r
(
p−1−2k

r

)
(p− 2k − 2r)2

(mod p).

By [Su2, (2.5)], we have the identity

2n∑
r=0

(−1)r
(

2n
r

)
(2n+ 1− 2r)2

=
(−16)n

(2n+ 1)2
(

2n
n

) .
Also, H

(2)
p−1 =

∑p−1
k=1 1/k2 ≡ 0 (mod p). So, by the above, we have

p−1∑
k=1

D2
k

k2
≡

(p−1)/2∑
k=1

2k
(

2k

k

)2
4(−16)(p−1)/2−k

(p− 2k)2
(

p−1−2k
(p−1)/2−k

)
≡

(p−1)/2∑
k=1

2k
(

2k
k

)2
4(p−1)/2−k

k2
(

(p−1−2k
(p−1)/2−k

)
/(−4)(p−1)/2−k

(mod p).

For each k ∈ {1, . . . , (p− 1)/2}, obviously(
2k
k

)
(−4)k

=

(
−1/2

k

)
≡
(

(p− 1)/2

k

)
=

(
(p− 1)/2

(p− 1)/2− k

)
≡
(

−1/2

(p− 1)/2− k

)
=

(
p−1−2k

(p−1)/2−k
)

(−4)(p−1)/2−k (mod p).

Therefore

p−1∑
k=1

D2
k

k2
≡

(p−1)/2∑
k=1

2k
(

2k
k

)2
2p−1/4k

k2
(

2k
k

)
/(−4)k

≡
(p−1)/2∑

k=1

(−2)k
(

2k
k

)
k2

(mod p)

and hence
p−1∑
k=1

D2
k

k2
≡

p−1∑
k=1

(−2)k

k2

(
2k

k

)
(mod p). (4.6)



30 ZHI-WEI SUN

Let

vn = 2n + 2−n and wn = (−1)n + 2−n for all n ∈ N.

It is easy to see that

vn+1 =
5

2
vn − vn−1 and wn+1 = −1

2
wn +

1

2
wn−1 for all n ∈ Z+.

Thus, applying [MT, (42)] with t = −1/2 we obtain

−1

4

p−1∑
k=1

(−2)k

k2

(
2k

k

)
≡ vp + 2wp + 2−p − 2

p2
+

p−1∑
k=1

vk
k2

= 2−p
(

2p − 2

p

)2

+

p−1∑
k=1

2k

k2
+

p−1∑
k=1

2−(p−k)

(p− k)2

≡ 2qp(2)2 +
3

2

p−1∑
k=1

2k

k2
(mod p).

Recall that
∑p−1

k=1 2k/k2 ≡ −qp(2)2 (mod p) (which was conjectured by L.
Skula and proved by A. Granville [Gr]). So we have

p−1∑
k=1

(−2)k

k2

(
2k

k

)
≡ −2qp(2)2 (mod p). (4.7)

Combining (4.6) and (4.7) we finally get (1.25). This ends the proof. �

5. More conjectures for further research

Motivated by part (ii) of Theorem 1.5, we raise the following conjecture.

Conjecture 5.1. Let x be any integer. Then

n−1∑
k=0

(2k + 1)Dk(x)m ≡ 0 (mod n)

for all m,n ∈ Z+. If p is a prime not dividing x(x+ 1), then

p−1∑
k=0

(2k + 1)Dk(x)3 ≡ p
(
−4x− 3

p

)
(mod p2)

and
p−1∑
k=0

(2k + 1)Dk(x)4 ≡ p (mod p2).

Now we propose the following conjecture related to Theorem 1.2(ii).
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Conjecture 5.2. Let b, c ∈ Z. For any n ∈ Z+ we have

n−1∑
k=0

(8ck + 4c+ b)Tk(b, c2)2(b− 2c)2(n−1−k) ≡ 0 (mod n).

If p is an odd prime not dividing b(b− 2c), then

p−1∑
k=0

(8ck + 4c+ b)
Tk(b, c2)2

(b− 2c)2k
≡ p(b+ 2c)

(
b2 − 4c2

p

)
(mod p2).

Remark 5.3. Conjecture 5.2 in the case b = c = 1 yields the first part of
Conjecture 1.1.

By Theorem 1.2(ii), if p is an odd prime then

p−1∑
k=0

Tk(4, 1)2

22k
≡

p−1∑
k=0

Tk(4, 1)2

62k
≡
(
−1

p

)
(mod p).

Motivated by this and (1.22)-(1.24), we now give a further conjecture.

Conjecture 5.4. Let p be an odd prime. We have

p−1∑
k=0

Tk(2, 2)2

4k
≡

p−1∑
k=0

(
2k
k

)2
8k

(
mod p(5+( −1

p ))/2
)
.

If p > 3, then

p−1∑
k=0

Tk(4, 1)2

4k
≡

p−1∑
k=0

Tk(4, 1)2

36k
≡
(
−1

p

)
(mod p2).

Now we raise a conjecture related to Theorem 1.2(iii).

Conjecture 5.5. Let b, c ∈ Z and d = b2 − 4c. For any n ∈ Z+ we have

n−1∑
k=0

Tk(b, c)Mk(b, c)dn−1−k ≡ 0 (mod n).

If p is an odd prime not dividing cd, then

p−1∑
k=0

Tk(b, c)Mk(b, c)

dk
≡ pb2

2c

((
d

p

)
− 1

)
(mod p2).

By Conjecture 5.5, for any prime p > 3 we should have

p−1∑
k=0

Tk(3, 3)Mk(3, 3)

(−3)k
≡ 3p

2

((p
3

)
− 1
)

(mod p2).

This can be further strengthened.



32 ZHI-WEI SUN

Conjecture 5.6. Let p > 3 be a prime. Then

p−1∑
k=0

Tk(3, 3)Mk(3, 3)

(−3)k
≡
{

2p2 (mod p3) if p ≡ 1 (mod 3),

p3 − p2 − 3p (mod p4) if p ≡ 2 (mod 3).

In view of Theorem 1.2(ii), for b, c ∈ Z and a prime p - (b − 2c), it is

natural to investigate whether the sum
∑p−1

k=0 Tk(b, c2)3/(b− 2c)3k mod p
has a pattern. This leads us to raise the following two conjectures.

Conjecture 5.7. Let p > 3 be a prime. Then

(
3

p

) p−1∑
k=0

Tk(2, 3)3

8k
≡

p−1∑
k=0

Tk(2, 3)3

(−64)k

≡
p−1∑
k=0

Tk(2, 9)3

(−64)k
≡
(

3

p

) p−1∑
k=0

Tk(2, 9)3

512k

≡


4x2 − 2p (mod p2) if p ≡ 1, 7 (mod 24) and p = x2 + 6y2,

2p− 8x2 (mod p2) if p ≡ 5, 11 (mod 24) and p = 2x2 + 3y2,

0 (mod p2) if (−6
p ) = −1.

And

p−1∑
k=0

(3k + 2)
Tk(2, 3)3

8k
≡p
(

3

(
3

p

)
− 1

)
(mod p2),

p−1∑
k=0

(3k + 1)
Tk(2, 3)3

(−64)k
≡p
(
−2

p

)
(mod p3).

When (−6
p ) = 1 we have

p−1∑
k=0

(72k + 47)
Tk(2, 9)3

(−64)k
≡ 42p (mod p2)

and
p−1∑
k=0

(72k + 25)
Tk(2, 9)3

512k
≡ 12p

(
3

p

)
(mod p2).

Also,
n−1∑
k=0

(3k + 2)Tk(2, 3)38n−1−k ≡ 0 (mod 2n)
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and
n−1∑
k=0

(3k + 1)Tk(2, 3)3(−64)n−1−k ≡ 0 (mod n)

for every positive integer n.

Remark 5.8. Let p > 3 be a prime. If p ≡ 1, 7 (mod 24) then p = x2 + 6y2

for some x, y ∈ Z; if p ≡ 5, 11 (mod 24) then p = 2x2 + 3y2 for some
x, y ∈ Z. The reader may consult [BEW] and [Co] for such known facts.

Conjecture 5.9. Let p > 3 be a prime. Then

(
2

p

) p−1∑
k=0

Tk(18, 49)3

83k
≡

p−1∑
k=0

Tk(18, 49)3

163k

≡
{

4x2 − 2p (mod p2) if p ≡ 1 (mod 4) & p = x2 + y2 (2 - x, 2 | y),

0 (mod p2) if p ≡ 3 (mod 4).

And(
−1

p

) p−1∑
k=0

Tk(10, 49)3

(−8)3k
≡
(

6

p

) p−1∑
k=0

Tk(10, 49)3

123k

≡
{

4x2 − 2p (mod p2) if p ≡ 1, 3 (mod 8) & p = x2 + 2y2 (x, y ∈ Z),

0 (mod p2) if (−2
p ) = −1, i.e., p ≡ 5, 7 (mod 8).

Also,

p−1∑
k=0

(7k + 4)
Tk(10, 49)3

(−8)3k
≡ p

14

(
2

p

)(
65− 9

(p
3

))
(mod p2),

p−1∑
k=0

(7k + 3)
Tk(10, 49)3

123k
≡3p

28

(
13 + 15

(p
3

))
(mod p2).

For each n = 1, 2, 3, . . . we have

n−1∑
k=0

(7k + 4)Tk(10, 49)3(−83)n−1−k ≡ 0 (mod 4n)

and
n−1∑
k=0

(7k + 3)Tk(10, 49)3(123)n−1−k ≡ 0 (mod n).
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131 (2011), 2387–2397.

[ST] Z. W. Sun and R. Tauraso, New congruences for central binomial coefficients,

Adv. in Appl. Math. 45 (2010), 125–148.
[W] H. S. Wilf, Generatingfunctionology, Academic Press, 1990.


