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SOME CONGRUENCES INVOLVING BINOMIAL
COEFFICIENTS

HUI-QIN CAO AND ZHI-WEI SUN

ABSTRACT. Binomial coefficients and central trinomial coefficients play
important roles in combinatorics. Let p > 3 be a prime. We show that

Tp1 = (g) gr—1 (mod p?),

where the central trinomial coefficient 7;, is the constant term in the
expansion of (1 + x + 2~1)". We also prove three congruences modulo
p? conjectured by Sun, one of which is

gﬁ&?ﬁ)(f)«—D“—@$‘ﬂz(2)@“‘—U (mod p%).

k=0
In addition, we get some new combinatorial identities.

1. INTRODUCTION

Throughout this paper, we set N =1{0,1,2,...} and ZT = {1,2,3,...}.
Let A, B € Z. The Lucas sequences u, = u,(A,B) (n € N) and v, =
vn(A, B) (n € N) are defined by

ug =0, u; = 1, and u,, = Au, — Bu,_, (n € Z")
and
vo =2, v; = A, and v, = Av,, — Bv,_1 (n € Z%).
The roots of the characteristic equation 2> — Az + B = 0 are
_A+VA A-VA
2 2

where A = A% — 4B. By induction, one can easily deduce the following

Q@ and (=

known formulae:
(= Bu, =a" =" and v, =a"+ " for any n € N.

(Note that in the case A = 0 we have v, = 2(A/2)" for all n € N.) It is
well-known that

A
Uy = (E) (mod p) and U, (a) = 0 (mod p) (1.1)

p
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for any odd prime p not dividing B (see, e.g., Sun [3]), where (—) denotes
the Legendre symbol.

Let p > 3 be a prime and let m be an integer not divisible by p. Recently,
Sun [3, 4] established the following general congruences involving central
binomial coefficients and Lucas sequences:

p—1 (2k) A
Lk = (—) + up_(é)(m —2,1) (mod p?) (1.2)
P P
k=0
and
p—1 2k
p—1 (k) — é _ A\l _m — 2
;( L )(—m)’“ =5 (m—4) +<1 2>up7(%)(m 2,1) (mod p?),
(1.3)
where A = m?—4m. Clearly (') = (—1)* (mod p) for allk = 0,...,p—1.
Note that for each n = 0,1,2,... the central binomial coefficient (2:)

is the constant term of (1 + x)?"/z" = (2+ x + 2~ !)". For n € N, the
central trinomial coefficient T,, is the constant term in the expansion of
(1+z+2z71H)" ie.,

[n/2) ol /2 N
Tn= kz_; KWkl (n — 2k) kz_; (k:)( k )
Central trinomial coefficients arise naturally in enumerative combinatorics
(cf. Sloane [2]), e.g., T}, is the number of lattice paths from the point (0, 0)
to (n,0) with only allowed steps (1,0), (1,1) and (1,—1). As Andrews [1]
pointed out, central trinomial coefficients were first studied by L. Euler.
Recently, Sun [6] investigated congruence properties of central trinomial
coefficients; for example, he proved that Zi;é T? = (*71) (mod p) for any
odd prime p.
Now we state our first theorem.

Theorem 1.1. Let p > 3 be a prime.

(i) We have
= Z_) p—1 2
T, . = (3) 371 (mod p?) (1.4)
and
p

k:: (p; 1) (2:) (—1)F = (=3)~%)

(ii) If p= £1 (mod 12), then

(%9) (3771 = 1) (mod p*). (L.5)

p

: (p; 1) (2:) (—1)*up(4,1) = (=1)® D2y, (4,1) (mod p*). (1.6)

k=
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If p=+1 (mod 8), then

S (p; 1) (2:) uk(4,2) = (—1)®D2y,_(4,2) (mod p*). (1.7)

o)k
= (=2)
Remark 1.1. (1.5) and part (ii) of Theorem 1.1 were conjectured by Sun [5,
Conj. 1.3].

During our efforts to prove Theorem 1.1, we also obtain some combina-
torial identities.

Theorem 1.2. Let n be a positive integer.

(i) If 6 | n, then ) k
WIGE ST 1

k=0

=

k=0

If n =3 (mod 6), then

where [3 | k] is 1 or 0 according as 3 | k or not.

(ii) If 4 | n, then
SO

k=0

If n =2 (mod 4), then

> () () - a
(iii) If 3 | n, then
> (0 () - 112

We will provide two lemmas in the next section and prove Theorems 1.1
and 1.2 in Section 3.

2. Two LEMMAS

Lemma 2.1. Let A€ Z' and B,m € Z\ {0} with A = A> —4B # 0. Let
a=(A++VA)/2 and B = (A —~/A)/2. Then, for everyn € N we have

G- S () e e

ot
Z (1) (%) i ) _ et Lf (") 22

where m = —4B/A and d = 4A /A%
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Proof. For a polynomial P(z) over the field of complex numbers, we use
[z"]P(x) to denote the coefficient of 2™ in P(z). It’s easy to see that

n

("] ((1 + az)? + ma)" = [2"] Z (Z) (1 + az)?* (ma)"*

k=0

o "L (n\ (2k a_k
- k)\ k) mk
k=0
On the other hand,

[")((1 4 az)?® + ma)" = [2"](e*2® + 2o + m)z + 1)"

n n T S TS
= [2"] Z (r,s,t)az (2 + m)*z* "

So we obtain

RIS o ] [CS IS

Similarly,

03I D > W] (o IS N

As 4B = —mA, we see that

L2 (2AFVA) 2 e G
A+ VA 1B mA

ie, 2+ m/a =+/dand 2+ m/f = —Vd. Since u, = (a* — 8¥)/(a — j)
and vy, = o + 8¥ for all k € N, combining (2.3) and (2.4) we get (2.1) and
(2.2) immediately. O

Lemma 2.2. Let p > 3 be a prime, and let d € Z with ptd. Then

e-1/2 , L,
— (pkl)(p flf k)dk (2.5)

=(2) (2 + -0 ) = Gy gy a2 mod 7).

p

Ehivy

where D = d(d — 4).
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Proof. For every k=0,1,...,p— 1, we clearly have

(p;) ) T (1—2> = (—1)*(1 - pH,) (mod %), (2.6)

0<j<k J
where Hj denotes the harmonic number > ,_., 1/j. Thus

~1)/2
(pz)/ =1\ (p—1—k -
“— k k

=0

(r-1)/2 L
<—1>’€<1—ka>(]0 . )d-k

Since (p*};k) = (*1,;]“) = (2:) mod p) for all £ = 0,. — 1, we

obtain from the above

(p—1)/2
k k

h=0 (2.7)
(p—1)/2 p—1—k (p—1)/2 o)
_ - 2
:Z < . )— —pZHk< > ¥ (mod p?).
k=0
It is known that
[n/2] n— k
Uny1(A, B) = % ( N )An—%(—B)k forall n=0,1,2,...

which can be easily proved by induction. So we have

uy(d, d) = (p_zl):/2 (p_/t_ k)dp 1-2k( Z): ( —1i- >(—d)’“.

k=0
By [3, Lemma 2.4,

2u,(d, d) — (9

p
In view of [4, (3.6)], if p{d — 4 then

w(d—2,1) — (%) - (g - )up_(g) (d—2,1) (mod p?).

)dp_l =u,(d—2,1) + up_<%>(d —2,1) (mod p?).

up(d —2,1) = u, (0)(d—2,1) = ((d_2)2_4,1) (d—2,1)=0 (mod p)
by (1.1). Combining the above two congruences we immediately get

wy(d, d) = (%) dp2+1 +Z 4y (2y(d=2,1) (mod p?).
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Hence

(p—1)/2 »
PoLoR) o (R)EAL A 2

5—0 ( k >( d) = <p dp—1 +4Up7(%)(d 2,1) (modp)
(2.8)

since u, (py(d —2,1) =0 (mod p) and @' =1 (mod p).
Note that p | (2:) for k= (p+1)/2,...,p— 1. With the help of (2.6), we

have

(p—_l)/2 (Qk) (r—1)/2 p—1 (21<;)
_ Nk k
- = & k=0 ( ki ) (—=d)*
B (p—-1)/2 @ ., p—1 p—1 (Qkk) - p—1 p—1 (2:)
B i ko) (—d)* ko) (—d)*
k=0 k=(p+1)/2 k=0
p—1 (2k) p—1 _1 (2k)
— L _ p k 2
= » ( . )(—d)k (mod p7).
k=0 k=0

Thus, by applying (1.2) and (1.3) with m = d we find that p Z,(CZ]U/Q Hy (2:) d=*

is congruent to

<%) + up_(%)(d —-2,1) — (1 — g) up_%)(d —2,1) — <§) (d —4)P~1

modulo p?. Thus

p(p_zl)/2 H, (2:) d* = (2> (1—(d—4)P "+ gup_@)(d —2,1) (mod p?).

k=0 p
(2.9)
Combining (2.7), (2.8) and (2.9), we finally obtain

(p—1)/2
k k

k=0

_ (%) (12;—5_191_1 +(d— 4)p1> - %up_(?)(d —9.1)

_ (9) (1 _;pl +(d— 4)p1> _ gup_(D)w —9.1) (mod p?).

P P

This concludes the proof. U
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3. PROOFS OF THEOREMS 1.1 AND 1.2

Proof of Theorem 1.1(i). Let w be the primitive cubic root (—1 + /—3)/2.
For each £ =0,1,2,..., we clearly have

3k —3k
uzp(—1,1) = ug(w + 0, wo) = % = 0.
w—w
As
(»-1)/2
p—1\/p—1—k
Tp—l Z < k ) ( k )7

k=0
applying (2.5) with d = 1 we get

T, = (?) (—3)PL - }Lup_(ps)(—L 1) = (g) 371 (mod p?).

This prove (1.4).
Note that ug(4,3) = (3* —1)/(3 — 1) for all k¥ € N. With the help of

Lemma 2.1 and (1.4), we have
. (p - 1) (%) we(4,3)
_ 3k
=\ k k) (—3)
- 1 (P=1)/2 -
31— (—1)p! ~ N\ [p—1-k\ ¥ 1-1
_ (1) Z p p _ T,
G-D(=apt &= \ & k 2 x 301

_3y -1 (2
T2 x 31 \3

> 377! (mod p*)

and hence the desired (1.5) follows. O
Proof of Theorem 1.1(ii). Suppose that p = +1 (mod 12). In light of the

second congruence in (1.1),

up—1(4,1) = up_(42,4A1)(4, 1) =0 (mod p).

By Lemma 2.2,

(p—1)/2

pz p—1\(p—1-k 3k

k k
k=0
(=3 (13! ) 3 _ (p\ 33" 2
=(2) (S5 ) = Bu o = () 25 o
since
N3k (3K
up(1,1) = ST EOT ke,

o= (@)
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Combining this with Lemma 2.1 we get
1

ZZO (p i 1) (2:) (=1)ux(4, 1)

3(-1)/2 PR N (p—1—k
=2 (4.1 —k
o 2 () ()
_ 3 -3t
=3=1/2 1 (4,1) (g) —5 (mod p?).

Note that 37~! = 2-3P~D/2 — 1 (mod p?) since 3¢°~1/2 = (%) =1 (mod p).
So we have
p—1 -1

— 1\ [2k —3\3—-3
> (p L ) (k ) (—1)Fug(4,1) =3¢~/ (—) S tp-1(4,1)
k=0 p
(_1)(1?—1)/23(13—1)/2(2 _ 3(?-1)/2)%?_1(4’ 1)

=(—1)®"D2y, 1(4,1) (mod p?).

This proves (1.6).

Now assume that p = £1 (mod 8). In view of the second congruence in
(1.1),

up-1(4,2) = up_(42;4.2)(4, 2) =0 (mod p).
By Lemma 2.2,
(zo—zl)/2 D=1\ /p—1—k -
k k
k=0

since ug(0,1) = 0 for all £ € N. Combining this with Lemma 2.1 we get

) ()24 S )1

k=0 k=0

w1 (4,2) [—1) 14+ 20! \

This is equivalent to (1.7) since 2P~! + 1 — 2. 2=1/2 = (2p=1)/2 _ 1)2 =
0 (mod p?).
In view of the above, we have completed the proof of Theorem 1.1(ii). O

Proof of Theorem 1.2. (i) As —w—w =1 and (—w)(—w) = 1, for any k € Z

we have
—wVF — (—@)k
w ) = Z =2 ()

v(1,1) = (~w)* + (=) = (=1)*(3[3]+] - 1).

and
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If 6 | n, then (—w)™ =1 = @™ and hence by (2.1) we have
i <n> (2k) ug(1,1) 0
_k
2 \k)\ k) (=)
which is equivalent to (1.8). If n = 3 (mod 6), then (—w)* = -1 = —@"
and hence by (2.2) we have
i n\ (2k\ vx(1,1) _0
E)\ k) (=4 7
k=0

which is equivalent to (1.9).
(ii) Clearly (1414) + (1 —i) = (1 +4)(1 —¢) = 2. When n is even,

(—1)"  ifd]|n,

(1+i)" =i"(1—4)" = (=1)"*(1—i)" = {—(z — 1™ if n=2 (mod 4).

So we get the desired result in Theorem 1.2(ii) by applying Lemma 2.1.
(iii) Let a = (3++/=3)/2 and 8 = (3 — v/=3)/2. Then a+ 3 = aff = 3.
Observe that
o —af+p*=(a+B)?—-3a3=0
and hence o® = (=$)3. If 3 | n, then a® = (—3)" and hence (1.12) holds
by (2.1).

In view of the above, we have finished the proof of Theorem 1.2. O
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