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ABSTRACT. Define gn(z) = > 1_, (2)2(2;)3:’“ forn = 0,1,2,.... Those num-
bers g, = gn(1) are closely related to Apéry numbers and Franel numbers. In
this paper we establish some fundamental congruences involving gy (x). For
example, for any prime p > 5 we have

5= on(=1) 5= ge(=1)
Z I~ (mod p?) and Z Ik =0 (mod p).
=k o K

This is similar to Wolstenholme’s classical congruences
1 i
— 2 _
E L= 0 (mod p“) and kEZI == 0 (mod p)

for any prime p > 3.

1. INTRODUCTION

It is well known that

(0= () =012

and central binomial coefficients play important roles in mathematics. A fa-
mous theorem of J. Wolstenholme [W] asserts that for any prime p > 3 we

have
1/2 2p —1
AP = ("7 ) =1 (mod p?),
2\ p p—1
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H, 1=0 (mod p?) and Hfj1 =0 (mod p),

1

1
H, = Z z and H,(LQ):: Z — forne N=1{0,1,2,...};

0<k<n 0<k<n

see also [Zh] for some extensions. The reader may consult [S11a], [S11b], [ST1]
and [ST2] for recent work on congruences involving central binomial coefficients.
The Franel numbers given by

n 3
fn:Z(Z> (n=0,1,2,...)
k=0

(cf. [Sl, A000172]) were first introduced by J. Franel in 1895 who noted the
recurrence relation:

(n+1)2fnir = (Mn+1)+2)f, +8n%f 1 (n=1,2,3,...).
In 1992 C. Strehl [St92] showed that the Apéry numbers given by
n 2 2 n 2 2
n n+k n+k 2k
A, = - ~0,1,2,...
26 (%) =2 () (5 orzd

(arising from Apéry’s proof of the irrationality of ((3) = >.>7, 1/n® (cf. [vP]))
can be expressed in terms of Franel numbers, namely,

=S () 0

k=0

g = zn: (2)2 (2:) for n € N. (1.2)

k=0

Define

Such numbers are interesting due to Barrucand’s identity ([B])

n

Z(Z)fk:gn (n=0,1,2,...). (1.3)

k=0

For a combinatorial interpretation of such numbers, see D. Callan [C]. The
sequences (fn)n>0 and (gn)n>o0 are two of the five sporadic sequences (cf. D.
Zagier [Z, Section 4]) which are integral solutions of certain Apéry-like recur-
rence equations and closely related to the theory of modular forms.
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In [S12] and [S13b] the author introduced the Apéry polynomials

An(z) = i (Z)2<”Zk>2x’f (n=0,1,2,...)

k=0

and the Franel polynomials

ho =3 (1) ()= () (F ) () =02

and deduced various congruences involving such polynomials. (Note that A, (1) =
Ay, and f,(1) = f,, by [St94].) See also [S13a] for connections between primes
p = 22 + 3y? and the Franel numbers. Here we introduce the polynomials

gn(2) = zn: (Z)Q(Q:)x’“ (n=0,1,2,...).

k=0

Both f,(x) and g,(z) play important roles in some kinds of series for 1/ (cf.
Conjecture 3 and the subsequent remark in [S11]).

In this paper we study various congruences involving g, (x). As usual, for
an odd prime p and an integer a, (%) denotes the Legendre symbol, and g,(a)
stands for the Fermat quotient (a?~! —1)/p if p { a. Also, By, By, Ba, ... are
the well-known Bernoulli numbers and Ey, F1, Es, ... are the Euler numbers.

Now we state our main results.

Theorem 1.1. Let p > 3 be a prime.

(i) We have
p—1 p—1
ng(:v)(l - p2H,§2)) = p (1 — 2p2Hl§2)) 28 (mod p*). (1.4)
2k +1
k=0 k=0
Consequently,
p—1 p—1 7
do=p") g HY + EPSBp—s (mod p*), (1.5)
k=1 k=1
p—1 1 p—1
> oa(-1)= (—) +p? (ng(—l)Hf) - Ep—s) (mod p?),
k=0 p k=0 (1.6)
p—1
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(ii) We also have

(@)
3 gkk =0 (mod p), (1.8)
k=1
oy p
k=1 _ (P
= (£)24,(3) (mod p). (1.9)
k=1
p—1 3
kg, = — 1 (mod p?), (1.10)
k=1
and moreover
1 n—1 n—1 n— 1 2
3.2 > (Ak+3)gr =) ( i ) Ck (1.11)
k=0 k=0

for all;j € Z+2k: {1,2,3, ...}, where Cy denotes the Catalan number (Qkk)/(k +
1) = (k:) - (k+1)'
(iii) Provided p > 5, we have

p—1

3 g’“ggl) =0 (mod p), (1.12)
k=1
pz_: gk(k_l) =0 (mod p?), (1.13)
k=1

L (—1) 1

Z; ~ L2 =2 ( ; ) E,_3 (mod p). (1.14)

Remark 1.1. Let p > 3 be a prime. By [JV, Lemma 2.7), gi = (8)9%gp—1-
(mod p) for all k=0,...,p—1. So (1.9) implies that

-1

kg%;(g):%—;—k:( )X 2 =20 (modp)

=

—_

We conjecture further that

In [S13b] the author showed the following congruences similar to (1.12) and
(1.13):

=0 (mod p?).

=0 (mod p)
k=1 k=1



CONGRUENCES INVOLVING gn(z) = 37 () (3F)2* 5

Such congruences are interesting in view of Wolstenholme’s congruences H,_; =

0 (mod p?) and HIS )1 = 0 (mod p). Applying the Zeilberger algorithm (cf.

[PWZ, pp. 101-119]) via Mathematica 9 we find the recurrence for s, = g, (—1) (n =
0,1,2,...):

(n +3)%(4n 4 5)spy3 + (2003 + 125n% + 254n 4 165) s, 12
+ (7613 + 3991 + 678n + 375)sp41 — 25(n + 1)%(4n + 9)s,, = 0.

In contrast with (1.11), we are also able to show the congruence

X_:(Bk + )g: = p? — 2p°q,(2) + 4p*¢,(2)®  (mod p°) (1.15)

via the combinatorial identity

— e = n-1\* n n?
Z3k+1f8 -k Z( . ) (1—k+1+(k+1)2) (1.16)

k= k=0

which can be shown by the Zeilberger algorithm.

We are going to investigate in the next section connections among the poly-
nomials A, (x), fn(x) and g,(x). Section 3 is devoted to our proof of Theorem
1.1. In Section 4 we shall propose some conjectures for further research.

2. RELATIONS AMONG A, (), fn(z) AND g, ()

Obviously,
1 n—1 1 n—1
- — - _1\k — (_ n—1
nZ(2k+1) n € Z and nZ(2k+1)( DE=(-1)"tez
k=0 k=0
for all n =1,2,3,.... This is a special case of our following general result.

Theorem 2.1. Let

X, = i (Z) (n—l:k)flfk and Yy, = i (Z)xk for all m € N. (2.1)

k=0

3

3
I

(:) (n ;: k) (=1)" "y, for every n € N. (2.2)
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Also, for any n € Z* we have

%f%ﬁ—l :nf("‘l)(":k)( Dy (23)
and

#g(% +1)( nzl (” n 1) (“ Z k) k. (2.4)

Proof. If n € N, then

> ()T

) O(Z)m

S (DY)
)

xk( b ) (by the Chu-Vandermonde identity [G, (2.1)])

0 () ()

and hence (2.2) holds.
For any given integer k£ > 0, by induction on n we have

n—1

S (-1 + 1) <l ;kk) = (~1)" " (n—k) (”;kk) (2.5)

=k
foralln =k+1,k+2,.... Fix a positive integer n. In view of (2.2) and (2.5),

n—1 n—1

S @+ 1X =S @+ 1) i(”’“)( )(—l)l_kyk

o =0 =0
_ ];O (2:) Eu nzl ‘20 +1) (l ;kk)
:Z (o) cvrmer—e-n("5)
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This proves (2.3). Similarly,
n—1 n—1

SO @+ 1) (-1 X, = Z(zz +1)(=1)! i (l ;f) (%f) -

_ Z (zk)xk nzl ~D204 1) (l ;j)
_Z(%)xk - 1(n—k)<n2—2k)

n—1\/n+k
(e
P k k
and hence (2.4) is also valid.

Combining the above, we have completed the proof of Theorem 2.1. [

Lemma 2.1. For any nonnegative integers m and n we have the combinatorial

identity
S (T - es

Remark 2.1. (2.6) is due to Nanjundiah, see, e.g., (4.17) of [G, p.53].

The author [S12] proved that 1 37/~ O(Zk + 1)Ag(x) € Zlz] for all n € Z7T,
and conjectured that + Z:é (2k—|— 1)(=1)* Ay (z) € Z[x] for any n € Z*, which
was confirmed by Guo and Zeng [GZ].

Theorem 2.2. Let n be any nonnegative integer. Then

n

5 () o) = (o), fn<x>:i(z)<_1>n—kgk<x>, 2

k=0

An<x>:§(k)(”+’“)fk<> :0@)(”‘;]“)(—1)“%(@. (2:8)

Also, for any n € Z+ we have

2_: 2% + 1) Ay (z nf (” - 1) <” ’ k’) (“1)fgu(z)  (2.9)

k=0 k=0
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S e YCEREONEES o] ([ () FXERRERTS

k=0 k=0

Proof. By the binomial inversion formula (cf. (5.48) of [GKP, p.192]), the two
identities in (2.7) are equivalent. Observe that

2 (- (G
(1D o Vi [P
LG e

with the help of the Chu-Vandermonde identity. Thus (2.7) holds.

Next we show (2.8). Clearly
nDy (TR (28
)\l —k !
k=0

2 (0)CT)e-% 00 k
()% 5)( )
( )
(

3l

1=0
(n + k —f—j)

2k\ . (n n+k
k)x (n—k)( i ) (by Lemma 2.1).

This proves the first identity in (2.8). Applying Theorem 2.1 with x,, = f,(x)
and X, = A, (x) for n € N, we get the identity

ane) =3 (1) ("7 1) oot .11

k=0

Il
3 |l
o
/\@f\
e N N~

as well as (2.9) and (2.10), with the help of (2.7).
The proof of Theorem 2.2 is now complete. [

Remark 2.2. (2.7) and (2.8) in the case x = 1 are well known.
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Corollary 2.1. Let p be an odd prime. Then

p—1 e
2 ule) Epz% (mod p?) (2.12)
k=0 —o

and
@)

S A =53 (k;z; l) <2kk> h -3 <2kk> . (@S (k;’;’ l>

1=0 zio k=0 _k:O 1=k
-5 ()0 (5) -5 (ot Lo

Similarly,
I::(j(—l)lAl(m) =:§ (k;}; l) (2:) (—1)k g ()
5> (2’“) (—1)* gr(x) (;’ki ﬁ)

p

=

Il
Q

This concludes the proof of Corollary 2.1. [

Remark 2.3. In [S12] the author investigated Zi;é(il)kAk(a:) mod p? (where
p is an odd prime) and made some conjectures.

For any n € Z we set

] 1—q" Zo<k<n qk ifn >0,
n = =
a —qnzogk_nqk if n < 0;

1—¢q

this is the usual g-analogue of the integer n. Define

n n i [n—j+1]
{} =1 and {] :H# for ke Z™.
Oq kq j=1 [j]q
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Obviously, limg_,; mq = (Z)
For n € N we define

- n]?n+k]”
MW@ZE}W”ﬂJ{k}xk
k=0 ) q

and

- nl? 2k
gn(w;q) =) "W M [k} o
k=0 q

q

Clearly
lim A, (z;q9) = A, () and lim g,(z;q) = gn(x).
q—1 q—1

Those identities in Theorem 2.2 have their g-analogues. For example, the fol-
lowing theorem gives a g-analogue of (2.11).

Theorem 2.3. Let n € N. Then we have

¢ n— n— n n n+k
Anaia) = S (-1y g bienssienrz (1) [0 g g 2
k=0 q q

Proof. Let j € {0,...,n}. By the ¢-Chu-Vandermonde identity (see, e.g., Ex.
4(b) of [AAR, p.542]),

—~ e [-n—1-4] [n—4] _[-2i-1
Z 1 k—j n—kl | n-—j |’
k=3 J q q J g
This, together with

A e ey
k aLilq J q k—J q
yields that
30 N e e ey
k=j k gLilglk =il J b =714
It is easy to see that

-m—1 m+ k
— (—1)kg—km—k(k+1)/2 .
{ i L (—1)%q k),



CONGRUENCES INVOLVING gn(z) = 37 (1)*(%)2* 11

So we are led to the identity

n

M o e i o
o T e
Nl o B e VR R

multiplying both sides of (2.15) by mq [ij}qa:j we get

sl [ [ - [

k=j

Since

In view of the last identity we can easily deduce the desired (2.14). O
By applying Theorem 2.2 we obtain the following new result.

Theorem 2.4. Let n be any positive integer. Then

n—1
> (—1)F(6K + 9k + 5k + 1) A, =0 (mod n?). (2.16)
k=0

Proof. By induction on n, for each k =0,... ,n — 1 we have

:;(—1)1(613 402+ 50+ 1) (l ;Fkk) — (=) (n— k)(3n% — 3k — 2) (”;k)

Thus, in view of (2.8),

|
—Z )" L6134+ 912 + 51+ 1) Ay (2)

:(_:L)n nz_:l( 1)H(61° +91* + 51 + 1 zl: <l N k) (:) fi()

=0
n—1

I+ k
Z( ) (6l3+912+5z+1)< ‘2: )
k=0

S
Mi
/_\

e
Il
=

) L — k) (3n2 —3/4—2)(”2;’{")

k
< Z ) 3k + 2 — 3n%) fi(2).

|
Eod 3
Il |
o =
/\
\_/
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Hence we have reduced (2.16) to the congruence

“/n—1\/n+k

Z ( i ) ( I )(3k +2)f =0 (mod n?). (2.17)
k=0

The author [S13a, (1.12)] conjectured that

m—1
1
:WZ (Bk+2)(-1)*f €Z forallm=1,2,3,.
k=0

and this was confirmed by V.J.W. Guo [Gu]. Set ag = 0. Observe that
“/n—1\/n+k
2
Z( 5 )( N )(3kz+ )i
—~/n—1\[/-n—1
SO I [N
n n—1
B n—1\/-n—-1Y , n—1\/—-n—-1Y\, 5
2 (o) )2 () 0 e

k=0

(e e ((G20) () - () )
GG -0 ) == ()

forallk =1,... ,n—1, we have (2.17) by the above, and hence (2.16) holds. [

The author [S12] conjectured that for any prime p > 3 we have

p—1

S @k + 1) (-1)F A, = p (g) (mod p3), (2.18)

k=0
and this was confirmed by Guo and Zeng [GZ].

Corollary 2.2. Let p > 3 be a prime. Then

p—1

> @2k +1)%(-1)k 4,

k=0

—g (g) (mod p?). (2.19)
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Proof. Clearly

3(2k +1)° = 4(6k> + 9k* + 5k + 1) — (2k + 1).
Thus (2.19) follows from (2.16) and (2.18). O
Remark 2.4. Let p > 3 be a prime. We are also able to prove that

p—1
1
S (@ + 1)3(—1)F 4, = —2—,?;]9 () (mod p*) (2.20)
k=0
and
p—1 5
D2k +)T(=)F A = 2p (g) (mod p?). (2.21)
k=0
It seems that for each r = 0,1,2,... there is a p-adic integer ¢, only depending
on r such that
p—1
32k 4+ 1) (1) Ay = ep (g) (mod p®).
k=0

3. PrOOF OF THEOREM 1.1

Lemma 3.1. For any odd prime p, we have

p—1 p—1 p—1
%) Z(Zk + 1) Ak (x) = ng(az) —p? ng(x)H,gg) (mod p?). (3.1)
k=0 k=0 k=0

Proof. Obviously,

)

2
<1 — p_) =1 —p2H]£2) (mod p*)  (3.2)
0<j<k

;2
for every k =0,...,p — 1. Thus (3.1) follows from (2.9) with n =p. O
Lemma 3.2. Let p > 3 be a prime. Then

9p-1= (5) (1+2pg,(3) (mod p?). (3:3)

Proof. For k=0,... ,p—1, clearly

) L6 = I (2 () i

0<j<k 0<j<k

Thus, with the help of [S12b, Corollary 2.2] we obtain

Gpo1 = pil <2pk_ 1) (—1)k<2kk> = (g) (2x 371 —1) (mod p?).

k=0
and hence (3.3) holds. O
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Lemma 3.3. For any odd prime p, we have

P = (%) (mod p?). (3.4)
ke

o

Proof. Clearly (3.4) holds for p = 3. Below we assume p > 3. Observe that

R L e e (s (—3)(p-1)/2+k
D 2k +1 ; (2((p—1)/2—k)+1 i 2((p—1)/2+k:)—|—1)

k=0
k#(p—1)/2

If
N
|
>
~__
N | —
5
N
~~
[\
VR
e
=/ do
N—
x>~
|
W =
~—
=
w
|\—€
I
B
~__

(p—1)/2 E—1 p—1 k—1
_ p (=3) L/p (=3)
=2 (3) K2 (3) g (wmodp).
k=1 k=1
Since
1/p 1/p—1 (—1)k—1
",y =2l = k (mod p) fork=1,...,p—1,
we have
p—1 k—1 p—1 -1 -1
— 1 4P — 1 — 3P op—1_1 3p-1_1
Z( 3) E—Z(p)3k2—3:4(2p_1+1) _3
— k 3p £~ k 3p 3p D

8
qup@) — ¢p(3) (mod p).
Note also that

(p—1)/2 -1 (p=1)/2 -
Z (=3 = Z /1(—3x)k_1d:c = /1 L (he) dx
k — Jo 0 1+ 3z

k=1
:/01 (p—zl%/2 ((p _kl)/Q) (=1 — 32)"1da

k=1
X ((p—1)/2) (-1 32)* !
_kz::l ( k ) —3k =0
_k=1 k 3k ?;k:1 4k 3k:1 k
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since

I
—_

p

< (%) )

=0 (mod p?)

2¢,(2) (mod p) and

(22

k4

M |

>
I
_

k=1
by [ST1, (1.12) and (1.20)]. Thus, in view of the above, we get

S G2im )50+ 10) (e -ew)

k=0
R (p—1)/2
__ (P qp(3)
- (3) y (modp).

It follows that

_(—3)-1/2 _ ((_3)@—1)/2 _ (?)) = (2) (mod 7).

We are done. [

Lemma 3.4. For any prime p, we have

( )po( )<_ 1)520 (mod p*) forallk=1,...,p—1. (3.5)

r

Proof. Define

p—1
—k\ /[—k—1
uk:Z<T)( . ) for all k € N.

r=0

Applying the Zeilberger algorithm via Mathematica 9, we find the recurrence
k(k 4 1)%(2(2k + Dugy1 — kug)

—(p+k)p+k—1)(2kp+p+3k2+3k+1) (_]91__1k> (p_—k1>

1
:pQ(p;k) (pH; )(2k‘p+p+3k:2+3k‘+1).

Thus, for each Kk =1,... ,p — 2, we have

22k + Dugy1 = kug  (mod p?)
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and hence

(k+1) <2(]f_:—11))uk+1 —o(k+ 1) (2;:11) -

=ﬂmw+n(i>umlzk<i)uk@mﬂp%.

So it remains to prove (?)ul = p (mod p?). With the help of the Chu-
Vandermonde identity, we actually have

()0

“\p— 1—r r

=S () = !
r=0 r r=
()G
This concludes the proof. [
Proof of Theorem 1.1. (i) By [S12, (2.13)],

i
I}

p—1

1
- Z(2k + 1) Ag(x) = 2;1 . (1 - 2p2H,gz)> zF  (mod p*).

p k=0

>
I
=

Combining this with (3.1) we immediately get (1.4).
By [S12, (1.6)-(1.7)],

14~ 7
5 g 2k+ 1A =1+ gp?’Bp_g (mod p*)
k=0

and
151 ~1
]—92(2142 + 1) Ag(-1) = <?> —p*E,_3 (mod p?).
k=0

Combining this with (3.1) we obtain (1.5) and (1.6). In view of (1.4) and (3.4),
we get (1.7).
(ii) With the help of (2.7),

Cale) K11 B - ful@) (1
> R 3 (o) = e D)
e Sl =1 _pilfk(x) p—1
:kz::l k l:k(k_1>_kzzl k (k)

p—1 _1\k
=3 CU @)1 - phi) (mod p?)



CONGRUENCES INVOLVING gn(z) = 37 (1)*(%)2* 17

In view of [S13b, (2.7)], this implies that

p—1 - p—1 l‘k p—1 ok
I;gkli)zp Z ﬁ_pz(l)Tkak(x) (mod p2). (3.6)

k=(p+1)/2 k=1

So (1.8) follows.
By induction, for any integers m > k > 0, we have

m—1
n+k m(m —k) (m+k
2 1 = — .
nz:;(?” )< 2k> k+1 ( 2%k )
This, together with (2.8) and (3.2), yields

pi(—l)”@n +1)A, :p_l(Zn +1) Zn: (”22"5> (2:) (=1)* g

n=0 n=0 k=0
1 p—1
2k n+k
— —1)k on+1
Z(k)< Fae Yz 1)(" ")
k=0 n=~k
p—1

=9p—1<2; 12) 2p—1) +p22< )(p+k)( 1)kk5ifl
:pgp_1(2 __1> 22% 1

p—1

Jk—1
=pgp-1+p* ) = — (mod p)
k=1

since (2;”_ 1) = 1 (mod p3) by Wolstenholme’s theorem. Combining this with
(2.18) and (3.3), we obtain

o]
/N
w3
N—

Il

P 2\ Jr—1 3
p(5) (1+2pg,(3) +p > A (mod )
and hence (1.9) follows.

(1.10) follows from a combination of (1.5) and (1.11) in the case n = p. If
we let u,, denote the left-hand side or the right-hand side of (1.11), then by
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applying the Zeilberger algorithm via Mathematica 9 we get the recurrence
relation

(n 4 2)(n +3)%(2n + 3)upi3
=(n +2)(22n> + 12102 + 211n + 120)u, 42
— (n+1)(38n® + 171n? + 2291 + 102)u, 11 + In?(n + 1)(2n + 5)u,
for n =1,2,3,.... Thus (1.11) can be proved by induction.

(iii) Now we show (1.12)-(1.14) provided p > 5.
Observe that

pilgl(m)—l _p_ 1 i l
— 2 - 2 k
1

=1 =1 k=1 k=1 1=k
p—1 2k p—1-k . 2 p—1 (2% p—1-—k 2
k —1 —k
:Z(kz)xk Z < +J' ) _ (kQ)l,k ( )
k=1 j=0 j k=1 7=0 ‘7
p—1 2k p—1-k 2
—k
= @xk <p , > (mod p)
k=1 §j=0 J

TR =)

by the Chu-Vandermonde identity. Thus

! %’“)xk ((2@ _ k)) B 1) _ ) (mod p)

p—k

Recall that H;Q)l =0 (mod p). Also, for any k=1,... ,p — 1 we have

1
— 9(7) _ X

k2

N

(Note that (2:) (2(;’__:)) =0 (mod p) for k=1,... ,p—1.) Tt is known that

—1

1)k
Z ( ]:2) (2:) =0 (mod p) (3.7)

=1

hS)

=

(cf. Tauraso [T]) and moreover

(p—1)/2

—1)k 2k 56
Z (kQ) (k:) 51—5po,3 (mod p?)
k=1
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by Sun [S14]. So (1.12) is valid.
Note that

Zgz

p—1 ! 2 p—1 p—1
1 Z l 2k ok 2k ok l [—1 l
) k k k k\k—-1 k
k=1 k=1 =k
(zkk kp ~ (k+j—1)(k+j)
k=1 =0 J J

J

@N
._.H

Fori1<k<p—landp—Fk<j<p—1,clearly
E+j—1\[(k+3\ (k+j—1Nk+j) 0
J i) (k=1
Ifj=p—Fkwithl<k<p-—1, then

(0 =000 562005

=< =7 (mod p?).

(mod p?).

Recall that H,_1 =0 (mod p?). So we have

LR E00))

k=1 j=
p—1 (Qk) p—1 _k _k— p—1 (21:)
_ Nk Kk _ AkJ .k
=2 (y)( j > P2 Ga e
k=1 j=0 k=1
p—1 4 p—1 2k p—1 1— 2k
522—219—29 (k%)xkzp kg’“)wk (mod p?)
k=1 k=1 k=1

with the help of (3.5). Thus, in view of (3.7) we get

p—1 p—1 (p—1)/2 _
g(=1) _ K (=DF (CDF DY
YU e 3 (S ) =0

This proves (1.13). Combining this with (3.6) we obtain

-1

(—1)* fi(—1) 2ocpr o P&y

)/2 J=1

hs)

= (_?1) E,_5 (mod p)

with the help of [S11b, Lemma 2.4]. So (1.14) holds.
In view of the above, we have completed the proof of Theorem 1.1. [J
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4. SOME OPEN CONJECTURAL CONGRUENCES
In this section we pose several related conjectural congruences.

Conjecture 4.1. (i) For any integer n > 1, we have

n—1

> (9k* +5k)(~1)* fr =0 (mod (n — 1)n?)

k=0

Also, for each odd prime p we have

p—1
> (9K +5k)(—1)F fr, = 3p*(p — 1) — 16p°q,(2)  (mod p?).
k=0
ii) For everyn=1,2,3,..., we have
(ii) Y 02,3,
1 n—1
=) (4k + 3)gi(x) € Z[z]
" =0
and the number )
1 —
— > (8k% + 12k + 5)gi(—1)
k=0

s always an odd integer. Also, for any prime p we have

p—1
> (8k* + 12k + 5)gi(—1) = 3p*>  (mod p?).
k=0

For any nonzero integer m, the 3-adic valuation v3(m) of m is the largest
a € N with 3% | m. For convenience, we also set v3(0) = +oc.

Conjecture 4.2. Let n be any positive integer. Then

V3 ( i@k + 1)(—1)kAk) = 3v3(n) < v3 ( i(?k + 1)3(—1)kAk) :
k=0 k=0

If n is a positive multiple of 3, then

V3 (i(% + 1)3(—1)’“Ak) = 3u3(n) + 2.
k=0
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Conjecture 4.3. Forn € N define

n 3 n 2
n n
F, = Z (k) (=8)* and G, := Z (k:) (6k +1)C}.
k=0 k=0
For any n € ZT, the number

1 n—1

- > (6k+5)(—1)FFy,
k=0

is always an odd integer. Also, for any prime p > 3 we have

p—1 p—1

4
Z(—l)ka = (g) (mod p?) and ZGk = —§p3Bp_3 (mod p*).
k=0 k=1

: ~1
Remark4.1. For any prime p > 3, the author [S13b, S12] proved that > ¥ _,(—1)% fx =

(%) (mod p*) and Zi;} hr =0 (mod p?) with hy = Z?:o (’;)QC’J-.

Acknowledgment. The author would like to thank the referee for helpful
comments.
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