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TWO CONGRUENCES INVOLVING HARMONIC
NUMBERS WITH APPLICATIONS

GUO-SHUAI MAO AND ZHI-WEI SUN

Abstract. The harmonic numbers Hn =
∑

0<k6n 1/k (n = 0, 1, 2, . . .)
play important roles in mathematics. Let p > 3 be a prime. With
helps of some combinatorial identities, we establish the following
two new congruences:

p−1∑
k=1

(
2k
k

)
k

Hk ≡
1

3

(p
3

)
Bp−2

(
1

3

)
(mod p)

and
p−1∑
k=1

(
2k
k

)
k

H2k ≡
7

12

(p
3

)
Bp−2

(
1

3

)
(mod p),

where Bn(x) denotes the Bernoulli polynomial of degree n. As

an application, we determine
∑p−1

n=1 gn and
∑p−1

n=1 hn modulo p3,
where

gn =

n∑
k=0

(
n

k

)2(
2k

k

)
and hn =

n∑
k=0

(
n

k

)2

Ck

with Ck =
(
2k
k

)
/(k + 1).

1. Introduction

For n ∈ N = {0, 1, 2, . . .}, define

Hn :=
∑

0<k6n

1

k
and H(2)

n :=
∑

0<k6n

1

k2
.

Those Hn with n ∈ N are the classical harmonic numbers, and those

H
(2)
n with n ∈ N are called the second-order harmonic numbers.
Let p > 3 be a prime. By a classical result of J. Wolstenholme [W],

we have
Hp−1 ≡ 0 (mod p2) and H

(2)
p−1 ≡ 0 (mod p),
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which imply that

1

2

(
2p

p

)
=

(
2p− 1

p− 1

)
≡ 1 (mod p3).

Z.-W. Sun [S12a] established some fundamental congruences involving
harmonic numbers; for example, he showed that

∑p−1
k=1Hk/(k2k) ≡

0 (mod p) motivated by the known identity
∑∞

k=1Hk/(k2k) = π2/12.
Let p > 3 be a prime. By Sun and R. Tauraso [ST11, (1.9)], and

Sun [S12c, (2.9)], we have

p−1∑
k=0

(
2k

k

)
≡
(p

3

)
(mod p2)

and
p−1∑
k=0

(−1)k
(
p− 1

k

)(
2k

k

)
≡ 3p−1

(p
3

)
(mod p2)

respectively, where (−) denotes the Legendre symbol. Hence

p−1∑
k=0

(
2k

k

)
Hk ≡

(p
3

) 1− 3p−1

p
(mod p)

since

(−1)k
(
p− 1

k

)
=
∏

0<j6k

(
1− p

j

)
≡ 1− pHk (mod p2)

for all k = 0, 1, . . . , p− 1. In 2010 Sun and Tauraso [ST10] proved that

p−1∑
k=1

(
2k
k

)
k
≡ 8

9
p2Bp−3 (mod p3),

where B0, B1, B2, . . . are the Bernoulli numbers given by

x

ex − 1
=
∞∑
n=0

Bn
xn

n!
(0 < |x| < 2π).

In 2011 Sun [S11] showed that

(p−1)/2∑
k=1

(
2k
k

)
k
≡ −

(
−1

p

)
8

3
pEp−3 (mod p2),

where ( ·
p
) denotes the Legendre symbol and Ep−3 stands for the (p−3)-

th Euler number.
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Recall that the Bernoulli polynomials are given by

Bn(x) =
n∑

k=0

(
n

k

)
Bkx

n−k (n = 0, 1, 2, . . .).

Motivated by the above work, we mainly obtain the following result in
this paper.

Theorem 1.1. Let p > 3 be a prime. Then

p−1∑
k=1

(
2k
k

)
k
Hk ≡

1

3

(p
3

)
Bp−2

(
1

3

)
(mod p) (1.1)

and
p−1∑
k=1

(
2k
k

)
k
H2k ≡

7

12

(p
3

)
Bp−2

(
1

3

)
(mod p). (1.2)

Remark 1.1. Another motivation of Theorem 1.1 is our desire to prove
Theorem 1.2 in this section. Why (1.1) and (1.2) should involve the
value of Bp−2(x) at 1/3 ? There are no intuitive reasons, but a slight
indication comes from the following congruence in [ST11, (1.5)] for any
prime p > 3:

p−1∑
k=0

(
2k

k

)
≡
(p

3

)
+ 2p

p−1∑
k=1

(−1)k

k

(
p− k

3

)
(mod p3).

There are no closed forms for the sums in (1.1) and (1.2). Our approach
to Theorem 1.1 is somewhat unique in the sense that it depends heavily
on some special combinatorial identities.

Clearly Theorem 1.1 has the following consequence.

Corollary 1.1. For any prime p > 3 we have

p−1∑
k=1

(
2k
k

)
k

(4H2k − 7Hk) ≡ 0 (mod p). (1.3)

Recall that Hp−1 ≡ 0 (mod p2) for any prime p > 3. So our following
conjecture is much stronger than Corollary 1.1.

Conjecture 1.1. For any prime p > 3 we have

p−1∑
k=1

(
2k
k

)
k

(4H2k − 7Hk) ≡ −14
Hp−1

p
+

278

15
p3Bp−5 (mod p4).
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Note that Theorem 1.1 and Corollary 1.1 are related to the second
author’s following conjectural formulas for ζ(3) =

∑∞
n=1 1/n3 and K =∑∞

k=1(
k
3
)/k2 (cf. [S14a]):

∞∑
k=1

H2k + 2Hk

k2
(
2k
k

) =
5

3
ζ(3) and

∞∑
k=1

H2k + 17Hk

k2
(
2k
k

) =
5

2

√
3πK.

The Franel numbers fn =
∑n

k=0

(
n
k

)3
(n = 0, 1, 2, . . .) play important

roles in combinatorics and number theory. In 1975 P. Barrucand [B]
obtained the identity

∑n
k=0

(
n
k

)
fk = gn, where

gn :=
n∑

k=0

(
n

k

)2(
2k

k

)
. (1.4)

The sequences (fn)n>0 and (gn)n>0 are two of the five sporadic se-
quences (cf. D. Zagier [Z, Section 4]) which are integral solutions of
certain Apéry-like recurrence equations and closely related to the the-
ory of modular forms. In 2013, Sun [S13] revealed some unexpected
connections between those numbers fn, gn and representations of primes
p ≡ 1 (mod 3) in the form x2 +3y2 with x, y ∈ Z. For any prime p > 3,
Sun [S14b] and [S12b, (1.15)] showed that

p−1∑
n=1

gn ≡
p−1∑
n=1

hn ≡ 0 (mod p2),

where

hn :=
n∑

k=0

(
n

k

)2

Ck (1.5)

and Ck refers to the Catalan number
(
2k
k

)
/(k + 1) =

(
2k
k

)
−
(

2k
k+1

)
. The

numbers h0, h1, h2, . . . appeared naturally in the second author’s study
of Apéry polynomials (cf. [S12b]).

Applying Theorem 1.1, we deduce the following result.

Theorem 1.2. Let p > 3 be a prime. Then

1

p2

p−1∑
k=1

gk ≡
p−1∑
k=1

gkH
(2)
k ≡

5

8

(p
3

)
Bp−2

(
1

3

)
(mod p), (1.6)

and

1

p2

p−1∑
k=1

hk ≡
p−1∑
k=1

hkH
(2)
k ≡

3

4

(p
3

)
Bp−2

(
1

3

)
(mod p). (1.7)
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We are going to prove Theorems 1.1 and 1.2 in Sections 2 and 3
respectively. Our proofs make use of some sophisticated combinatorial
identities.

2. Proof of Theorem 1.1

Lemma 2.1. For any n ∈ N, we have

n∑
k=0

(
x

k

)(
y

n− k

)
=

(
x+ y

n

)
, (2.1)

n∑
k=0

(
n

k

)2

Hk =

(
2n

n

)
(2Hn −H2n), (2.2)

n∑
k=0

(−1)k
(
n

k

)(
2k

k

)
=(−1)n

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
. (2.3)

The three identities (2.1)-(2.3) are known, see, e.g., [G, (3.1), (3.125)
and (3.86)].

Proof of Theorem 1.1. By (2.2),

k∑
j=1

(
k

j

)2

Hj =

(
2k

k

)
(2Hk −H2k) for each k = 1, . . . , p− 1.

Therefore

p−1∑
k=1

(
2k
k

)
k
H2k = 2

p−1∑
k=1

(
2k
k

)
k
Hk −

p−1∑
k=1

1

k

k∑
j=1

(
k

j

)2

Hj. (2.4)

Observe that

p−1∑
k=1

1

k

k∑
j=1

(
k

j

)2

Hj =

p−1∑
j=1

Hj

j

p−1∑
k=j

(
k

j

)(
k − 1

j − 1

)
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and
p−1∑
k=j

(
k

j

)(
k − 1

j − 1

)

=

p−1−j∑
i=0

(
i+ j

i

)(
i+ j − 1

i

)
=

p−1−j∑
i=0

(
−j − 1

i

)(
−j
i

)

≡
p−1−j∑
i=0

(
p− j
i

)(
p− 1− j

i

)
=

p−1−j∑
i=0

(
p− j
i

)(
p− 1− j

p− 1− j − i

)
=

(
2p− 2j − 1

p− 1− j

)
(mod p)

with the help of the Chu-Vandermonde identity (2.1). Thus

p−1∑
k=1

1

k

k∑
j=1

(
k

j

)2

Hj ≡
p−1∑
j=1

Hj

j

(
2p− 2j − 1

p− 1− j

)

≡
p−1∑
j=1

Hj

j

(
−2j − 1

p− 1− j

)
=

p−1∑
j=1

Hj

j

(
p+ j − 1

2j

)
(−1)j

=

p−1∑
j=1

Hj

j
· p(−1)j

(2j)!(p+ j)

j∏
i=1

(p2 − i2)

≡p
p−1∑
j=1

Hj

j2
(
2j
j

) ≡ p

p−1∑
j=(p+1)/2

Hj

j2
(
2j
j

) (mod p).

By [S11, Lemma 2.1],

j

(
2j

j

)(
2(p− j)
p− j

)
≡ 2p (mod p2) for all j =

p+ 1

2
, . . . , p− 1.

(Tauraso [T] contains a similar technique.) Therefore

p−1∑
k=1

1

k

k∑
j=1

(
k

j

)2

Hj

≡1

2

p−1∑
j=(p+1)/2

Hj

j

(
2(p− j)
p− j

)
=

1

2

(p−1)/2∑
k=1

(
2k
k

)
Hp−k

p− k
(mod p).

Since

Hp−k = Hp−1 −
∑

0<j<k

1

p− j
≡ Hk−1 = Hk −

1

k
(mod p)
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for all k = 1, . . . , p− 1, from the above we obtain

p−1∑
k=1

1

k

k∑
j=1

(
k

j

)2

Hj ≡−
1

2

p−1∑
k=1

(
2k
k

)
k
Hk +

1

2

p−1∑
k=1

(
2k
k

)
k2

(mod p).

Combining this with (2.4) we get

p−1∑
k=1

(
2k
k

)
k
H2k ≡

5

2

p−1∑
k=1

(
2k
k

)
k
Hk −

1

2

p−1∑
k=1

(
2k
k

)
k2

(mod p). (2.5)

For each k = 1, . . . , p− 1, clearly(
p

k

)
=
p

k

∏
0<j<k

p− j
j
≡ (−1)k−1

p

k
(1− pHk−1) (mod p3).

Thus
p−1∑
k=1

(−1)k
(
p

k

)(
2k

k

)
≡ −p

p−1∑
k=1

(
2k
k

)
k

(1− pHk−1) (mod p3).

On the other hand, by (2.3) we have

p∑
k=0

(−1)k
(
p

k

)(
2k

k

)
=(−1)p

(p−1)/2∑
k=0

(
p

2k

)(
2k

k

)

≡− 1 + p

(p−1)/2∑
k=1

1− pH2k−1

2k

(
2k

k

)
(mod p3).

Therefore

− p
p−1∑
k=1

(
2k
k

)
k

(
1− pHk +

p

k

)
−
(

2p

p

)
+ 1

≡− 1 + p

(p−1)/2∑
k=1

1− p(H2k − 1/(2k))

2k

(
2k

k

)
(mod p3)

(2.6)

Since
(
2p
p

)
≡ 2 (mod p3) by Wolstenholme’s theorem, and

p−1∑
k=1

(
2k
k

)
k
≡ 0 (mod p2) (2.7)

by [ST10], from (2.6) we get

p−1∑
k=1

(
2k
k

)
k
Hk ≡

1

2p

(p−1)/2∑
k=1

(
2k
k

)
k
− 1

2

(p−1)/2∑
k=1

(
2k
k

)
k
H2k+

5

4

(p−1)/2∑
k=1

(
2k
k

)
k2

(mod p).

(2.8)
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(Note that
∑p−1

k=1

(
2k
k

)
/k2 ≡

∑(p−1)/2
k=1

(
2k
k

)
/k2 (mod p).).

Clearly,

pH2p−2k = p

2p−2k∑
j=1
j 6=p

1

j
+ 1 ≡ 1 (mod p)

for all k = 1, . . . , (p− 1)/2. So we have

(p−1)/2∑
k=1

1

k2
(
2k
k

) ≡ (p−1)/2∑
k=1

pH2p−2k

k2
(
2k
k

) =

p−1∑
j=(p+1)/2

pH2j

(p− j)2
(
2(p−j)
p−j

)
≡1

2

p−1∑
j=(p+1)/2

(
2j
j

)
j
H2j (mod p)

with the help of [S11, Lemma 2.1]. By [S11, (1.2) and (1.3)],

1

p

(p−1)/2∑
k=1

(
2k
k

)
k

+

(p−1)/2∑
k=1

2

k2
(
2k
k

) ≡ 0 (mod p).

Therefore
p−1∑
k=1

(
2k
k

)
k
H2k ≡

(p−1)/2∑
k=1

(
2k
k

)
k
H2k −

1

p

(p−1)/2∑
k=1

(
2k
k

)
k

(mod p).

Combining this with (2.8) we get

p−1∑
k=1

(
2k
k

)
k
Hk ≡

5

4

p−1∑
k=1

(
2k
k

)
k2
− 1

2

p−1∑
k=1

(
2k
k

)
k
H2k (mod p). (2.9)

(2.5) and (2.9) together imply that

p−1∑
k=1

(
2k
k

)
k
Hk ≡

2

3

p−1∑
k=1

(
2k
k

)
k2

(mod p) and

p−1∑
k=1

(
2k
k

)
k
H2k ≡

7

6

p−1∑
k=1

(
2k
k

)
k2

(mod p).

It is known that
p−1∑
k=1

(
2k
k

)
k2
≡ 1

2

(p
3

)
Bp−2

(
1

3

)
(mod p) (2.10)

(cf. [MT]). So we get the desired (1.1) and (1.2).

Remark 2.1. In [S11] the second author proved that

−1

p

(p−1)/2∑
k=1

(
2k
k

)
k
≡

(p−1)/2∑
k=1

2

k2
(
2k
k

) ≡ (−1

p

)
8

3
Ep−3 (mod p).
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3. Proof of Theorem 1.2

Lemma 3.1. For any nonnegative integers m and n, we have

n∑
k=0

(
x+ k

m

)
=

(
n+ x+ 1

m+ 1

)
−
(

x

m+ 1

)
. (3.1)

and

n∑
k=0

(
n

k

)2(
x+ k

2n

)
=

(
x

n

)2

. (3.2)

Remark 3.1. Both (3.1) and (3.2) can be found in [G, (1.48) and (6.30)].

Lemma 3.2. For any nonnegative integer n, we have

n∑
k=0

(
n

k

)2(
x+ k

2n+ 1

)
=

1

(4n+ 2)
(
2n
n

) n∑
k=0

(2x− 3k)

(
x

k

)2(
2k

k

)
. (3.3)

Remark 3.2. One might wonder how we find (3.3). In fact, we use the

software package Sigma to find a recurrence for un =
∑n

k=0

(
n
k

)2( x+k
2n+1

)
and then obtain (3.3) by solving the recurrence for un via Sigma.

Proof of Lemma 3.2. Let F (x) and G(x) denote the left-hand side and
the right-hand side of (3.3). With the help of (3.2), we see that

F (x+ 1)− F (x) =

(
x

n

)2

.

Applying the Zeilberger algorithm (see, e.g., [PWZ, pp. 101-119]) via
Mathematica, we find that

G(x+ 1)−G(x) =

(
x

n

)2

for all x = 0, 1, 2, . . . .

So, by induction F (x) = G(x) for all x ∈ N. As F (x) and G(x) are
polynomials in x of degree 2n+ 1, we have the desired (3.3). �
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Proof of Theorem 1.2. (i) With the help of Lemma 3.1, we have

p−1∑
n=0

gn =

p−1∑
n=0

n∑
k=0

(
n

k

)2(
2k

k

)
=

p−1∑
k=0

(
2k

k

) p−1∑
n=k

(
n

k

)2

=

p−1∑
k=0

(
2k

k

) p−1∑
n=k

k∑
j=0

(
k

j

)2(
n+ j

2k

)

=

p−1∑
k=0

(
2k

k

) k∑
j=0

(
k

j

)2 p−1∑
n=k

(
n+ j

2k

)

=

p−1∑
k=0

(
2k

k

) k∑
j=0

(
k

j

)2(
p+ j

2k + 1

)
.

Thus, by applying Lemma 3.2 we get

p−1∑
k=0

gk =

p−1∑
k=0

1

4k + 2

k∑
j=0

(2p− 3j)

(
p

j

)2(
2j

j

)

=
1

2

p−1∑
j=0

(2p− 3j)

(
p

j

)2(
2j

j

)( p−1∑
k=0

1

2k + 1
−
∑
06i<j

1

2i+ 1

)

=
1

2

p−1∑
j=0

(2p− 3j)

(
p

j

)2(
2j

j

)(
H2p−1 −

Hp−1

2
−H2j +

Hj

2

)
.

Note that pHp−1 ≡ 0 (mod p3) and

pH2p−1 =1 + p

p−1∑
j=1

(
1

p− j
+

1

p+ j

)
= 1 + p

p−1∑
j=1

2p

p2 − j2

≡1− 2p2H
(2)
p−1 ≡ 1 (mod p3).

Therefore

p−1∑
k=0

gk ≡
p−1∑
j=0

2p− 3j

2p

(
p

j

)2(
2j

j

)

+

p−1∑
j=0

2p− 3j

2

(
p

j

)2(
2j

j

)(
Hj

2
−H2j

)
(mod p3)
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and hence
p−1∑
k=1

gk ≡
p−1∑
j=1

2p− 3j

2p
· p

2

j2

(
p− 1

j − 1

)2(
2j

j

)

+

p−1∑
j=1

2p− 3j

2
· p

2

j2

(
p− 1

j − 1

)2(
2j

j

)(
Hj

2
−H2j

)

≡p2
p−1∑
j=1

(
2j
j

)
j2
− 3p

2

p−1∑
j=1

(
2j
j

)
j

(
p− 1

j − 1

)2

− 3

2
p2

p−1∑
j=1

(
2j
j

)
j

(
Hj

2
−H2j

)
(mod p3).

(Note that
(
2j
j

)
H2j is p-adic integral for all j = 1, . . . , p− 1.) Clearly,(

p− 1

j − 1

)2

≡ (1− pHj−1)
2 ≡ 1− 2pHj−1 (mod p2). (3.4)

Thus

1

p2

p−1∑
k=1

gk ≡
p−1∑
k=1

(
2k
k

)
k2
− 3

2

(
1

p

p−1∑
k=1

(
2k
k

)
k
− 2

p−1∑
k=1

(
2k
k

)
k

(
Hk −

1

k

))

− 3

2

(
1

2

p−1∑
k=1

(
2k
k

)
k
Hk −

p−1∑
k=1

(
2k
k

)
k
H2k

)

≡− 2

p−1∑
k=1

(
2k
k

)
k2

+
9

4

p−1∑
k=1

(
2k
k

)
k
Hk +

3

2

p−1∑
k=1

(
2k
k

)
k
H2k (mod p)

with the help of (2.7). Now, applying Theorem 1.1 and (2.10) we
immediately get that

1

p2

p−1∑
k=1

gk ≡
5

8

(p
3

)
Bp−2

(
1

3

)
(mod p). (3.5)

(ii) Observe that

p−1∑
n=0

(2gn − hn) =

p−1∑
n=0

n∑
k=0

(
n

k

)2(
2− 1

k + 1

)(
2k

k

)

=

p−1∑
k=0

2k + 1

k + 1

(
2k

k

) p−1∑
n=k

(
n

k

)2

.
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Similar to the proof in part (i), we have

p−1∑
n=0

(2gn − hn) =

p−1∑
k=0

(2k + 1)/(k + 1)

4k + 2

k∑
j=0

(2p− 3j)

(
p

j

)2(
2j

j

)

=
1

2

p−1∑
j=0

(2p− 3j)

(
p

j

)2(
2j

j

)(
Hp−1 +

1

p
−Hj

)
and thus

p−1∑
k=1

(2gk − hk)

≡1

2

p−1∑
j=1

(2p− 3j)
p2

j2

(
p− 1

j − 1

)2(
2j

j

)(
1

p
−Hj

)

≡p2
p−1∑
j=1

(
2j
j

)
j2
− 3p

2

p−1∑
j=1

(
2j
j

)
j

(1− 2pHj−1) (1− pHj) (by (3.4))

≡p2
p−1∑
j=1

(
2j
j

)
j2
− 3

2
p

p−1∑
j=1

(
2j
j

)
j

(
1 + p

(
2

j
− 3Hj

))

=− 2p2
p−1∑
j=1

(
2j
j

)
j2
− 3

2
p

p−1∑
j=1

(
2j
j

)
j

+
9

2
p2

p−1∑
j=1

(
2j
j

)
j
Hj (mod p3)

Combining this with (1.1), (2.7) and (2.10), we obtain that

p−1∑
k=1

(2gk − hk) ≡ p2

2

(p
3

)
Bp−2

(
1

3

)
(mod p3).

Thus,
p−1∑
k=1

hk ≡
3

4
p2
(p

3

)
Bp−2

(
1

3

)
(mod p3) (3.6)

with the help of (3.5).
(iii) By [S14b, Theorem1.1],

p−1∑
k=1

gk ≡ p2
p−1∑
k=1

gkH
(2)
k +

7

6
p3Bp−3 (mod p4). (3.7)

Therefore
p−1∑
k=1

gkH
(2)
k ≡

1

p2

p−1∑
k=1

gk (mod p)

and hence (1.6) holds in view of (3.5).
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From [S14b, Theorem1.1] we know that

p−1∑
k=0

gk(x)
(

1− p2H(2)
k

)
≡

p−1∑
k=0

p

2k + 1

(
1−2p2H

(2)
k

)
xk (mod p4), (3.8)

where gk(x) =
∑k

j=0

(
k
j

)2(2j
j

)
xj. Therefore, the left-hand side of (3.8)

minus the right-hand side of (3.8) can be written as p4P (x), where P (x)
is a polynomial of degree at most p− 1 with p-adic integer coefficients.
Since

hn =
n∑

k=0

(
n

k

)2(
2k

k

)
Ck =

∫ 1

0

gn(x)dx for n = 0, 1, 2, . . . ,

we deduce that
p−1∑
k=0

hk(1− p2H(2)
k )

=

∫ 1

0

p−1∑
k=0

gk(x)(1− p2H(2)
k )dx

=

p−1∑
k=0

p

2k + 1
(1− 2p2H

(2)
k )

∫ 1

0

xkdx+ p4
∫ 1

0

P (x)dx

≡
p−1∑
k=0

2p

2k + 1
(1− 2p2H

(2)
k )−

p−1∑
k=0

p

k + 1
(1− 2p2H

(2)
k ) (mod p3).

Combining (3.7) and (3.8) we see that

1 +
7

6
p3Bp−3 ≡

p−1∑
k=0

gk

(
1− p2H(2)

k

)
≡

p−1∑
k=0

p

2k + 1

(
1− 2p2H

(2)
k

)
(mod p4).

Therefore
p−1∑
k=0

hk(1− p2H(2)
k ) ≡2 +

7

3
p3Bp−3 −

p−1∑
k=0

p

k + 1
+ 2p3

p−1∑
k=0

H
(2)
k

k + 1

≡2− 1− pHp−1 + 2p2H
(2)
p−1 ≡ 1 (mod p3)

which implies that
p−1∑
k=1

hk(1− p2H(2)
k ) ≡ 0 (mod p3).
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Combining this (3.6) we obtain the desired (1.7).
So far we have completed the proof of Theorem 1.2. �

Acknowledgment. The authors would like to thank the referee for
helpful comments.
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