J. Number Theory 171(2017), 275-283.

ON $x(a x+1)+y(b y+1)+z(c z+1)$ AND $x(a x+b)+y(a y+c)+z(a z+d)$

Zhi-Wei Sun

Department of Mathematics, Nanjing University
Nanjing 210093, People's Republic of China
zwsun@nju.edu.cn
http://math.nju.edu.cn/~zwsun

Abstract. In this paper we first investigate for what positive integers a, b, c every nonnegative integer n can be written as $x(a x+1)+y(b y+1)+z(c z+1)$ with x, y, z integers. We show that (a, b, c) can be either of the following seven triples

$$
(1,2,3),(1,2,4),(1,2,5),(2,2,4),(2,2,5),(2,3,3),(2,3,4),
$$

and conjecture that any triple (a, b, c) among

$$
(2,2,6),(2,3,5),(2,3,7),(2,3,8), \quad(2,3,9),(2,3,10)
$$

also has the desired property. For integers $0 \leqslant b \leqslant c \leqslant d \leqslant a$ with $a>2$, we prove that any nonnegative integer can be written as $x(a x+b)+y(a y+c)+z(a z+d)$ with x, y, z integers, if and only if the quadruple (a, b, c, d) is among

$$
(3,0,1,2),(3,1,1,2),(3,1,2,2),(3,1,2,3),(4,1,2,3)
$$

1. Introduction

Let $\mathbb{N}=\{0,1,2, \ldots\}$. Throughout this paper, for $f(x, y, z) \in \mathbb{Z}[x, y, z]$ we set

$$
E(f(x, y, z))=\{n \in \mathbb{N}: n \neq f(x, y, z) \text { for any } x, y, z \in \mathbb{Z}\}
$$

If $E(f(x, y, z))=\emptyset$, then we call $f(x, y, z)$ universal over \mathbb{Z}. The classical GaussLegendre theorem (cf. [N96, pp. 3-35]) states that

$$
E\left(x^{2}+y^{2}+z^{2}\right)=\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\} .
$$

Recall that those $T_{x}=x(x+1) / 2$ with $x \in \mathbb{Z}$ are called triangular numbers. As $T_{-x-1}=T_{x}, T_{2 x}=x(2 x+1)$ and $T_{2 x-1}=x(2 x-1)$, we see that

$$
\begin{equation*}
\left\{T_{x}: x \in \mathbb{Z}\right\}=\left\{T_{x}: x \in \mathbb{N}\right\}=\{x(2 x+1): x \in \mathbb{Z}\} . \tag{1.1}
\end{equation*}
$$

By the Gauss-Legendre theorem, any $n \in \mathbb{N}$ can be written as the sum of three triangular numbers (equivalently, $8 n+3$ is the sum of three odd squares). In view of (1.1), this says that

$$
\begin{equation*}
\{x(2 x+1)+y(2 y+1)+z(2 z+1): x, y, z \in \mathbb{Z}\}=\mathbb{N} . \tag{1.2}
\end{equation*}
$$

Motivated by this, we are interested in finding all those $a, b, c \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$ satisfying

$$
\begin{equation*}
\{x(a x+1)+y(b y+1)+z(c z+1): x, y, z \in \mathbb{Z}\}=\mathbb{N} \tag{1.3}
\end{equation*}
$$

In the following theorem we determine all possible candidates $a, b, c \in \mathbb{Z}^{+}$with (1.3) valid.

Theorem 1.1. Let $a, b, c \in \mathbb{Z}^{+}$with $a \leqslant b \leqslant c$. If $x(a x+1)+y(b y+1)+z(c z+1)$ is universal over \mathbb{Z}, then (a, b, c) is among the following 17 triples:

$$
\begin{align*}
& (1,1,2),(1,2,2),(1,2,3),(1,2,4),(1,2,5) \\
& (2,2,2),(2,2,3),(2,2,4),(2,2,5),(2,2,6) \tag{1.4}\\
& (2,3,3),(2,3,4),(2,3,5),(2,3,7),(2,3,8),(2,3,9),(2,3,10)
\end{align*}
$$

Remark 1.1. As proved by Liouville (cf. [D99, p. 23]),

$$
\left\{2 T_{x}+2 T_{y}+T_{z}: x, y, z \in \mathbb{N}\right\}=\left\{2 T_{x}+T_{y}+T_{z}: x, y, z \in \mathbb{N}\right\}=\mathbb{N}
$$

By [S15, Theorem 1.14], $T_{x}+T_{y}+2 p_{5}(z)$ with $p_{5}(z)=z(3 z-1) / 2$ is also universal over \mathbb{Z}. These, together with (1.1) and (1.2), indicate that (1.3) holds for $(a, b, c)=$ $(1,1,2),(1,2,2),(2,2,2),(2,2,3)$.

In Section 2 we will prove Theorem 1.1 as well as the following related result.
Theorem 1.2. (1.3) holds if (a, b, c) is among the following 7 triples:

$$
(1,2,3),(1,2,4),(1,2,5),(2,2,4),(2,2,5),(2,3,3),(2,3,4)
$$

In view of Theorems 1.1-1.2 and Remark 1.1, we have reduced the converse of Theorem 1.1 to our following conjecture.
Conjecture 1.1. (1.3) holds if (a, b, c) is among the following six triples:

$$
(2,2,6),(2,3,5),(2,3,7),(2,3,8),(2,3,9),(2,3,10)
$$

Remark 1.2. It is easy to show that (1.3) holds for $(a, b, c)=(2,3,7)$ if and only if for any $n \in \mathbb{N}$ we can write $168 n+41$ as $21 x^{2}+14 y^{2}+6 z^{2}$ with $x, y, z \in \mathbb{Z}$.

Inspired by (1.2), we want to know for what $a, b, c, d \in \mathbb{N}$ with $b \leqslant c \leqslant d \leqslant a$ we have

$$
\begin{equation*}
\{x(a x+b)+y(a y+c)+z(a z+d): x, y, z \in \mathbb{Z}\}=\mathbb{N} \tag{1.5}
\end{equation*}
$$

We achieve this in the following theorem which will be proved in Section 3.

$$
\begin{equation*}
\text { ON } x(a x+1)+y(b y+1)+z(c z+1) \text { AND } x(a x+b)+y(a y+c)+z(a z+d) \tag{3}
\end{equation*}
$$

Theorem 1.3. Let $a>2$ be an integer and let $b, c, d \in \mathbb{N}$ with $b \leqslant c \leqslant d \leqslant a$. Then (1.5) holds if and only if (a, b, c, d) is among the following five quadruples:

$$
\begin{equation*}
(3,0,1,2),(3,1,1,2),(3,1,2,2),(3,1,2,3),(4,1,2,3) \tag{1.6}
\end{equation*}
$$

Remark 1.3. For $a \in\{1,2\}$ and $b, c, d \in \mathbb{N}$ with $b \leqslant c \leqslant d \leqslant a$, we can easily show that if (1.5) holds then (a, b, c, d) is among the following five quadruples:

$$
(1,0,0,1),(1,0,1,1),(2,0,0,1),(2,0,1,1),(2,1,1,1) .
$$

The converse also holds since

$$
x^{2}+y^{2}+2 T_{z}, x^{2}+2 T_{y}+2 T_{z}, 2 x^{2}+2 y^{2}+T_{z}, 2 x^{2}+T_{y}+T_{z}, T_{x}+T_{y}+T_{z}
$$

are all universal over \mathbb{Z} (cf. [S07]).
We also note some other universal sums. For example, we have
$\left\{x^{2}+y(3 y+1)+z(3 z+2): x, y, z \in \mathbb{Z}\right\}=\left\{x^{2}+y(4 y+1)+z(4 z+3): x, y, z \in \mathbb{Z}\right\}=\mathbb{N}$
which can be easily proved.
Based on our computation, we formulate the following conjecture for further research.

Conjecture 1.2. (i) Any positive integer $n \neq 225$ can be written as $p(p-1) / 2+$ $q(q-1) / 2+r(r-1) / 2$ with p prime and $q, r \in \mathbb{Z}^{+}$.
(ii) Each $n \in \mathbb{N}$ can be written as $x^{2}+y(3 y+1) / 2+z(2 z-1)$ with $x, y, z \in \mathbb{N}$. Also, any $n \in \mathbb{N}$ can be written as $x^{2}+y(3 y+1) / 2+z(5 z+3) / 2$ with $x, y, z \in \mathbb{N}$.
(iii) Every $n \in \mathbb{Z}^{+}$can be written as $x^{3}+y^{2}+T_{z}$ with $x, y \in \mathbb{N}$ and $z \in \mathbb{Z}^{+}$. We also have $\left\{x^{2}+y(y+1)+z\left(z^{2}+1\right): x, y, z \in \mathbb{N}\right\}=\mathbb{N}$.
(iv) Any $n \in \mathbb{N}$ can be written as $x^{4}+y(3 y+1) / 2+z(7 z+1) / 2$ with $x, y, z \in \mathbb{Z}$.

2. Proofs of Theorems 1.1-1.2

Proof of Theorem 1.1. For $x \in \mathbb{Z} \backslash\{0\}$, clearly $a x^{2}+x \geqslant|x|(a|x|-1) \geqslant a-1$. As $1=x(a x+1)+y(b y+1)+z(c z+1)$ for some $x, y, z \in \mathbb{Z}$, we must have $a \leqslant 2$.

Case 1. $a=b=1$.
As $1 \notin\{x(x+1)+y(y+1): x, y \in \mathbb{Z}\}$, we must have $1 \in\{z(c z+1): z \in \mathbb{Z}\}$ and hence $c=2$. (Note that if $c>2$ then $c z^{2}+z \geqslant c-1>1$ for all $z \in \mathbb{Z} \backslash\{0\}$.)

Case 2. $a=1<b$.
If $b>2$, then $y(b y+1) \geqslant b-1>1$ and $z(c z+1) \geqslant c-1>1$ for all $y, z \in \mathbb{Z} \backslash\{0\}$. As $1=x(x+1)+y(b y+1)+z(c z+1)$ for some $x, y, z \in \mathbb{Z}$, we must have $b=2$. It is easy to see that $4 \notin\{x(x+1)+y(2 y+1): x, y \in \mathbb{Z}\}$. If $c>5$, then $z(c z+1) \geqslant c-1>4$ for all $z \in \mathbb{Z} \backslash\{0\}$. As $4=x(x+1)+y(2 y+1)+z(c z+1)$ for some $x, y, z \in \mathbb{Z}$, we must have $c \in\{2,3,4,5\}$.

Case 3. $a=b=2$.
In view of (1.1),

$$
5 \notin\left\{T_{x}+T_{y}: x, y \in \mathbb{N}\right\}=\{x(2 x+1)+y(2 y+1): x, y \in \mathbb{Z}\} .
$$

If $c>6$, then $z(c z+1) \geqslant c-1>5$ for all $z \in \mathbb{Z} \backslash\{0\}$. As $5=x(2 x+1)+y(2 y+$ 1) $+z(c z+1)$ for some $x, y, z \in \mathbb{Z}$, we must have $c \in\{2,3,4,5,6\}$.

Case 4. $a=2<b$.
Clearly, $2 \notin\{x(2 x+1): x \in \mathbb{Z}\}$. If $b>3$, then $y(b y+1) \geqslant b-1>2$ and $z(c z+1) \geqslant c-1>2$ for all $y, z \in \mathbb{Z} \backslash\{0\}$. As $2=x(2 x+1)+y(b y+1)+z(c z+1)$ for some $x, y, z \in \mathbb{Z}$, we must have $b=3$. Note that $x(2 x+1)+y(3 y+1) \neq 9$ for all $x, y \in \mathbb{Z}$. If $c>10$, then $z(c z+1) \geqslant c-1>9$ for all $z \in \mathbb{Z} \backslash\{0\}$. Since $9=x(2 x+1)+y(3 y+1)+z(c z+1)$ for some $x, y, z \in \mathbb{Z}$, we must have $c \leqslant 10$. Note that $48 \neq x(2 x+1)+y(3 y+1)+z(6 z+1)$ for all $x, y, z \in \mathbb{Z}$. So $c \in\{3,4,5,7,8,9,10\}$.

In view of the above, we have completed the proof of Theorem 1.1.
Lemma 2.1. Let u and v be integers with $u^{2}+v^{2}$ a positive multiple of 5. Then $u^{2}+v^{2}=x^{2}+y^{2}$ for some $x, y \in \mathbb{Z}$ with $5 \nmid x y$.

Proof. Let a be the 5 -adic order of $\operatorname{gcd}(u, v)$, and write $u=5^{a} u_{0}$ and $v=5^{a} v_{0}$ with $u_{0}, v_{0} \in \mathbb{Z}$ not all divisible by 5 . Choose $\delta, \varepsilon \in\{ \pm 1\}$ such that $u_{0}^{\prime} \not \equiv 2 v_{0}^{\prime}(\bmod 5)$, where $u_{0}^{\prime}=\delta u_{0}$ and $v_{0}^{\prime}=\varepsilon v_{0}$. Clearly, $5^{2}\left(u_{0}^{2}+v_{0}^{2}\right)=u_{1}^{2}+v_{1}^{2}$, where $u_{1}=3 u_{0}^{\prime}+4 v_{0}^{\prime}$ and $v_{1}=4 u_{0}^{\prime}-3 v_{0}^{\prime}$. Note that u_{1} and v_{1} are not all divisible by 5 since $u_{1} \not \equiv v_{1}$ $(\bmod 5)$. Continue this process, we finally write $u^{2}+v^{2}=5^{2 a}\left(u_{0}^{2}+v_{0}^{2}\right)$ in the form $x^{2}+y^{2}$ with $x, y \in \mathbb{Z}$ not all divisible by 5 . As $x^{2}+y^{2}=u^{2}+v^{2} \equiv 0(\bmod 5)$, we must have $5 \nmid x y$. This concludes the proof.

With the help of Lemma 2.1, we are able to deduce the following result.
Lemma 2.2. For any $n \in \mathbb{N}$ and $r \in\{6,14\}$, we can write $20 n+r$ as $5 x^{2}+5 y^{2}+z^{2}$ with $x, y, z \in \mathbb{Z}$ and $2 \nmid z$.

Proof. As $20 n+r \equiv r \equiv 2(\bmod 4)$, by the Gauss-Legendre theorem we can write $20 n+r$ as $(2 w)^{2}+u^{2}+v^{2}$ with $u, v, w \in \mathbb{Z}$ and $2 \nmid u v$. If $(2 w)^{2} \equiv-r(\bmod 5)$, then $u^{2}+v^{2} \equiv 2 r(\bmod 5)$ and hence $u^{2} \equiv v^{2} \equiv r(\bmod 5)$. If $(2 w)^{2} \equiv r(\bmod 5)$, then $u^{2}+v^{2} \equiv 2(\bmod 4)$ is a positive multiple of 5 and hence by Lemma 2.1 we can write it as $s^{2}+t^{2}$, where s and t are odd integers with $s^{2} \equiv-r(\bmod 5)$ and $t^{2} \equiv r(\bmod 5)$. If $5 \mid w$, then one of u^{2} and v^{2} is divisible by 5 and the other is congruent to r modulo 5 .

By the above, we can always write $20 n+r=x^{2}+y^{2}+z^{2}$ with $x, y, z \in \mathbb{Z}$, $2 \nmid z$ and $z^{2} \equiv r(\bmod 5)$. Note that $x^{2} \equiv-y^{2}=(\pm 2 y)^{2}(\bmod 5)$. Without loss of generality, we assume that $x \equiv 2 y(\bmod 5)$ and hence $2 x \equiv-y(\bmod 5)$. Set $\bar{x}=(x-2 y) / 5$ and $\bar{y}=(2 x+y) / 5$. Then

$$
20 n+r=x^{2}+y^{2}+z^{2}=5 \bar{x}^{2}+5 \bar{y}^{2}+z^{2} .
$$

$$
\begin{equation*}
\text { ON } x(a x+1)+y(b y+1)+z(c z+1) \text { AND } x(a x+b)+y(a y+c)+z(a z+d) \tag{5}
\end{equation*}
$$

This concludes the proof.
Remark 2.1. Let $n \in \mathbb{N}$ and $r \in\{6,14\}$. In contrast with Lemma 2.2, we conjecture that $20 n+r$ can be written as $5 x^{2}+5 y^{2}+(2 z)^{2}$ with $x, y, z \in \mathbb{Z}$ unless $r=6$ and $n \in\{0,11\}$, or $r=14$ and $n \in\{1,10\}$.
Lemma 2.3. (i) For any positive integer $w=x^{2}+2 y^{2}$ with $x, y \in \mathbb{Z}$, we can write w in the form $u^{2}+2 v^{2}$ with $u, v \in \mathbb{Z}$ such that u or v is not divisible by 3 .
(ii) $w \in \mathbb{N}$ can be written as $3 x^{2}+6 y^{2}$ with $x, y \in \mathbb{Z}$, if and only if $3 \mid w$ and $w=u^{2}+2 v^{2}$ for some $u, v \in \mathbb{Z}$.
(iii) Let $n \in \mathbb{N}$ with $6 n+1$ not a square. Then, for any $\delta \in\{0,1\}$ we can write $6 n+1$ as $x^{2}+3 y^{2}+6 z^{2}$ with $x, y, z \in \mathbb{Z}$ and $x \equiv \delta(\bmod 2)$.
Remark 2.2. Part (i) first appeared in the middle of a proof given on page 173 of [JP] (see also [S15, Lemma 2.1] for other similar results). Parts (ii) and (iii) are Lemmas 3.1 and 3.3 of the author [S15].

Proof of Theorem 1.2. Let us fix a nonnegative integer n.
(i) As $24 n+11 \equiv 3(\bmod 8)$, by the Gauss-Legendre theorem there are odd integers u, v, w such that $24 n+11=u^{2}+v^{2}+w^{2}=w^{2}+2 \bar{u}^{2}+2 \bar{v}^{2}$, where $\bar{u}=(u+v) / 2$ and $\bar{v}=(u-v) / 2$. As $2\left(\bar{u}^{2}+\bar{v}^{2}\right) \equiv 11-w^{2} \equiv 10 \equiv 2(\bmod 8)$, we have $\bar{u} \not \equiv \bar{v}(\bmod 2)$. Without loss of generality, we assume that $2 \mid \bar{u}$ and $2 \nmid \bar{v}$. If $3 \nmid \bar{v}$, then $\operatorname{gcd}(6, \bar{v})=1$. When $3 \mid \bar{v}$, we have $3 \nmid \bar{u}\left(\right.$ since $w^{2} \not \equiv 11$ $(\bmod 3))$, and $w^{2}+2 \bar{v}^{2}$ is a positive multiple of 3 , thus by Lemma 2.3(i) there are $s, t \in \mathbb{Z}$ with $3 \nmid s t$ such that $s^{2}+2 t^{2}=w^{2}+2 \bar{v}^{2} \equiv 3(\bmod 8)$ and hence $2 \nmid s t$. Anyway, $24 n+11$ can be written as $r^{2}+2 s^{2}+2 t^{2}$ with $r, s, t \in \mathbb{Z}$ and $\operatorname{gcd}(6, t)=1$. Since $r^{2}+2 s^{2} \equiv 11-2 t^{2} \equiv 0(\bmod 3)$, by Lemma 2.3(ii) we may write $r^{2}+2 s^{2}=3 r_{0}^{2}+6 s_{0}^{2}$ with $r_{0}, s_{0} \in \mathbb{Z}$. Since $3 r_{0}^{2}+6 s_{0}^{2}=r^{2}+2 s^{2} \equiv 11-2 t^{2} \equiv 9$ $(\bmod 8)$, we have $r_{0}^{2}+2 s_{0}^{2} \equiv 3(\bmod 8)$ and hence $2 \nmid r_{0} s_{0}$. Write $s_{0}=2 x+1, r_{0}$ or $-r_{0}$ as $4 y+1$, and t or $-t$ as $6 z+1$, where $x, y, z \in \mathbb{Z}$. Then

$$
24 n+11=6(2 x+1)^{2}+3(4 y+1)^{2}+2(6 z+1)^{2}
$$

and hence $n=x(x+1)+y(2 y+1)+z(3 z+1)$. This proves (1.3) for $(a, b, c)=$ $(1,2,3)$.
(ii) By the Gauss-Legendre theorem, there are $s, t, v \in \mathbb{Z}$ such that $32 n+14=$ $(2 s+1)^{2}+(2 t+1)^{2}+(2 v)^{2}$ and hence $16 n+7=(s+t+1)^{2}+(s-t)^{2}+2 v^{2}$. As one of $s+t+1$ and $s-t$ is even, we have $16 n+7=(2 u)^{2}+w^{2}+2 v^{2}$ for some $u, w \in \mathbb{Z}$. Clearly $2 \nmid w, 2 v^{2} \equiv 7-w^{2} \equiv 2(\bmod 4)$, and $4 u^{2} \equiv 7-2 v^{2}-w^{2} \equiv 4$ $(\bmod 8)$. So, u, v, w are all odd. Note that $w^{2} \equiv 7-4 u^{2}-2 v^{2} \equiv 7-4-2=1$ $(\bmod 16)$ and hence $w \equiv \pm 1(\bmod 8)$. Now we can write u as $2 x+1, v$ or $-v$ as $4 y+1, w$ or $-w$ as $8 z+1$, where x, y, z are integers. Thus

$$
16 n+7=4(2 x+1)^{2}+2(4 y+1)^{2}+(8 z+1)^{2}
$$

and hence $n=x(x+1)+y(2 y+1)+z(4 z+1)$. This proves (1.3) for $(a, b, c)=$ $(1,2,4)$.
(iii) By Dickson [D39, pp. 112-113] (or [JKS]),

$$
E\left(10 x^{2}+5 y^{2}+2 z^{2}\right)=\{8 q+3: q \in \mathbb{N}\} \cup \bigcup_{k, l \in \mathbb{N}}\left\{25^{k}(5 l+1), 25^{k}(5 l+4)\right\}
$$

So, there are $u, v, w \in \mathbb{Z}$ such that $40 n+17=10 u^{2}+5 v^{2}+2 w^{2}$. Clearly, $2 \nmid v$, $2 u^{2}+2 w^{2} \equiv 17-5 v^{2} \equiv 4(\bmod 8)$ and hence $2 \nmid u w$. Note that $2 w^{2} \equiv 17 \equiv 2$ $(\bmod 5)$ and hence $w \equiv \pm 1(\bmod 5)$. Thus, we can write $u=2 x+1, v$ or $-v$ as $4 y+1$, and w or $-w$ as $10 z+1$, where x, y, z are integers. Now we have

$$
40 n+17=10(2 x+1)^{2}+5(4 y+1)^{2}+2(10 z+1)^{2}
$$

and hence $n=x(x+1)+y(2 y+1)+z(5 z+1)$. This proves (1.3) for $(a, b, c)=$ $(1,2,5)$.
(iv) By the Gauss-Legendre theorem, there are $u, v, w \in \mathbb{Z}$ with $2 \nmid w$ such that

$$
16 n+5=(2 u)^{2}+(2 v)^{2}+w^{2}=2(u+v)^{2}+2(u-v)^{2}+w^{2} .
$$

As $w^{2} \equiv 1 \not \equiv 5(\bmod 8)$, both $u+v$ and $u-v$ are odd. Since $w^{2} \equiv 5-2-2=1$ $(\bmod 16)$, we have $w \equiv \pm 1(\bmod 8)$. Now we can write $u+v$ or $-u-v$ as $4 x+1$, $u-v$ or $v-u$ as $4 y+1$, and w or $-w$ as $8 z+1$, where $x, y, z \in \mathbb{Z}$. Thus

$$
16 n+5=2(4 x+1)^{2}+2(4 y+1)^{2}+(8 z+1)^{2}
$$

and hence $n=x(2 x+1)+y(2 y+1)+z(4 z+1)$. This proves (1.3) for $(a, b, c)=$ $(2,2,4)$.
(v) By Lemma 2.2, there are $u, v, w \in \mathbb{Z}$ with $2 \nmid w$ such that $20 n+6=$ $5 u^{2}+5 v^{2}+w^{2}$. Clearly, $u \not \equiv v(\bmod 2), w^{2} \equiv 1(\bmod 5)$ and hence $w \equiv \pm 1$ $(\bmod 5)$. Thus w or $-w$ has the form $10 z+1$ with $z \in \mathbb{Z}$. Observe that

$$
40 n+12=10 u^{2}+10 v^{2}+2 w^{2}=5(u+v)^{2}+5(u-v)^{2}+2(10 z+1)^{2} .
$$

As $u+v$ and $u-v$ are both odd, we may write $u+v$ or $-u-v$ as $4 x+1$, and $u-v$ or $v-u$ as $4 y+1$, where x and y are integers. Then

$$
40 n+12=5(4 x+1)^{2}+5(4 y+1)^{2}+2(10 z+1)^{2}
$$

and hence $n=x(2 x+1)+y(2 y+1)+z(5 z+1)$. This proves (1.3) for $(a, b, c)=$ $(2,2,5)$.
(vi) By Dickson [D39, pp. 112-113],

$$
E\left(x^{2}+y^{2}+3 z^{2}\right)=\left\{9^{k}(9 l+6): k, l \in \mathbb{N}\right\}
$$

So there are $u, v, w \in \mathbb{Z}$ such that $24 n+7=u^{2}+v^{2}+3 w^{2}$. As $u^{2}+v^{2} \not \equiv 7$ $(\bmod 4)$, we have $2 \nmid w$ and hence $s=(u+v) / 2 \in \mathbb{Z}$ and $t=(u-v) / 2 \in \mathbb{Z}$.

$$
\begin{equation*}
\text { ON } x(a x+1)+y(b y+1)+z(c z+1) \text { AND } x(a x+b)+y(a y+c)+z(a z+d) \tag{7}
\end{equation*}
$$

Now $24 n+7=2 s^{2}+2 t^{2}+3 w^{2}$. As $2\left(s^{2}+t^{2}\right) \equiv 7-3 w^{2} \equiv 4(\bmod 8)$, we have $s^{2}+t^{2} \equiv 2(\bmod 4)$ and hence $2 \nmid s t$. Note that $s^{2}+t^{2} \equiv(7-3) / 2=2(\bmod 3)$ and hence $3 \nmid s t$. Now we can write w or $-w$ as $4 x+1, s$ or $-s$ as $6 y+1, t$ or $-t$ as $6 z+1$, where x, y, z are integers. Then

$$
24 n+7=3(4 x+1)^{2}+2(6 y+1)^{2}+2(6 z+1)^{2}
$$

and hence $n=x(2 x+1)+y(3 y+1)+z(3 z+1)$. This proves (1.3) for $(a, b, c)=$ $(2,3,3)$.
(vii) Note that $48 n+13 \equiv 1(\bmod 6)$ but $48 n+13 \not \equiv 1(\bmod 8)$. By Lemma 2.3 (iii), there are $u, v, w \in \mathbb{Z}$ such that $48 n+13=6 u^{2}+(2 v)^{2}+3 w^{2}$. Clearly, $2 \nmid w$ and $3 \nmid v$. As $6 u^{2} \equiv 13-3 \equiv 6(\bmod 4)$, we must have $2 \nmid u$. Since $4 v^{2} \equiv 13-6 u^{2}-3 w^{2} \equiv 4(\bmod 8)$, we have $2 \nmid v$. Observe that

$$
3 w^{2} \equiv 13-6 u^{2}-4 v^{2} \equiv 13-6-4=3 \quad(\bmod 16)
$$

and hence $w \equiv \pm 1(\bmod 8)$. Now we can write u or $-u$ as $4 x+1, v$ or $-v$ as $6 y+1$, and w or $-w$ as $8 z+1$, where $x, y, z \in \mathbb{Z}$. Thus

$$
48 n+13=6(4 x+1)^{2}+4(6 y+1)^{2}+3(8 z+1)^{2}
$$

and hence $n=x(2 x+1)+y(3 y+1)+z(4 z+1)$. This proves (1.3) for $(a, b, c)=$ $(2,3,4)$.

So far we have completed the proof of Theorem 1.2.

3. Proof of Theorems 1.3

Lemma 3.1. For any positive integer n, we can write $6 n+1$ as $x^{2}+y^{2}+2 z^{2}$ with $x, y, z \in \mathbb{Z}$ and $3 \nmid x y z$.
Remark 3.1. This is [S16, Lemma 4.3(ii)] proved by the author with the help of a result in [CL]. Combining it with Lemma 2.3(ii), for any $n \in \mathbb{Z}^{+}$and $\delta \in\{0,1\}$ we can write $6 n+1$ as $x^{2}+3 y^{2}+6 z^{2}$ with $x, y, z \in \mathbb{Z}$ and $x \equiv \delta(\bmod 2)$, which extends Lemma 2.3(iii) and confirms a conjecture in [S15, Remark 3.4].

Proof of Theorem 1.3. (i) If $|x| \geqslant 2$, then

$$
x(a x+b) \geqslant|x|(a|x|-b) \geqslant 2(2 a-b) \geqslant 2 a
$$

and similarly $x(a x+c) \geqslant 2 a$ and $x(a x+d) \geqslant 2 a$. So, if (1.5) holds then we must have

$$
\{0,1, \ldots, 2 a-1\} \subseteq\{x(a x+b)+y(a y+c)+z(a z+d): x, y, z \in\{0, \pm 1\}\}
$$

and hence

$$
2 a \leqslant|\{x(a x+b)+y(a y+c)+z(a z+d): x, y, z \in\{0, \pm 1\}\}| \leqslant 3^{3}=27
$$

Note that $a \in\{3,4, \ldots, 13\}$ and $0 \leqslant b \leqslant c \leqslant d \leqslant a$. Via a computer we find that if (a, b, c, d) is not among the five quadruples in (1.6) then one of $1,2, \ldots, 17$ cannot be written as $x(a x+b)+y(a y+c)+z(a z+d)$ with $x, y, z \in \mathbb{Z}$. For example, $x(4 x+2)+y(4 y+2)+z(4 z+3) \neq 17$ for any $x, y, z \in \mathbb{Z}$. This proves the "only if" part of Theorem 1.3.
(ii) Now we turn to prove the "if" part of Theorem 1.3. Let us fix a nonnegative integer n.
(a) By [S15, Theorem 1.7(iv)], there are $u, v, x \in \mathbb{Z}$ such that $12 n+5=$ $u^{2}+v^{2}+36 x^{2}$. Clearly $u \not \equiv v(\bmod 2)$ and $3 \nmid u v$. Without loss of generality, we assume that $u \equiv \pm 1(\bmod 6)$ and $v \equiv \pm 2(\bmod 6)$. We may write u or $-u$ as $6 y+1$, and v or $-v$ as $6 z+2$, where y and z are integers. Thus

$$
12 n+5=36 x^{2}+(6 y+1)^{2}+(6 z+2)^{2}
$$

and hence $n=3 x^{2}+y(3 y+1)+z(3 z+2)$. This proves (1.5) for $(a, b, c, d)=$ (3, 0, 1, 2).
(b) Let $\delta \in\{0,1\}$. By the Gauss-Legendre theorem, $12 n+6+3 \delta$ can be written as the sum of three squares. In view of [S16, Lemma 2.2], there are $u, v, w \in \mathbb{Z}$ with $3 \nmid u v w$ such that $12 n+6+3 \delta=u^{2}+v^{2}+w^{2}$. Clearly, u, v, w are neither all odd nor all even. Without loss of generality, we assume that $2 \nmid u$ and $2 \mid w$. Then $v \not \equiv \delta(\bmod 2)$. Obviously, $u \equiv \pm 1(\bmod 6), v \equiv \pm(1+\delta)(\bmod 6)$ and $w \equiv \pm 2(\bmod 6)$. Thus we may write u or $-u$ as $6 x+1, v$ or $-v$ as $6 y+1+\delta$, and w or $-w$ as $6 z+2$, where $x, y, z \in \mathbb{Z}$. Therefore,

$$
12 n+6+3 \delta=(6 x+1)^{2}+(6 y+1+\delta)^{2}+(6 z+2)^{2}
$$

and hence $n=x(3 x+1)+y(3 y+1+\delta)+z(3 z+2)$. This proves (1.5) for $(a, b, c, d)=(3,1,1,2),(3,1,2,2)$.
(c) By Lemma 3.1, there are $u, v, w \in \mathbb{Z}$ with $3 \nmid u v w$ such that $6 n+7=u^{2}+$ $v^{2}+2 w^{2}$ and hence $12 n+14=(u+v)^{2}+(u-v)^{2}+(2 w)^{2}$. As $(u+v)^{2}+(u-v)^{2} \equiv 2$ $(\bmod 4)$, both $u+v$ and $u-v$ are odd. Since $(u+v)^{2}+(u-v)^{2} \equiv 14-1 \equiv 1$ $(\bmod 3)$, without loss of generality we may assume that $u+v \equiv \pm 1(\bmod 6)$ and $u-v \equiv 3(\bmod 6)$. Now we may write $u+v$ or $-u-v$ as $6 x+1, w$ or $-w$ as $3 y+1$, and $u-v$ as $6 z+3$, where x, y, z are integers. Then

$$
12 n+14=(6 x+1)^{2}+(6 y+2)^{2}+(6 z+3)^{2}
$$

and hence $n=x(3 x+1)+y(3 y+2)+z(3 z+3)$. This proves (1.5) for $(a, b, c, d)=$ (3, 1, 2, 3).
(d) As $16 n+14 \equiv 2(\bmod 4)$, by the Gauss-Legendre theorem $16 n+14=$ $u^{2}+v^{2}+w^{2}$ for some $u, v, w \in \mathbb{Z}$ with $2 \nmid u v$ and $2 \mid w$. Since $w^{2} \equiv 14-u^{2}-$ $v^{2} \equiv 12 \equiv 4(\bmod 8), w / 2$ or $-w / 2$ has the form $4 y+1$ with $y \in \mathbb{Z}$. Thus $u^{2}+v^{2} \equiv 14-4(w / 2)^{2} \equiv 10(\bmod 16)$. Without loss of generality, we assume

$$
\begin{equation*}
\text { ON } x(a x+1)+y(b y+1)+z(c z+1) \text { AND } x(a x+b)+y(a y+c)+z(a z+d) \tag{9}
\end{equation*}
$$

that $u \equiv \pm 1(\bmod 8)$ and $v \equiv \pm 3(\bmod 8)$. Write u or $-u$ as $8 x+1$, and v or $-v$ as $8 z+3$, where $x, z \in \mathbb{Z}$. Then

$$
16 n+14=(8 x+1)^{2}+(8 y+2)^{2}+(8 z+3)^{2}
$$

and hence $n=x(4 x+1)+y(4 y+2)+z(4 z+3)$. This proves (1.5) for $(a, b, c, d)=$ $(4,1,2,3)$.

In view of the above, we have completed the proof of Theorem 1.3.
Acknowledgments. The author would like to thank Dr. Hao Pan for his comments on the proof of Lemma 2.2, and the referee for his/her helpful suggestions.

References

[CL] S. Cooper and H. Y. Lam, On the diophantine equation $n^{2}=x^{2}+b y^{2}+c z^{2}$, J. Number Theory 133 (2013), 719-737.
[D39] L. E. Dickson, Modern Elementary Theory of Numbers, University of Chicago Press, Chicago, 1939.
[D99] L. E. Dickson, History of the Theory of Numbers, Vol. II, AMS Chelsea Publ., 1999.
[JKS] W. C. Jagy, I. Kaplansky and A. Schiemann, There are 913 regular ternary forms, Mathematika 44 (1997), 332-341.
[JP] B. W. Jones and G. Pall, Regular and semi-regular positive ternary quadratic forms, Acta Math. 70 (1939), 165-191.
[N96] M. B. Nathanson, Additive Number Theory: The Classical Bases, Grad. Texts in Math., Vol. 164, Springer, New York, 1996.
[S07] Z.-W. Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127 (2007), 103113.
[S15] Z.-W. Sun, On universal sums of polygonal numbers, Sci. China Math. 58 (2015), 13671396.
[S16] Z.-W. Sun, A result similar to Lagrange's theorem, J. Number Theory 162 (2016), 190211.

