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Abstract. In this paper we first investigate for what positive integers a, b, c every
nonnegative integer n can be written as x(ax+1)+y(by+1)+z(cz+1) with x, y, z
integers. We show that (a, b, c) can be either of the following seven triples

(1, 2, 3), (1, 2, 4), (1, 2, 5), (2, 2, 4), (2, 2, 5), (2, 3, 3), (2, 3, 4),

and conjecture that any triple (a, b, c) among

(2, 2, 6), (2, 3, 5), (2, 3, 7), (2, 3, 8), (2, 3, 9), (2, 3, 10)

also has the desired property. For integers 0 6 b 6 c 6 d 6 a with a > 2, we prove
that any nonnegative integer can be written as x(ax + b) + y(ay + c) + z(az + d)

with x, y, z integers, if and only if the quadruple (a, b, c, d) is among

(3, 0, 1, 2), (3, 1, 1, 2), (3, 1, 2, 2), (3, 1, 2, 3), (4, 1, 2, 3).

1. Introduction

Let N = {0, 1, 2, . . . }. Throughout this paper, for f(x, y, z) ∈ Z[x, y, z] we set

E(f(x, y, z)) = {n ∈ N : n ̸= f(x, y, z) for any x, y, z ∈ Z}.

If E(f(x, y, z)) = ∅, then we call f(x, y, z) universal over Z. The classical Gauss-
Legendre theorem (cf. [N96, pp. 3-35]) states that

E(x2 + y2 + z2) = {4k(8l + 7) : k, l ∈ N}.

Recall that those Tx = x(x + 1)/2 with x ∈ Z are called triangular numbers.
As T−x−1 = Tx, T2x = x(2x+ 1) and T2x−1 = x(2x− 1), we see that

{Tx : x ∈ Z} = {Tx : x ∈ N} = {x(2x+ 1) : x ∈ Z}. (1.1)
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By the Gauss-Legendre theorem, any n ∈ N can be written as the sum of three
triangular numbers (equivalently, 8n+3 is the sum of three odd squares). In view
of (1.1), this says that

{x(2x+ 1) + y(2y + 1) + z(2z + 1) : x, y, z ∈ Z} = N. (1.2)

Motivated by this, we are interested in finding all those a, b, c ∈ Z+ = {1, 2, 3, . . . }
satisfying

{x(ax+ 1) + y(by + 1) + z(cz + 1) : x, y, z ∈ Z} = N. (1.3)

In the following theorem we determine all possible candidates a, b, c ∈ Z+ with
(1.3) valid.

Theorem 1.1. Let a, b, c ∈ Z+ with a 6 b 6 c. If x(ax+1)+y(by+1)+z(cz+1)
is universal over Z, then (a, b, c) is among the following 17 triples:

(1, 1, 2), (1, 2, 2), (1, 2, 3), (1, 2, 4), (1, 2, 5),

(2, 2, 2), (2, 2, 3), (2, 2, 4), (2, 2, 5), (2, 2, 6),

(2, 3, 3), (2, 3, 4), (2, 3, 5), (2, 3, 7), (2, 3, 8), (2, 3, 9), (2, 3, 10).

(1.4)

Remark 1.1. As proved by Liouville (cf. [D99, p. 23]),

{2Tx + 2Ty + Tz : x, y, z ∈ N} = {2Tx + Ty + Tz : x, y, z ∈ N} = N.

By [S15, Theorem 1.14], Tx+Ty+2p5(z) with p5(z) = z(3z−1)/2 is also universal
over Z. These, together with (1.1) and (1.2), indicate that (1.3) holds for (a, b, c) =
(1, 1, 2), (1, 2, 2), (2, 2, 2), (2, 2, 3).

In Section 2 we will prove Theorem 1.1 as well as the following related result.

Theorem 1.2. (1.3) holds if (a, b, c) is among the following 7 triples:

(1, 2, 3), (1, 2, 4), (1, 2, 5), (2, 2, 4), (2, 2, 5), (2, 3, 3), (2, 3, 4).

In view of Theorems 1.1-1.2 and Remark 1.1, we have reduced the converse of
Theorem 1.1 to our following conjecture.

Conjecture 1.1. (1.3) holds if (a, b, c) is among the following six triples:

(2, 2, 6), (2, 3, 5), (2, 3, 7), (2, 3, 8), (2, 3, 9), (2, 3, 10).

Remark 1.2. It is easy to show that (1.3) holds for (a, b, c) = (2, 3, 7) if and only
if for any n ∈ N we can write 168n+ 41 as 21x2 + 14y2 + 6z2 with x, y, z ∈ Z.

Inspired by (1.2), we want to know for what a, b, c, d ∈ N with b 6 c 6 d 6 a
we have

{x(ax+ b) + y(ay + c) + z(az + d) : x, y, z ∈ Z} = N. (1.5)

We achieve this in the following theorem which will be proved in Section 3.
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Theorem 1.3. Let a > 2 be an integer and let b, c, d ∈ N with b 6 c 6 d 6 a.
Then (1.5) holds if and only if (a, b, c, d) is among the following five quadruples:

(3, 0, 1, 2), (3, 1, 1, 2), (3, 1, 2, 2), (3, 1, 2, 3), (4, 1, 2, 3). (1.6)

Remark 1.3. For a ∈ {1, 2} and b, c, d ∈ N with b 6 c 6 d 6 a, we can easily show
that if (1.5) holds then (a, b, c, d) is among the following five quadruples:

(1, 0, 0, 1), (1, 0, 1, 1), (2, 0, 0, 1), (2, 0, 1, 1), (2, 1, 1, 1).

The converse also holds since

x2 + y2 + 2Tz, x2 + 2Ty + 2Tz, 2x2 + 2y2 + Tz, 2x2 + Ty + Tz, Tx + Ty + Tz

are all universal over Z (cf. [S07]).

We also note some other universal sums. For example, we have

{x2+y(3y+1)+z(3z+2) : x, y, z ∈ Z} = {x2+y(4y+1)+z(4z+3) : x, y, z ∈ Z} = N

which can be easily proved.
Based on our computation, we formulate the following conjecture for further

research.

Conjecture 1.2. (i) Any positive integer n ̸= 225 can be written as p(p− 1)/2+
q(q − 1)/2 + r(r − 1)/2 with p prime and q, r ∈ Z+.

(ii) Each n ∈ N can be written as x2 + y(3y+1)/2+ z(2z− 1) with x, y, z ∈ N.
Also, any n ∈ N can be written as x2 + y(3y+1)/2+ z(5z+3)/2 with x, y, z ∈ N.

(iii) Every n ∈ Z+ can be written as x3 + y2 + Tz with x, y ∈ N and z ∈ Z+.
We also have {x2 + y(y + 1) + z(z2 + 1) : x, y, z ∈ N} = N.

(iv) Any n ∈ N can be written as x4+y(3y+1)/2+z(7z+1)/2 with x, y, z ∈ Z.

2. Proofs of Theorems 1.1-1.2

Proof of Theorem 1.1. For x ∈ Z \ {0}, clearly ax2+x > |x|(a|x| − 1) > a− 1. As
1 = x(ax+ 1) + y(by + 1) + z(cz + 1) for some x, y, z ∈ Z, we must have a 6 2.

Case 1. a = b = 1.
As 1 ̸∈ {x(x+ 1) + y(y + 1) : x, y ∈ Z}, we must have 1 ∈ {z(cz + 1) : z ∈ Z}

and hence c = 2. (Note that if c > 2 then cz2 + z > c− 1 > 1 for all z ∈ Z \ {0}.)
Case 2. a = 1 < b.
If b > 2, then y(by+1) > b−1 > 1 and z(cz+1) > c−1 > 1 for all y, z ∈ Z\{0}.

As 1 = x(x+ 1) + y(by + 1) + z(cz + 1) for some x, y, z ∈ Z, we must have b = 2.
It is easy to see that 4 ̸∈ {x(x + 1) + y(2y + 1) : x, y ∈ Z}. If c > 5, then
z(cz + 1) > c− 1 > 4 for all z ∈ Z \ {0}. As 4 = x(x+ 1) + y(2y + 1) + z(cz + 1)
for some x, y, z ∈ Z, we must have c ∈ {2, 3, 4, 5}.
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Case 3. a = b = 2.
In view of (1.1),

5 ̸∈ {Tx + Ty : x, y ∈ N} = {x(2x+ 1) + y(2y + 1) : x, y ∈ Z}.

If c > 6, then z(cz+1) > c− 1 > 5 for all z ∈ Z \ {0}. As 5 = x(2x+1)+ y(2y+
1) + z(cz + 1) for some x, y, z ∈ Z, we must have c ∈ {2, 3, 4, 5, 6}.

Case 4. a = 2 < b.
Clearly, 2 ̸∈ {x(2x + 1) : x ∈ Z}. If b > 3, then y(by + 1) > b − 1 > 2 and

z(cz+1) > c−1 > 2 for all y, z ∈ Z\{0}. As 2 = x(2x+1)+y(by+1)+z(cz+1)
for some x, y, z ∈ Z, we must have b = 3. Note that x(2x + 1) + y(3y + 1) ̸= 9
for all x, y ∈ Z. If c > 10, then z(cz + 1) > c − 1 > 9 for all z ∈ Z \ {0}.
Since 9 = x(2x + 1) + y(3y + 1) + z(cz + 1) for some x, y, z ∈ Z, we must have
c 6 10. Note that 48 ̸= x(2x + 1) + y(3y + 1) + z(6z + 1) for all x, y, z ∈ Z. So
c ∈ {3, 4, 5, 7, 8, 9, 10}.

In view of the above, we have completed the proof of Theorem 1.1. �

Lemma 2.1. Let u and v be integers with u2 + v2 a positive multiple of 5. Then
u2 + v2 = x2 + y2 for some x, y ∈ Z with 5 - xy.

Proof. Let a be the 5-adic order of gcd(u, v), and write u = 5au0 and v = 5av0 with
u0, v0 ∈ Z not all divisible by 5. Choose δ, ε ∈ {±1} such that u′

0 ̸≡ 2v′0 (mod 5),
where u′

0 = δu0 and v′0 = εv0. Clearly, 5
2(u2

0+v20) = u2
1+v21 , where u1 = 3u′

0+4v′0
and v1 = 4u′

0 − 3v′0. Note that u1 and v1 are not all divisible by 5 since u1 ̸≡ v1
(mod 5). Continue this process, we finally write u2+v2 = 52a(u2

0+v20) in the form
x2 + y2 with x, y ∈ Z not all divisible by 5. As x2 + y2 = u2 + v2 ≡ 0 (mod 5),
we must have 5 - xy. This concludes the proof. �

With the help of Lemma 2.1, we are able to deduce the following result.

Lemma 2.2. For any n ∈ N and r ∈ {6, 14}, we can write 20n+r as 5x2+5y2+z2

with x, y, z ∈ Z and 2 - z.

Proof. As 20n+r ≡ r ≡ 2 (mod 4), by the Gauss-Legendre theorem we can write
20n+r as (2w)2+u2+v2 with u, v, w ∈ Z and 2 - uv. If (2w)2 ≡ −r (mod 5), then
u2 + v2 ≡ 2r (mod 5) and hence u2 ≡ v2 ≡ r (mod 5). If (2w)2 ≡ r (mod 5),
then u2 + v2 ≡ 2 (mod 4) is a positive multiple of 5 and hence by Lemma 2.1 we
can write it as s2 + t2, where s and t are odd integers with s2 ≡ −r (mod 5) and
t2 ≡ r (mod 5). If 5 | w, then one of u2 and v2 is divisible by 5 and the other is
congruent to r modulo 5.

By the above, we can always write 20n + r = x2 + y2 + z2 with x, y, z ∈ Z,
2 - z and z2 ≡ r (mod 5). Note that x2 ≡ −y2 = (±2y)2 (mod 5). Without loss
of generality, we assume that x ≡ 2y (mod 5) and hence 2x ≡ −y (mod 5). Set
x̄ = (x− 2y)/5 and ȳ = (2x+ y)/5. Then

20n+ r = x2 + y2 + z2 = 5x̄2 + 5ȳ2 + z2.
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This concludes the proof. �
Remark 2.1. Let n ∈ N and r ∈ {6, 14}. In contrast with Lemma 2.2, we conjecture
that 20n+ r can be written as 5x2 +5y2 +(2z)2 with x, y, z ∈ Z unless r = 6 and
n ∈ {0, 11}, or r = 14 and n ∈ {1, 10}.

Lemma 2.3. (i) For any positive integer w = x2 + 2y2 with x, y ∈ Z, we can
write w in the form u2 + 2v2 with u, v ∈ Z such that u or v is not divisible by 3.

(ii) w ∈ N can be written as 3x2 + 6y2 with x, y ∈ Z, if and only if 3 | w and
w = u2 + 2v2 for some u, v ∈ Z.

(iii) Let n ∈ N with 6n+1 not a square. Then, for any δ ∈ {0, 1} we can write
6n+ 1 as x2 + 3y2 + 6z2 with x, y, z ∈ Z and x ≡ δ (mod 2).

Remark 2.2. Part (i) first appeared in the middle of a proof given on page 173 of
[JP] (see also [S15, Lemma 2.1] for other similar results). Parts (ii) and (iii) are
Lemmas 3.1 and 3.3 of the author [S15].

Proof of Theorem 1.2. Let us fix a nonnegative integer n.
(i) As 24n + 11 ≡ 3 (mod 8), by the Gauss-Legendre theorem there are odd

integers u, v, w such that 24n + 11 = u2 + v2 + w2 = w2 + 2ū2 + 2v̄2, where
ū = (u + v)/2 and v̄ = (u − v)/2. As 2(ū2 + v̄2) ≡ 11 − w2 ≡ 10 ≡ 2 (mod 8),
we have ū ̸≡ v̄ (mod 2). Without loss of generality, we assume that 2 | ū and
2 - v̄. If 3 - v̄, then gcd(6, v̄) = 1. When 3 | v̄, we have 3 - ū (since w2 ̸≡ 11
(mod 3)), and w2 + 2v̄2 is a positive multiple of 3, thus by Lemma 2.3(i) there
are s, t ∈ Z with 3 - st such that s2 + 2t2 = w2 + 2v̄2 ≡ 3 (mod 8) and hence
2 - st. Anyway, 24n + 11 can be written as r2 + 2s2 + 2t2 with r, s, t ∈ Z and
gcd(6, t) = 1. Since r2 + 2s2 ≡ 11 − 2t2 ≡ 0 (mod 3), by Lemma 2.3(ii) we may
write r2+2s2 = 3r20+6s20 with r0, s0 ∈ Z. Since 3r20+6s20 = r2+2s2 ≡ 11−2t2 ≡ 9
(mod 8), we have r20 +2s20 ≡ 3 (mod 8) and hence 2 - r0s0. Write s0 = 2x+ 1, r0
or −r0 as 4y + 1, and t or −t as 6z + 1, where x, y, z ∈ Z. Then

24n+ 11 = 6(2x+ 1)2 + 3(4y + 1)2 + 2(6z + 1)2

and hence n = x(x + 1) + y(2y + 1) + z(3z + 1). This proves (1.3) for (a, b, c) =
(1, 2, 3).

(ii) By the Gauss-Legendre theorem, there are s, t, v ∈ Z such that 32n+14 =
(2s+1)2 + (2t+1)2 + (2v)2 and hence 16n+7 = (s+ t+1)2 + (s− t)2 +2v2. As
one of s + t + 1 and s − t is even, we have 16n + 7 = (2u)2 + w2 + 2v2 for some
u,w ∈ Z. Clearly 2 - w, 2v2 ≡ 7− w2 ≡ 2 (mod 4), and 4u2 ≡ 7− 2v2 − w2 ≡ 4
(mod 8). So, u, v, w are all odd. Note that w2 ≡ 7 − 4u2 − 2v2 ≡ 7 − 4 − 2 = 1
(mod 16) and hence w ≡ ±1 (mod 8). Now we can write u as 2x+ 1, v or −v as
4y + 1, w or −w as 8z + 1, where x, y, z are integers. Thus

16n+ 7 = 4(2x+ 1)2 + 2(4y + 1)2 + (8z + 1)2

and hence n = x(x + 1) + y(2y + 1) + z(4z + 1). This proves (1.3) for (a, b, c) =
(1, 2, 4).
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(iii) By Dickson [D39, pp. 112-113] (or [JKS]),

E(10x2 + 5y2 + 2z2) = {8q + 3 : q ∈ N} ∪
∪

k,l∈N

{25k(5l + 1), 25k(5l + 4)}.

So, there are u, v, w ∈ Z such that 40n + 17 = 10u2 + 5v2 + 2w2. Clearly, 2 - v,
2u2 + 2w2 ≡ 17 − 5v2 ≡ 4 (mod 8) and hence 2 - uw. Note that 2w2 ≡ 17 ≡ 2
(mod 5) and hence w ≡ ±1 (mod 5). Thus, we can write u = 2x+ 1, v or −v as
4y + 1, and w or −w as 10z + 1, where x, y, z are integers. Now we have

40n+ 17 = 10(2x+ 1)2 + 5(4y + 1)2 + 2(10z + 1)2

and hence n = x(x + 1) + y(2y + 1) + z(5z + 1). This proves (1.3) for (a, b, c) =
(1, 2, 5).

(iv) By the Gauss-Legendre theorem, there are u, v, w ∈ Z with 2 - w such that

16n+ 5 = (2u)2 + (2v)2 + w2 = 2(u+ v)2 + 2(u− v)2 + w2.

As w2 ≡ 1 ̸≡ 5 (mod 8), both u+ v and u− v are odd. Since w2 ≡ 5− 2− 2 = 1
(mod 16), we have w ≡ ±1 (mod 8). Now we can write u+v or −u−v as 4x+1,
u− v or v − u as 4y + 1, and w or −w as 8z + 1, where x, y, z ∈ Z. Thus

16n+ 5 = 2(4x+ 1)2 + 2(4y + 1)2 + (8z + 1)2

and hence n = x(2x+ 1) + y(2y + 1) + z(4z + 1). This proves (1.3) for (a, b, c) =
(2, 2, 4).

(v) By Lemma 2.2, there are u, v, w ∈ Z with 2 - w such that 20n + 6 =
5u2 + 5v2 + w2. Clearly, u ̸≡ v (mod 2), w2 ≡ 1 (mod 5) and hence w ≡ ±1
(mod 5). Thus w or −w has the form 10z + 1 with z ∈ Z. Observe that

40n+ 12 = 10u2 + 10v2 + 2w2 = 5(u+ v)2 + 5(u− v)2 + 2(10z + 1)2.

As u + v and u − v are both odd, we may write u + v or −u − v as 4x + 1, and
u− v or v − u as 4y + 1, where x and y are integers. Then

40n+ 12 = 5(4x+ 1)2 + 5(4y + 1)2 + 2(10z + 1)2

and hence n = x(2x+ 1) + y(2y + 1) + z(5z + 1). This proves (1.3) for (a, b, c) =
(2, 2, 5).

(vi) By Dickson [D39, pp. 112-113],

E(x2 + y2 + 3z2) = {9k(9l + 6) : k, l ∈ N}.

So there are u, v, w ∈ Z such that 24n + 7 = u2 + v2 + 3w2. As u2 + v2 ̸≡ 7
(mod 4), we have 2 - w and hence s = (u + v)/2 ∈ Z and t = (u − v)/2 ∈ Z.
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Now 24n + 7 = 2s2 + 2t2 + 3w2. As 2(s2 + t2) ≡ 7 − 3w2 ≡ 4 (mod 8), we have
s2 + t2 ≡ 2 (mod 4) and hence 2 - st. Note that s2 + t2 ≡ (7− 3)/2 = 2 (mod 3)
and hence 3 - st. Now we can write w or −w as 4x+1, s or −s as 6y+1, t or −t
as 6z + 1, where x, y, z are integers. Then

24n+ 7 = 3(4x+ 1)2 + 2(6y + 1)2 + 2(6z + 1)2

and hence n = x(2x+ 1) + y(3y + 1) + z(3z + 1). This proves (1.3) for (a, b, c) =
(2, 3, 3).

(vii) Note that 48n + 13 ≡ 1 (mod 6) but 48n + 13 ̸≡ 1 (mod 8). By Lemma
2.3(iii), there are u, v, w ∈ Z such that 48n + 13 = 6u2 + (2v)2 + 3w2. Clearly,
2 - w and 3 - v. As 6u2 ≡ 13 − 3 ≡ 6 (mod 4), we must have 2 - u. Since
4v2 ≡ 13− 6u2 − 3w2 ≡ 4 (mod 8), we have 2 - v. Observe that

3w2 ≡ 13− 6u2 − 4v2 ≡ 13− 6− 4 = 3 (mod 16)

and hence w ≡ ±1 (mod 8). Now we can write u or −u as 4x + 1, v or −v as
6y + 1, and w or −w as 8z + 1, where x, y, z ∈ Z. Thus

48n+ 13 = 6(4x+ 1)2 + 4(6y + 1)2 + 3(8z + 1)2

and hence n = x(2x+ 1) + y(3y + 1) + z(4z + 1). This proves (1.3) for (a, b, c) =
(2, 3, 4).

So far we have completed the proof of Theorem 1.2. �

3. Proof of Theorems 1.3

Lemma 3.1. For any positive integer n, we can write 6n + 1 as x2 + y2 + 2z2

with x, y, z ∈ Z and 3 - xyz.

Remark 3.1. This is [S16, Lemma 4.3(ii)] proved by the author with the help of
a result in [CL]. Combining it with Lemma 2.3(ii), for any n ∈ Z+ and δ ∈ {0, 1}
we can write 6n+ 1 as x2 + 3y2 + 6z2 with x, y, z ∈ Z and x ≡ δ (mod 2), which
extends Lemma 2.3(iii) and confirms a conjecture in [S15, Remark 3.4].

Proof of Theorem 1.3. (i) If |x| > 2, then

x(ax+ b) > |x|(a|x| − b) > 2(2a− b) > 2a,

and similarly x(ax+ c) > 2a and x(ax+ d) > 2a. So, if (1.5) holds then we must
have

{0, 1, . . . , 2a− 1} ⊆ {x(ax+ b) + y(ay + c) + z(az + d) : x, y, z ∈ {0,±1}}

and hence

2a 6 |{x(ax+ b) + y(ay + c) + z(az + d) : x, y, z ∈ {0,±1}}| 6 33 = 27.
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Note that a ∈ {3, 4, . . . , 13} and 0 6 b 6 c 6 d 6 a. Via a computer we find
that if (a, b, c, d) is not among the five quadruples in (1.6) then one of 1, 2, . . . , 17
cannot be written as x(ax+b)+y(ay+c)+z(az+d) with x, y, z ∈ Z. For example,
x(4x+ 2) + y(4y + 2) + z(4z + 3) ̸= 17 for any x, y, z ∈ Z. This proves the “only
if” part of Theorem 1.3.

(ii) Now we turn to prove the “if” part of Theorem 1.3. Let us fix a nonnegative
integer n.

(a) By [S15, Theorem 1.7(iv)], there are u, v, x ∈ Z such that 12n + 5 =
u2 + v2 + 36x2. Clearly u ̸≡ v (mod 2) and 3 - uv. Without loss of generality,
we assume that u ≡ ±1 (mod 6) and v ≡ ±2 (mod 6). We may write u or −u as
6y + 1, and v or −v as 6z + 2, where y and z are integers. Thus

12n+ 5 = 36x2 + (6y + 1)2 + (6z + 2)2

and hence n = 3x2 + y(3y + 1) + z(3z + 2). This proves (1.5) for (a, b, c, d) =
(3, 0, 1, 2).

(b) Let δ ∈ {0, 1}. By the Gauss-Legendre theorem, 12n+6+3δ can be written
as the sum of three squares. In view of [S16, Lemma 2.2], there are u, v, w ∈ Z
with 3 - uvw such that 12n + 6 + 3δ = u2 + v2 + w2. Clearly, u, v, w are neither
all odd nor all even. Without loss of generality, we assume that 2 - u and 2 | w.
Then v ̸≡ δ (mod 2). Obviously, u ≡ ±1 (mod 6), v ≡ ±(1 + δ) (mod 6) and
w ≡ ±2 (mod 6). Thus we may write u or −u as 6x + 1, v or −v as 6y + 1 + δ,
and w or −w as 6z + 2, where x, y, z ∈ Z. Therefore,

12n+ 6 + 3δ = (6x+ 1)2 + (6y + 1 + δ)2 + (6z + 2)2

and hence n = x(3x + 1) + y(3y + 1 + δ) + z(3z + 2). This proves (1.5) for
(a, b, c, d) = (3, 1, 1, 2), (3, 1, 2, 2).

(c) By Lemma 3.1, there are u, v, w ∈ Z with 3 - uvw such that 6n+ 7 = u2 +
v2+2w2 and hence 12n+14 = (u+v)2+(u−v)2+(2w)2. As (u+v)2+(u−v)2 ≡ 2
(mod 4), both u + v and u − v are odd. Since (u + v)2 + (u − v)2 ≡ 14 − 1 ≡ 1
(mod 3), without loss of generality we may assume that u+ v ≡ ±1 (mod 6) and
u − v ≡ 3 (mod 6). Now we may write u + v or −u − v as 6x + 1, w or −w as
3y + 1, and u− v as 6z + 3, where x, y, z are integers. Then

12n+ 14 = (6x+ 1)2 + (6y + 2)2 + (6z + 3)2

and hence n = x(3x+1)+y(3y+2)+z(3z+3). This proves (1.5) for (a, b, c, d) =
(3, 1, 2, 3).

(d) As 16n + 14 ≡ 2 (mod 4), by the Gauss-Legendre theorem 16n + 14 =
u2 + v2 + w2 for some u, v, w ∈ Z with 2 - uv and 2 | w. Since w2 ≡ 14 − u2 −
v2 ≡ 12 ≡ 4 (mod 8), w/2 or −w/2 has the form 4y + 1 with y ∈ Z. Thus
u2 + v2 ≡ 14 − 4(w/2)2 ≡ 10 (mod 16). Without loss of generality, we assume
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that u ≡ ±1 (mod 8) and v ≡ ±3 (mod 8). Write u or −u as 8x + 1, and v or
−v as 8z + 3, where x, z ∈ Z. Then

16n+ 14 = (8x+ 1)2 + (8y + 2)2 + (8z + 3)2

and hence n = x(4x+1)+y(4y+2)+z(4z+3). This proves (1.5) for (a, b, c, d) =
(4, 1, 2, 3).

In view of the above, we have completed the proof of Theorem 1.3. �
Acknowledgments. The author would like to thank Dr. Hao Pan for his com-
ments on the proof of Lemma 2.2, and the referee for his/her helpful suggestions.
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