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Abstract. Lagrange’s four-square theorem asserts that any n ∈ N = {0, 1, 2, . . . }
can be written as the sum of four squares. This can be further refined in various
ways. We show that any n ∈ N can be written as x2+y2+z2+w2 with x, y, z, w ∈ Z
such that x+ y+ z (or x+2y, or x+ y+2z) is a square (or a cube). We also prove

that any n ∈ N can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N such that
P (x, y, z) is a square, whenever P (x, y, z) is among the polynomials

x, 2x, x− y, 2x− 2y, a(x2 − y2) (a = 1, 2, 3), x2 − 3y2, 3x2 − 2y2,

x2 + ky2 (k = 2, 3, 5, 6, 8, 12), (x+ 4y + 4z)2 + (9x+ 3y + 3z)2,

x2y2 + y2z2 + z2x2, x4 + 8y3z + 8yz3, x4 + 16y3z + 64yz3.

We also pose some conjectures for further research; for example, our 1-3-5-Conjecture
states that any n ∈ N can be written as x2 + y2 + z2 +w2 with x, y, z, w ∈ N such

that x+ 3y + 5z is a square.

1. Introduction

Let N = {0, 1, 2, . . . } be the set of all natural numbers (nonnegative integers).
Lagrange’s four-square theorem (cf. [N96, pp. 5-7]) states that any n ∈ N can be
written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N.

It is known that for any a, b, c ∈ Z+ = {1, 2, 3, . . . } the set

E(a, b, c) := {n ∈ N : n ̸= ax2 + by2 + cz2 for any x, y, z ∈ Z} (1.1)

is not only nonempty but also infinite. A classical theorem of Gauss and Legendre
(cf. [N96, p. 23] or [MW, p. 42]) asserts that

E(1, 1, 1) = {4k(8l + 7) : k, l ∈ N}. (1.2)

In this paper we study various refinements of Lagrange’s theorem.
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Theorem 1.1. Let a ∈ {1, 4} and m ∈ {4, 5, 6}. Then, any n ∈ N can be written
as axm + y2 + z2 + w2 with x, y, z, w ∈ N.

Remark 1.1. See [S16, A270969, A273915 and A273429] for related data; for
example,

71 = 14 + 32 + 52 + 62, 240 = 25 + 02 + 82 + 122 and 624 = 26 + 42 + 122 + 202.

In addition, we conjecture that any n ∈ N can be written as x2 + y3 + z4 + 2w4

with x, y, z, w ∈ N (cf. [S16, A262827]) and that each n ∈ N can be written as
x5 + y4 + z2 + 3w2 with x, y, z, w ∈ N (cf. [S16, A273917]).

For convenience we introduce the following definition.

Definition 1.1. A polynomial P (x, y, z, w) with integer coefficients is called
a suitable polynomial if any n ∈ N can be written as x2 + y2 + z2 + w2 with
x, y, z, w ∈ N such that P (x, y, z, w) is a square.

Theorem 1.1 with a = 1, 4 and m = 4 indicates that both x and 2x are
suitable. For any squarefree integer a > 3, the polynomial ax is not suitable since
7 ̸= (ax2)2 + y2 + z2 + w2 for all x, y, z, w ∈ N.

Theorem 1.2. (i) The polynomials x− y and 2(x− y) are both suitable.
(ii) Let c ∈ {1, 2, 4}. Then, any n ∈ N can be written as x2 + y2 + z2 + w2

(x, y, z, w ∈ Z) with x+ y = ct3 for some t ∈ Z.
(iii) Let d ∈ {1, 2} and m ∈ {2, 3}. Then, any n ∈ N can be written as

x2 + y2 + z2 + w2 with x, y, z, w ∈ Z such that x+ 2y = dtm for some t ∈ Z.
(iv) Any n ∈ N can be written as x2+y2+ z2+w2 with x, y, z, w ∈ Z such that

xy + yz + zw + wx = (x+ z)(y + w) is a square.
(v) Each n ∈ Z+ can be written as 4k(1 + 4x2 + y2) + z2 with k, x, y, z ∈ N.

Remark 1.2. We even conjecture that any n ∈ N not of the form 26k+3×7 (k ∈ N)
can be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with x − y a cube, and that
any n ∈ Z+ can be written as 4k(1+ 4x2 + y2)+ z2 (k, x, y, z ∈ N) with x 6 y (or
x 6 z).

Theorem 1.3. (i) Let m ∈ {2, 3} and (c, d) ∈ S(m), where

S(3) = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 4)} and S(2) = S(3) ∪ {(2, 3), (2, 6)}.

Then any n ∈ N can be written as x2 + y2 + z2 +w2 with x, y, z, w ∈ Z such that
x+ y + cz = dtm for some t ∈ Z.

(ii) If any odd integer n > 2719 can be represented by x2 + y2 + 10z2 with
x, y, z ∈ Z, then each n ∈ N can be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ Z)
with x+ 3y a square.

(iii) If any integer n > 1190 not divisible by 16 can be written as x2 + 10y2 +
(2z2 + 53r4)/7 with r ∈ {0, 1, 2, 3} and x, y, z ∈ Z, then any n ∈ N can be written
as x2 + y2 + z2 + w2 (x, y, z, w ∈ Z) with x+ 3y + 5z a square.
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Remark 1.3. Concerning the condition of Theorem 1.3(ii), in 1916 S. Ramanujan
[R] conjectured that any odd integer n > 2719 can be represented by x2+y2+10z2

with x, y, z ∈ Z, and this was proved by K. Ono and K. Soundararajan [OS] in
1997 under the GRH (Generalized Riemann Hypothesis). As for part (iii) of
Theorem 1.3, we guess that any integer n > 1190 not divisible by 16 can be
written as x2 + 10y2 + (2z2 + 53r4)/7 with r ∈ {0, 1, 2, 3} and x, y, z ∈ Z.
Theorem 1.4. (i) Any n ∈ N can be written as x2+y2+z2+w2 with x, y, z, w ∈ N
such that P (x, y, z) = 0, whenever P (x, y, z) is among the polynomials

x(x− y), x(x− 2y), (x− y)(x− 2y), (x− y)(x− 3y),

x(x+ y − z), (x− y)(x+ y − z), (x− 2y)(x+ y − z).
(1.3)

(ii) Any n ∈ N can be written as x2+ y2+ z2+w2 with x, y, z, w ∈ N such that
(2x− 3y)(x+ y − z) = 0, provided that

{x2 + y2 + 13z2 : x, y, z ∈ N} ⊇ {8q + 5 : q ∈ N}. (1.4)

(iii) Any n ∈ Z+ can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N and
z > 0 such that (x− y)z is a square.

(iv) Any n ∈ Z+ can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N and
y > 0 such that x+ 4y + 4z and 9x+ 3y + 3z are the two legs of a right triangle
with positive integer sides.

(v) Each positive integer can be written as x2+y2+z2+w2 with x, y, z ∈ N and
w ∈ Z+ such that x2y2+y2z2+z2x2 is a square. Also, any n ∈ Z+ can be written
as x2 + y2 + z2 +w2 with x, y, z ∈ Z and w ∈ Z+ such that x2y2 + 4y2z2 + 4z2x2

is a square.
(vi) Any n ∈ Z+ can be written as x2+y2+z2+w2 with x, y, z ∈ N and w ∈ Z+

such that x4 +8y3z+8yz3 is a fourth power. Also, any n ∈ Z+ can be written as
x2 + y2 + z2 +w2 with x, y, z ∈ N and w ∈ Z+ such that x4 + 16y3z + 64yz3 is a
fourth power.

Remark 1.4. Theorem 1.4(i) implies that xy, 2xy and (x2 + y2)(x2 + z2) are all
suitable. It seems that (1.4) does hold. We conjecture that P (x, y, z) in Theorem
1.4(i) may be replaced by any of the following polynomials

(x− y)(x+ y − 3z), (x− y)(x+ 2y − z), (x− y)(x+ 2y − 2z),

(x− y)(x+ 2y − 7z), (x− y)(x+ 3y − 3z), (x− y)(x+ 4y − 6z),

(x− y)(x+ 5y − 2z), (x− 2y)(x+ 2y − z), (x− 2y)(x+ 2y − 2z),

(x− 2y)(x+ 3y − 3z), (x+ y − z)(x+ 2y − 2z), (x− y)(x+ y + 3z − 3w),

(x− y)(x+ 3y − z − 5w), (x− y)(3x+ 3y − 3z − 5w),

(x− y)(3x+ 5y − 3z − 7w), (x− y)(3x+ 7y − 3z − 9w).
(1.5)

In contrast with Theorem 1.4(v), we also conjecture that x2y2 + 9y2z2 + 9z2x2

is suitable (cf. [S16, A268507]). See [S16, A273110 and A272351] for some data
related to parts (iv) and (vi) of Theorem 1.4.
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Theorem 1.5. (i) Any n ∈ N can be written as x2+y2+z2+w2 with x, y, z, w ∈ N
such that x2 − y2 is an even square. Also, 2(x2 − y2), 3(x2 − y2), x2 − 3y2 and
3x2 − 2y2 are all suitable.

(ii) All the polynomials

x2 + 2y2, x2 + 3y2, x2 + 5y2, x2 + 6y2, x2 + 8y2, x2 + 12y2, 2x2 + 7y2,

3x2 + 4y2, 4x2 + 5y2, 4x2 + 9y2, 5x2 + 11y2, 6x2 + 10y2, 7x2 + 9y2

are suitable.

We will prove Theorems 1.1-1.3 and Theorems 1.4-1.5 in Sections 2 and 3
respectively. Section 4 contains some open conjectures for further research.

2. Proofs of Theorems 1.1-1.3

Proof of Theorem 1.1. For n = 0, 1, 2, . . . , 4m/ gcd(2,m) − 1, the desired result can
be verified directly.

Now let n > 4m/ gcd(2,m) be an integer and assume that the desired result holds
for smaller values of n.

Case 1. 4m/ gcd(2,m) | n.
By the induction hypothesis, we can write

n

4m/ gcd(2,m)
= axm + y2 + z2 + w2 with x, y, z, w ∈ N.

It follows that

n = a
(
22/ gcd(2,m)x

)m
+
(
2m/ gcd(2,m)y

)2
+
(
2m/ gcd(2,m)z

)2
+
(
2m/ gcd(2,m)w

)2
.

Case 2. 4m/ gcd(2,m) - n and n ̸= 4k(8l + 7) for any k, l ∈ N.
In this case, n ̸∈ E(1, 1, 1) and hence there are y, z, w ∈ N such that n =

a× 0m + y2 + z2 + w2.

Case 3. n = 4k(8l + 7) with k, l ∈ N and k < m/ gcd(2,m).

If k ∈ {0, 1}, or k = 2 andm > 4 = a, then n−a ̸∈ E(1, 1, 1) by (1.2), and hence
n = a×1m+y2+z2+w2 for some y, z, w ∈ N. When a = 1, k = 2 and m ∈ {5, 6},
we have n−2m = 42(8l+7−2m−4) ̸∈ E(1, 1, 1), and hence n = a2m+y2+z2+w2

for some y, z, w ∈ N. If k ∈ {3, 4} and m = 5, then n− a2m ̸∈ E(1, 1, 1) by (1.2),
and hence n = a2m + y2 + z2 + w2 for some y, z, w ∈ N.

In view of the above, we have completed our induction proof of Theorem
1.1. �
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Lemma 2.1. We have

E(1, 1, 2) = {4k(16l + 14) : k, l ∈ N}. (2.1)

Remark 2.1. (2.1) can be found in L. E. Dickson [D39, pp. 112-113].

Proof of Theorem 1.2. (i) Let a ∈ {1, 2}. We claim that any n ∈ N can be written
as x2 + y2 + z2 + w2 with x, y, z, w ∈ N such that a(x− y) is a square, and want
to prove this by induction.

For every n = 0, 1, . . . , 15, we can verify the claim directly.
Now we fix an integer n > 16 and assume that the claim holds for smaller

values of n.

Case 1. 16 | n.
In this case, by the induction hypothesis, there are x, y, z, w ∈ N with a(x− y)

a square such that n/16 = x2 + y2 + z2 + w2, and hence n = (4x)2 + (4y)2 +
(4z)2 + (4w)2 with a(4x− 4y) a square.

Case 2. 16 - n and n ̸∈ E(1, 1, 2).
In this case, there are x, y, z, w ∈ N with x = y and n = x2 + y2 + z2 + w2,

thus a(x− y) = 02 is a square.

Case 3. 16 - n and n ∈ E(1, 1, 2).
In this case, n = 4k(16l + 14) for some k ∈ {0, 1} and l ∈ N. Note that

n/2 − (2/a)2 ̸∈ E(1, 1, 1) by (1.2). So, n/2 − (2/a)2 = t2 + u2 + v2 for some
t, u, v ∈ N with t > u > v. As n/2 − (2/a)2 > 8 − 4 > 3, we have t > 2 > 2/a.
Thus

n = 2

((
2

a

)2

+ t2

)
+ 2(u2 + v2) =

(
t+

2

a

)2

+

(
t− 2

a

)2

+ (u+ v)2 + (u− v)2

with a((t+ 2/a)− (t− 2/a)) = 22.
So far we have proved part (i) of Theorem 1.2.
(ii) We can easily verify the desired result in Theorem 1.2(ii) for all n =

0, 1, . . . , 63.
Now let n > 64 and assume that any r = 0, 1, . . . , n − 1 can be written as

x2 + y2 + z2 +w2 (x, y, z, w ∈ Z) with x+ y ∈ {ct3 : t ∈ Z}. If 64 | n, then n/64
can be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ Z) with x + y = ct3 for some
t ∈ Z, hence n = (8x)2 + (8y)2 + (8z)2 + (8w)2 with 8x+ 8y = c(2t)3.

Now we consider the case 64 - n. We claim that {2n, 2n − c2, 2n − 64c2} ̸⊆
E(1, 1, 1). If {2n, 2n− 1} ⊆ E(1, 1, 1), then (1.2) implies that 2n = 4k(8l+ 7) for
some k ∈ {2, 3} and l ∈ N, hence 2n − 64 is 42(8l + 3) or 43(8l + 6), and thus
2n− 64 ̸∈ E(1, 1, 1). If 2n = 4k(8l+7) for some k ∈ {1, 2} and l ∈ N, then 2n− 4
is 4(8l + 6) or 4(8(4l + 3) + 3), and hence 2n− 22 ̸∈ E(1, 1, 1); if 2n = 43(8l + 7)
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with l ∈ N, then 2n− 64× 22 = 43(8l+ 3) ̸∈ E(1, 1, 1). When 2n = 4k(8l+ 7) for
some k ∈ {1, 2, 3} and l ∈ N, we have 2n− 42 ̸∈ E(1, 1, 1) since

2n− 16 = 4k(8l + 7)− 16 =


4(8l + 7)− 16 = 4(8l + 3) if k = 1,

42(8l + 7)− 16 = 42(8l + 6) if k = 2,

43(8l + 7)− 16 = 42(8(4l + 3) + 3) if k = 3.

So the claim is true.
By the claim, for some δ ∈ {0, 1, 8}, we can write 2n− δ2c2 as the sum of three

squares two of which have the same parity. Hence we may write 2n − δ2c2 =
(2x− δc)2 + y2 + z2 with x, y, z ∈ Z and y ≡ z (mod 2). It follows that

n =
(2x− δc)2 + δ2c2

2
+

y2 + z2

2

=x2 + (δc− x)2 +

(
y + z

2

)2

+

(
y − z

2

)2

with x+ (δc− x) = cδ ∈ {ct3 : t = 0, 1, 2}. This concludes the induction step.
(iii) For n = 0, 1, . . . , 4m−1, we can verify the desired result in Theorem 1.2(iii)

directly via a computer.
Fix n ∈ N with n > 4m, and assume the required result for smaller values of n.
If 4m | n, then by the induction hypothesis n/4m can be written as x2 + y2 +

z2 + w2 with x, y, z, w ∈ Z such that x + 2y = dtm for some t ∈ Z, and hence
n = (2mx)2+(2my)2+(2mz)2+(2mw)2 with 2mx+2(2my) = 2m(x+2y) = d(2t)m.

Now we assume 4m - n. In light of (1.2), {5n, 5n− d2, 5n− 4md2} ̸⊆ E(1, 1, 1).
In fact, for any l ∈ N neither 8l + 7− d2 nor 4(8l + 7)− d2 belongs to E(1, 1, 1);
if 5n = 42(8l + 7) with l ∈ N then 5n − 22 = 4(8(4l + 3) + 3) ̸∈ E(1, 1, 1) and
5n − 4312 = 42(8l + 3) ̸∈ E(1, 1, 1). So, for some δ ∈ {0, 1, 2m} we can write
5n− δ2d2 as x2 + y2 + z2 with x, y, z ∈ Z. Note that a square is congruent to one
of 0, 1,−1 modulo 5. It is easy to see that one of x2, y2, z2 is congruent to −(δd)2

modulo 5. Without loss of generality, we may assume that (δd)2+x2 ≡ y2+ z2 ≡
0 (mod 5). As x2 ≡ (2δd)2 (mod 5) and y2 ≡ (2z)2 (mod 5), without loss of
generality we simply assume that x ≡ 2δd (mod 5) (otherwise we use −x instead
of x) and y ≡ 2z (mod 5). Thus r = (2x+ δd)/5, s = (2δd−x)/5, u = (2y+ z)/5
and v = (2z − y)/5 are all integers. Note that

r2+s2+u2+v2 =
(δd)2 + x2

5
+
y2 + z2

5
= n with r+2s = δd ∈ {dtm : t = 0, 1, 2}.

This concludes our proof of the third part of Theorem 1.2.
(iv) For each n = 0, 1, 2, there are x, z ∈ {0, 1} such that n = x2 +02 + z2 +02

with (x+ z)(0 + 0) = 02. Note also that

3 = 12 + 12 + (−1)2 + 02 with (1 + (−1))(1 + 0) = 02.
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Now let n ∈ {4, 5, 6, . . . } and assume that any r = 0, . . . , n− 1 can be written
as x2 + y2 + z2 + w2 with x, y, z, w ∈ Z such that (x+ z)(y + w) is a square.

If 4 | n, then n/4 can be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ Z) with
(x + z)(y + w) a square, and hence n = (2x)2 + (2y)2 + (2z)2 + (2w)2 with
(2x+ 2z)(2y + 2w) = 22(x+ z)(y + w) a square.

If n is odd, then by (2.1) there are x, y, z, w ∈ Z with w = −y such that
n = x2 + 2y2 + z2 = x2 + y2 + z2 + w2 with (x+ z)(y + w) = 02.

Now we consider the case n = 2m with m odd. By (2.1), we can write m as
x2 + y2 + z2 + w2 with x, y, z, w ∈ Z and w = y. Therefore,

n = 2m = (x+y)2+(x−y)2+(z+w)2+(z−w)2 = (x+y)2+(z+w)2+(y−x)2+(w−z)2

with
((x+ y) + (y − x))((z + w) + (w − z)) = 2y(2w) = (2y)2.

This ends our induction proof of Theorem 1.2(iv).
(v) Clearly,

1 = 40(1+4×02+02)+02, 2 = 40(1+4×02+12)+02, 3 = 40(1+4×02+12)+12.

Now let n ∈ Z+ with n > 4. If 4 | n and n/4 = 4k(1 + 4x2 + y2) + z2 for some
k, x, y, z ∈ N, then n = 4k+1(1 + 4x2 + y2) + (2z)2. If n ≡ 2, 3 (mod 4), then
n−1 ≡ 1, 2 (mod 4) and hence for some x, y, z ∈ Z we have n−1 = (2x)2+y2+z2

and thus n = 40(1 + 4x2 + y2) + z2. By Dickson [D39, pp. 112–113], if q ∈ N is
congruent to 1 modulo 4 then q ̸∈ E(1, 4, 16). Thus, when n ≡ 1 (mod 4), we have
n− 4 ̸∈ E(1, 4, 16), hence there are x, y, z ∈ Z such that n− 4 = 16x2 + 4y2 + z2,
i.e., n = 4(1 + 4x2 + y2) + z2. This proves Theorem 1.2(v) by induction.

In view of the above, we have completed the proof of Theorem 1.2. �
Remark 2.2. In contrast with (2.1), we conjecture that any odd integer n > 1248
can be written as x2 + y2 + 2z2 with x, y, z ∈ N and x > y > z. Modifying the
proof of Theorem 1.2(iii) slightly, we see that under this conjecture the polynomial
(x− z)(y−w) is suitable and also any n ∈ N can be written as x2 + y2 + z2 +w2

with w ∈ Z, x, y, z ∈ N and x 6 y > z > |w| such that (x+ y)(z +w) is a square.

Lemma 2.2. We have

E(1, 2, 6) ={4k(8l + 5) : k, l ∈ N}, (2.2)

E(2, 3, 6) ={3q + 1 : q ∈ N} ∪ {4k(8l + 7) : k, l ∈ N}, (2.3)

E(1, 2, 3) ={4k(16l + 10) : k, l ∈ N}, (2.4)

E(1, 3, 6) ={3q + 2 : q ∈ N} ∪ {4k(16l + 14) : k, l ∈ N}, (2.5)

E(1, 5, 5) ={n ∈ N : n ≡ 2, 3 (mod 5)} ∪ {4k(8l + 7) : k, l ∈ N}.
(2.6)
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Remark 2.3. (2.2)-(2.6) are known results, see, e.g., Dickson [D39, pp. 112-113].

Proof of Theorem 1.3. (i) For n = 0, . . . , 4m − 1 we can easily verify the desired
result in Theorem 1.3(i) directly.

Now let n ∈ N with n > 4m. Assume that any r ∈ {0, . . . , n−1} can be written
as x2 + y2 + z2 + w2 with x, y, z, w ∈ Z such that x + y + cz ∈ {dtm : t ∈ Z}.
If 4m | n, then there are x, y, z, w ∈ Z with x2 + y2 + z2 + w2 = n/4m such that
x+ y + cz = dtm for some t ∈ Z, and hence

n = (2mx)2 + (2my)2 + (2mz)2 + (2mw)2

with 2mx + 2my + c(2mz) = 2m(x + y + cz) = d(2t)m. Below we suppose that
4m - n.

Case 1. c = 1.
In this case, it suffices to show that there are x, y, z ∈ Z and δ ∈ {0, 1, 2m}

such that

n = x2 + (y + z)2 + (z − y)2 + (δd− 2z)2 = x2 + 2y2 + 6z2 − 4δdz + δ2d2. (2.7)

(Note that (y+ z)+ (z− y)+ (δd− 2z) = δd ∈ {dtm : t ∈ Z}.) Suppose that this
fails for δ = 0. By (2.2), n = 4k(8l + 5) for some k, l ∈ N with k < m.

We first handle the subcase d = 1. Clearly,

3n− 1 =

{
3(8l + 5)− 1 = 2(12l + 7) if k = 0,

3× 4(8l + 5)− 1 = 8(12l + 7) + 3 if k = 1.

Thus, if k ∈ {0, 1}, then 3n − 1 ̸∈ E(2, 3, 6) by (2.3), hence for some x, y, z ∈ Z
we have

3n− 1 = 3x2 + 6y2 + 2(3z − 1)2 = 3(x2 + 2y2 + 2(3z2 − 2z)) + 2

and thus

n = x2 + 2y2 + 6z2 − 4z + 1 = x2 + (y + z)2 + (z − y)2 + (1− 2z)2

which gives (2.7) with δ = 1. When k = 2 and m = 3, we have

3n− 64 = 3× 42(8l + 5)− 64 = 42(8(3l + 1) + 3) ̸∈ E(2, 3, 6)

in view of (2.3), hence for some x, y, z ∈ Z we have

3n− 43 = 3x2 + 6y2 + 2(3z − 8)2 = 3(x2 + 2y2 + 2(3z2 − 16z)) + 2× 43

and thus

n = x2 + 2y2 + 6z2 − 32z + 64 = x2 + (y + z)2 + (z − y)2 + (23 − 2z)2
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which gives (2.7) with δ = 2m.
Now we handle the subcase d = 2. Clearly,

3n− 4 = 3× 4k(8l + 5)− 4 =


8(3l + 1) + 3 if k = 0,

4(8(3l + 1) + 6) if k = 1,

4(8(12l + 7) + 3) if k = 2.

It follows that 3n− 4 ̸∈ E(2, 3, 6) by (2.3). So, for some x, y, z ∈ Z we have

3n− 4 = 3x2 + 6y2 + 2(3z − 2)2 = 3x2 + 6y2 + 18z2 − 24z + 8

and hence

n = x2 + 2y2 + 6z2 − 8z + 4 = x2 + (y + z)2 + (z − y)2 + (2− 2z)2

with (y + z) + (z − y) + (2− 2z) = 2× 1m.

Case 2. c = 2.
If n ̸∈ E(1, 2, 3), then for some x, y, z ∈ Z we have

n = x2 + 2y2 + 3z2 = x2 + (y + z)2 + (z − y)2 + (−z)2

with (y + z) + (z − y) + 2(−z) = d × 0m. Now let n ∈ E(1, 2, 3). By (2.4),
n = 4k(16l + 10) for some k, l ∈ N with k < m.

Subcase 2.1. m = 2 and d ∈ {3, 6}.
For n = 16, . . . , 23 we can verify the desired result directly. Now let n > 24 =

216/9. No matter k = 0 or k = 1, we have

n− 216

d2
= 4k(16l + 10)− 216

d2
̸∈ E(1, 2, 3)

by (2.4). So, there are x, y, z ∈ Z such that

n− 216

d2
= x2 + 2y2 + 3

(
6

d
− z

)2

and hence

n = x2 + 2y2 + 3z2 − 36

d
z +

(
18

d

)2

= x2 + (y + z)2 + (z − y)2 +

(
18

d
− z

)2

with (y + z) + (z − y) + 2(18/d− z) = d(6/d)2.

Subcase 2.2. d = 1.
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If k = 0, then 6n−1 = 6(16l+10)−1 ≡ 3 (mod 8) and hence 6n−1 ̸∈ E(2, 3, 6)
by (2.3). When k = 1, we have

6n− 4m = 6× 4(16l + 10)− 4m = 42(8(3l + 1) + 7− 4m−2) ̸∈ E(2, 3, 6)

by (2.3). If k = 2 and m = 3, then

6n− 4m = 6× 42(16l + 10)− 43 = 43(8(3l + 1) + 6) ̸∈ E(2, 3, 6)

by (2.3). So, for some δ ∈ {1, 2m} we have 6n − δ2 ̸∈ E(2, 3, 6). Hence there are
x, u, v ∈ Z such that 6n− δ2 = 6x2 + 3u2 + 2v2. As u ≡ δ (mod 2), we can write
u = 2y+ δ with y ∈ Z. Since v2 ≡ δ2 (mod 3), without loss of generality we may
assume that v = 3z + δ with z ∈ Z. Therefore,

6n = 6x2 + 3(2y + δ)2 + 2(3z + δ)2 + δ2

and hence

n = x2 + 2y2 + 3z2 + 2δy + 2δz + δ2 = x2 + (y + z + δ)2 + (z − y)2 + (−z)2

with (y + z + δ) + (z − y) + 2(−z) = δ ∈ {tm : t = 1, 2}.

Subcase 2.3. d = 2.
Observe that

3n− 2 = 3× 4k(16l + 10)− 2 =

{
4(12l + 7) if k = 0,

16(12l + 7) + 6 if k = 1.

If k = 2 and m = 3, then

3n− 27 = 3× 42(16l + 10)− 27 = 42(16(3l + 1) + 6).

Combining this with (2.5), we find that for some δ ∈ {1, 2m} we have 3n− 2δ2 ̸∈
E(1, 3, 6). Thus, there are x, y, z ∈ Z for which

3n− 2δ2 = 3x2 + 6y2 + (3z − δ)2 = 3x2 + 6y2 + 9z2 − 6δz + δ2

and hence

n = x2 + 2y2 + 3z2 − 2δz + δ2 = x2 + (y + z)2 + (z − y)2 + (δ − z)2

with (y + z) + (z − y) + 2(δ − z) = 2δ ∈ {2tm : t = 1, 2}.

Subcase 2.4. d = 4.
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Observe that

3n− 8 = 3× 4k(16l + 10)− 8 =


16(3l + 1) + 6 if k = 0,

42(12l + 7) if k = 1,

4(16(12l + 7) + 6) if k = 2.

Clearly, 3n− 8 ̸∈ E(1, 3, 6) by (2.5). Thus, for some x, y, z ∈ Z we have

3n− 8 = 3x2 + 6y2 + (3z − 2)2 = 3x2 + 6y2 + 9z2 − 12z + 4

and hence

n = x2 + 2y2 + 3z2 − 4z + 4 = x2 + (y + z)2 + (z − y)2 + (2− z)2

with (y + z) + (z − y) + 2(2− z) = 4× 1m.
Combining the above, we have proved part (i) of Theorem 1.3.
(ii) Suppose that any odd integer n > 2719 can be represented by x2+y2+10z2

with x, y, z ∈ Z. We want to prove by induction the claim that each n ∈ N can
be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ Z) with x+ 3y a square.

For n = 0, 1, . . . , 15, the claim can be verified via a computer.
Now fix an integer n > 16 and assume that the claim holds for smaller values

of n.
If 16 | n, then by the induction hypothesis there are x, y, z, w ∈ Z with n/16 =

x2 + y2 + z2 + w2 such that x + 3y is a square, and hence n = (4x)2 + (4y)2 +
(4z)2 + (4w)2 with 4x+ 3(4y) = 4(x+ 3y) a square.

Now we let 16 - n. If 2 - n and n 6 2719, then we can easily verify that
5n or 5n − 8 can be written as 2x2 + 5y2 + 5z2 with x, y, z ∈ Z. If 2 - n and
n > 2719, then there are x, y, z ∈ Z such that n = 10x2 + y2 + z2 and hence
5n = 2(5x)2+5y2+5z2. If n is even and n is not of the form 4k(16l+6) (k, l ∈ N),
then by Dickson [D27] there are x, y, z ∈ Z such that n = 10x2 + y2 + z2 and
hence 5n = 2(5x)2 + 5y2 + 5z2. When n = 4k(16l + 6) for some k ∈ {0, 1} and
l ∈ N, clearly

5n− 8

2
= 5× 4k(8l + 3)− 4 ̸∈ E(1, 5, 5)

by (2.6), thus there are x, y, z ∈ Z such that (5n − 8)/2 = x2 + 5y2 + 5z2 and
hence 5n− 8 = 2x2 + 5(y + z)2 + 5(y − z)2.

Since 5n or 5n− 8 can be written as 2x2 +5y2 +5z2 with x, y, z ∈ Z, for some
δ ∈ {0, 2} and x, y, z ∈ Z we have

10n− δ4 = 2(2x2 + 5y2 + 5z2) = (2x)2 + 10y2 + 10z2.

As (2x)2 ≡ −δ4 ≡ (3δ2)2 (mod 10), without loss of generality we may assume
that 2x = 10w + 3δ2 with w ∈ Z. Then

10n = δ4 + (10w + 3δ2)2 + 10y2 + 10z2
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and hence

n = 10w2 + y2 + z2 + 6δ2w + δ4 = (3w + δ2)2 + (−w)2 + y2 + z2

with (3w + δ2) + 3(−w) = δ2 a square. This concludes the induction step.

(iii) Suppose that any integer n > 1190 not divisible by 16 can be written as
x2 + 10y2 + (2z2 + 53r4)/7 with r ∈ {0, 1, 2, 3} and x, y, z ∈ Z. We want to prove
by induction the claim that each n ∈ N can be written as x2 + y2 + z2 +w2 with
x, y, z, w ∈ Z such that x+ 3y + 5z is a square.

For n = 0, 1, . . . , 1189, the claim can be verified via a computer.

Now fix an integer n > 1190 and assume that the claim holds for smaller values
of n.

If 16 | n, then by the induction hypothesis there are x, y, z, w ∈ Z with n/16 =
x2+y2+ z2+w2 such that x+3y+5z is a square, and hence n = (4x)2+(4y)2+
(4z)2 + (4w)2 with 4x+ 3(4y) + 5(4z) = 4(x+ 3y + 5z) a square.

Below we let 16 - n. Then, for some r ∈ {0, 1, 2, 3} and x, y, z ∈ Z we have

n = x2 + 10y2 +
2z2 + 53r4

7
, i.e., 7n− 5(5r2)2 = 7x2 + 70y2 + 2z2.

Thus,

7(n− (5r2)2) = 7x2 + 70y2 + 2
(
z2 − (5r2)2

)
.

As 5r2 is congruent to z or −z modulo 7, without loss of generality we may assume
that z = 7t− 5r2 for some t ∈ Z. It follows that

n− (5r2)2 = x2 + 10y2 +
2

7

(
(7t− 5r2)2 − (5r2)2

)
= x2 + 10y2 + 14t2 − 4(5r2)t

and hence

n = x2 + 10y2 + 10t2 + (2t− 5r2)2 = x2 + (3y + t)2 + (3t− y)2 + (5r2 − 2t)2

with

(3y + t) + 3(3t− y) + 5(5r2 − 2t) = (5r)2.

This concludes the induction step.

The proof of Theorem 1.3 is now complete. �

Remark 2.4. Those 3z2 − 2z with z ∈ Z appeared in the proof of Theorem 1.3(i)
are called generalized octagonal numbers, one may consult [S15] and [S16a] for
related results.
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3. Proofs of Theorems 1.4-1.5

Lemma 3.1. We have

E(1, 1, 5) = {4k(8l + 3) : k, l ∈ N}, (3.1)

and
E(1, 1, 10) ∩ 2Z = {4k(16l + 6) : k, l ∈ N}. (3.2)

Remark 3.1. (3.1) can be found in Dickson [D39, pp. 112-113], and (3.2) was a
conjecture of Ramanujan [R] proved by Dickson [D27].

Combining (1.2), (2.1), (2.2), (2.4) and (3.1)-(3.2), we immediately get the
following lemma.

Lemma 3.2. The six sets

E(1, 1, 1), E(1, 1, 2), E(1, 2, 3), E(1, 2, 6), E(1, 1, 5) and E(1, 1, 10)∩2Z (3.3)

are pairwise disjoint.

Lemma 3.3. Let n ∈ N. Then n ̸∈ E(1, 2, 6) if and only if n = x2+ y2+ z2+w2

for some x, y, z, w ∈ N with x + y = z. Also, n ̸∈ E(1, 2, 3) if and only if
n = x2 + y2 + z2 + w2 for some x, y, z, w ∈ Z with x+ y = 2z.

Proof. (i) Assume that n ̸∈ E(1, 2, 6). Then, there are x, y, z ∈ N for which

n = x2 + 2y2 + 6z2 = x2 + (y + z)2 + |y − z|2 + (2z)2.

Clearly (y+ z)+ |y− z| = 2z if y 6 z, and |y− z|+2z = y+ z if y > z. Therefore
n = x2 + u2 + v2 + w2 for some u, v, w ∈ N with u+ v = w.

Now suppose that n = x2 + y2 + z2 + w2 with x, y, z, w ∈ N and x+ y = z. If
x ≡ y (mod 2), then

n = 2

(
x+ y

2

)2

+2

(
x− y

2

)2

+(x+ y)2 +w2 = w2 +2

(
x− y

2

)2

+6

(
x+ y

2

)2

and hence n ̸∈ E(1, 2, 6). When x ̸≡ y (mod 2), without loss of generality we may
assume that y ≡ z (mod 2), hence

n = (z − y)2 + 2

(
y + z

2

)2

+ 2

(
y − z

2

)2

+w2 = w2 + 2

(
y + z

2

)2

+ 6

(
y − z

2

)2

and thus n ̸∈ E(1, 2, 6).
(ii) If n ̸∈ E(1, 2, 3), then there are x, y, z ∈ Z for which

n = x2 + 2y2 + 3z2 = x2 + (y + z)2 + (z − y)2 + z2
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with (y + z) + (z − y) = 2z.
If n = x2 + y2 + z2 + w2 with x, y, z, w ∈ Z and x+ y = 2z, then

n = 2

(
x+ y

2

)2

+ 2

(
x− y

2

)2

+ z2 + w2 = w2 + 2

(
x− y

2

)2

+ 3z2

and hence n ̸∈ E(1, 2, 3).
In view of the above, we have completed the proof of Lemma 3.3. �

Proof of Theorem 1.4. (i) Clearly, 5y2 = (2y)2 + y2 and 10y2 = (3y)2 + y2. In
view of Lemmas 3.2 and 3.3, each n ∈ N can be written as x2 + y2 + z2 + w2

with x, y, z, w ∈ N such that P (x, y, z) = 0, where P (x, y, z) may be any of the
polynomials listed in (1.3). For example, for P (x, y, z) = (x − 2y)(x + y − z) we
use the fact that E(1, 1, 5) ∩ E(1, 2, 6) = ∅.

(ii) Suppose that (1.4) holds. If n = 4k(8l + 5) for some k, l ∈ N, then there
are x, y, z ∈ N such that 8l + 5 = x2 + y2 + 13z2 and hence

n = (2kx)2 + (2ky)2 + 13(2kz)2 = (2kx)2 + (2ky)2 + (2k × 3z)2 + (2k+1z)2

with 2(2k × 3z) = 3(2k+1z). If n ∈ N \ {4k(8l + 5) : k, l ∈ N}, then n ̸∈
E(1, 2, 6) by (2.2), and hence by Lemma 3.3 there are x, y, z, w ∈ N such that
n = x2 + y2 + z2 + w2 with x + y = z. Therefore, any n ∈ N can be written as
x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with (2x− 3y)(x+ y − z) = 0.

(iii) If n = 2x2 for some x ∈ Z+, then n = x2 + 02 + x2 + 02 with x ∈ Z+

and (x − 0)x = x2. If n ̸∈ E(1, 1, 2) and n ̸= 2x2 for all x ∈ N, then there are
x, z, w ∈ N with z > 0 such that n = x2 + x2 + z2 + w2 with (x− x)z = 02.

Now suppose that n ∈ E(1, 1, 2). Then n ̸∈ E(1, 2, 6) by Lemma 3.2, and hence
by Lemma 3.3 there are x, y, z, w ∈ N with x = y+z such that x2+y2+z2+w2 = n.
If y and z are both zero, then n = w2 ̸∈ E(1, 1, 2) which leads a contradiction.
Without loss of generality we assume that z > 0. Note that (x − y)z = z2 is a
square. This concludes the proof of Theorem 1.4(iii).

(iv) If n ̸∈ E(1, 1, 1), then there are y, z, w ∈ N with y > 0 such that n =
02 + y2 + z2 + w2. As

(0 + 4y + 4z)2 + (9× 0 + 3y + 3z)2 = (5y + 5z)2,

by Pythagoras’ theorem there is a right triangle with positive integer sides 4y+4z,
3y + 3z and 5y + 5z.

Now let n ∈ E(1, 1, 1). Then n ̸∈ E(1, 2, 6) by Lemma 3.2, and hence by
Lemma 3.3 there are x, y, z, w ∈ N with x = y+z such that n = x2+y2+z2+w2.
Clearly y > 0 since n ∈ E(1, 1, 1). Observe that

(x+ 4y + 4z)2 + (9x+ 3y + 3z)2 = (5x)2 + (12x)2 = (13x)2.

So x+ 4y + 4z and 9x+ 3y + 3z are the two legs of a right triangle with positive
integer sides.
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(v) Fix n ∈ Z+. If n ̸∈ E(1, 1, 1), then there are x, y ∈ N and w ∈ Z+ such that
n = x2+y2+02+w2 and hence x2y2+y202+02x2 = x2y2+4y202+4×02x2 = (xy)2

is a square.
Now suppose that n ∈ E(1, 1, 1). Then n ̸∈ E(1, 2, 6) by Lemma 3.2, and hence

by Lemma 3.3 there are x, y, z, w ∈ N with x+y = z such that n = x2+y2+z2+w2.
Clearly w > 0 since n ∈ E(1, 1, 1). Observe that

x2y2 + y2z2 + z2x2 =(xy)2 + (x2 + y2)(x+ y)2

=(xy)2 + (x2 + xy + y2 − xy)(x2 + xy + y2 + xy)

=(x2 + xy + y2)2.

As E(1, 2, 3) ∩ E(1, 1, 1) = ∅ by Lemma 3.2, we have n ̸∈ E(1, 2, 3), and hence
by Lemma 3.3 we can write n as x2+y2+z2+w2 (x, y, z, w ∈ Z) with x+y = 2z.
Clearly w ̸= 0 since n ∈ E(1, 1, 1). Note that

x2y2 + 4y2z2 + 4z2x2 =(xy)2 + (x2 + y2)(2z)2

=(xy)2 + (x2 + y2)(x+ y)2 = (x2 + xy + y2)2.

This concludes the proof of Theorem 1.4(v).
(vi) If n ̸∈ E(1, 1, 1), then there are x, z, w ∈ N with w > 0 such that n =

x2+02+ z2+w2 and hence x4+8×03z+8×0z3 = x4+16×03z+16×0z3 = x4

is a fourth power. Below we assume that n ∈ E(1, 1, 1).
As E(1, 1, 1)∩E(1, 2, 6) = ∅ (by Lemma 3.2), we have n ̸∈ E(1, 2, 6). In view of

Lemma 3.3, there are w, x, y, z ∈ N with x+z = y such that n = x2+y2+z2+w2.
As n ∈ E(1, 1, 1), we have wx ̸= 0. Observe that

x4 + 8yz(y2 + z2) =x4 + ((y + z)2 − (y − z)2)((y + z)2 + (y − z)2)

=x4 + (y + z)4 − (y − z)4 = (y + z)4.

As E(1, 1, 1) ∩ E(1, 2, 3) = ∅ by Lemma 3.2, we have n ̸∈ E(1, 2, 3) and hence
there are v, w, z ∈ N such that n = w2+2v2+3z2 = w2+(v+ z)2+(v− z)2+ z2.
Clearly w > 0 since n ̸∈ E(1, 1, 1). Let y = v+ z and x = |v− z| = |y− 2z|. Then
n = w2 + x2 + y2 + z2 and

x4 + 16y3z + 64yz3 =x4 + 4y(2z)
(
2y2 + 2(2z)2

)
=x4 +

(
(y + 2z)2 − (y − 2z)2

) (
(y + 2z)2 + (y − 2z)2

)
=x4 + (y + 2z)4 − (y − 2z)4 = (y + 2z)4.

The proof of Theorem 1.4 is now complete. �
Proof of Theorem 1.5. (i) If n ̸∈ E(1, 1, 2), then for some x, y, z, w ∈ N with x = y
we have

n = x2 + y2 + z2 + w2
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with a(x2−y2) = 02 for any a = 1, 2, 3, and 3x2−2y2 = x2. If n ̸∈ E(1, 1, 1), then
n = x2 +02 + y2 + z2 for some x, y, z ∈ Z with x2 − 3× 02 = x2. If n ̸∈ E(1, 1, 5),
then there are x, y, z ∈ N satisfying n = 5x2+ y2 + z2 = (2x)2+x2+ y2 + z2 with
3((2x)2 − x2) = (3x)2 and (2x)2 − 3x2 = x2. Since

E(1, 1, 2) ∩ E(1, 1, 5) = E(1, 1, 1) ∩ E(1, 1, 5) = ∅

by Lemma 3.2, we conclude that both 3(x2 − y2) and x2 − 3y2 are suitable poly-
nomials.

Now suppose that n ∈ E(1, 1, 2). By (2.1), we have n = 4k(16l + 14) for
some k, l ∈ N. As n ̸∈ E(1, 1, 1) and 2 | n, there are u, v, w ∈ N satisfying
n = (2w)2 + 02 + u2 + v2 with (2w)2 − 02 an even square. Since n is even
and n ̸= 4i(16j + 6) for any i, j ∈ N, we have n ̸∈ E(1, 1, 10) by (3.2). Thus,
there are x, y, z ∈ N satisfying n = 10x2 + y2 + z2 = (3x)2 + x2 + y2 + z2 with
2((3x)2 − x2) = (4x)2 and 3(3x)2 − 2x2 = (5x)2.

In view of the above, we have proved part (i) of Theorem 1.5.
(ii) We first prove that x2 + ky2 (k = 2, 3, 5, 6, 8, 12) and 7x2 + 9y2 are all

suitable.
Let n ∈ N. If n ̸∈ E(1, 1, 1), then there are x, y, z ∈ N such that n = x2 + 02 +

y2 + z2 with x2 + k02 = x2 for any k ∈ Z+, and 9x2 + 7× 02 = (3x)2.
Now assume that n ∈ E(1, 1, 1). As n ̸∈ E(1, 1, 2) by Lemma 3.2, there are

x, y, z, w ∈ N with x = y and n = x2 + y2 + z2 + w2, hence x2 + 3y2 = (2x)2,
x2 + 8y2 = (3x)2 and 7x2 + 9y2 = (4x)2. As n ̸∈ E(1, 1, 5) by Lemma 3.2, there
are x, y, z, w ∈ N with 2x = y and n = x2 + y2 + z2 + w2, hence

x2 + 2y2 = (3x)2, y2 + 5x2 = (3x)2, x2 + 6y2 = (5x)2, x2 + 12y2 = (7x)2.

Next we show that 3x2 + 4y2, 4x2 + 5y2 and 4x2 + 9y2 are all suitable.
Let n ∈ N. If n ̸∈ E(1, 1, 1), then for some x, y, z ∈ N we have n = x2 + 02 +

y2 + z2 with 4x2 + b× 02 = (2x)2 for b = 3, 5, 9.
Now assume that n ∈ E(1, 1, 1). As n ̸∈ E(1, 1, 5) by Lemma 3.2, there are

x, y, z, w ∈ N with y = 2x such that n = x2 + y2 + z2 +w2 and hence 3y2 +4x2 =
(4x)2 and 4y2+9x2 = (5x)2. As n ̸∈ E(1, 1, 2) by Lemma 3.2, there are x, y, z, w ∈
N with y = x such that n = x2 + y2 + z2 + w2 and hence 4x2 + 5y2 = (3x)2.

Finally we prove that 2x2 + 7y2, 5x2 + 11y2 and 6x2 + 10y2 are suitable.
Let n ∈ N. If n ̸∈ E(1, 1, 2), then there are x, y, z, w ∈ N with y = x such that

n = x2 + y2 + z2 + w2 and hence

2x2 + 7y2 = (3x)2 and 5x2 + 11y2 = (4x)2 = 6x2 + 10y2.

Below we assume that n ∈ E(1, 1, 2). Then 2 | n by (2.1). As n ̸∈ E(1, 1, 5) by
Lemma 3.2, there are x, y, z, w ∈ N with y = 2x such that n = x2 + y2 + z2 + w2

and hence 5x2+11y2 = (7x)2. Since 2 | n and n ̸∈ E(1, 1, 10)∩2Z by Lemma 3.2,
there are x, y, z, w ∈ N with y = 3x such that n = x2 + y2 + z2 + w2 and hence
2y2 + 7x2 = (5x)2 and 6y2 + 10x2 = (8x)2.

In view of the above, we have completed the proof of Theorem 1.5. �
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4. Some open conjectures

Motivated by our results in Section 1, we pose the following conjectures for
further research.

Conjecture 4.1. Let a, b ∈ Z+ with gcd(a, b) squarefree. Then ax+by is suitable
if and only if {a, b} = {1, 2}, {1, 3}, {1, 24}. Also, ax − by is suitable if and only
if (a, b) is among the ordered pairs

(1, 1), (2, 1), (2, 2), (4, 3), (6, 2).

Remark 4.1. By Theorem 1.2(i), both x− y and 2x− 2y are suitable. Though we
have Theorem 1.2(iii) and Theorem 1.3(ii), we are not able to show that x + 2y
or 2x − y or x + 3y is suitable. See [S16, A273404] for the number of ordered
ways to write n = x2 + y2 + z2 + w2 with x, y, z, w ∈ N and z 6 w such that
x + 24y is a square. We also guess that any n ∈ N with n ̸= 47 can be written
as x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with x + 7y a square, and that any integer
n > 3 can be expressed as x2 + y2 + z2 +w2 (x, y, z, w ∈ N) with 3x− y a square.

Conjecture 4.2. (i) For each k = 1, 2, 3 and n ∈ Z+, there are x, y, w ∈ N and
z ∈ Z+ with n = x2 + y2 + z2 + w2 such that (x+ ky)z is a square.

(ii) Any positive integer can be written x2 + y2 + z2 + w2 with x, y, w ∈ N and
z ∈ Z+ such that (ax− by)z is a square, where (a, b) is either of the ordered pairs

(1, 2), (2, 2), (3, 2), (3, 3), (4, 2), (6, 6).

Remark 4.2. In view of Theorem 1.4(i), a(x − y)z (a = 2, 3, 6), (x − 2y)z and
(4x− 2y)z are all suitable. We also conjecture that (ax+ by)z is suitable for any
ordered pair (a, b) among

(2, 5), (3, 3), (3, 6), (3, 15), (5, 6), (5, 11), (5, 13), (5, 15), (6, 15), (8, 46), (9, 23).

Conjecture 4.3. (i) (1-3-5-Conjecture) Any n ∈ N can be written as x2 + y2 +
z2 + w2 with x, y, z, w ∈ N such that x+ 3y + 5z is a square.

(ii) Any integer n > 15 can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N
such that 3x+ 5y + 6z is twice a square.

(iii) Let a, b, c ∈ Z+ with b 6 c and gcd(a, b, c) squarefree. Then ax − by − cz
is suitable if and only if (a, b, c) is among the five triples

(1, 1, 1), (2, 1, 1), (2, 1, 2), (3, 1, 2), (4, 1, 2).

(iv) Let a, b, c ∈ Z+ with a 6 b and gcd(a, b, c) squarefree. Then ax + by − cz
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is suitable if and only if (a, b, c) is among the following 52 triples:

(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 3, 1),

(1, 3, 3), (1, 4, 4), (1, 5, 1), (1, 6, 6), (1, 8, 6), (1, 12, 4), (1, 16, 1),

(1, 17, 1), (1, 18, 1), (2, 2, 2), (2, 2, 4), (2, 3, 2), (2, 3, 3), (2, 4, 1),

(2, 4, 2), (2, 6, 1), (2, 6, 2), (2, 6, 6), (2, 7, 4), (2, 7, 7), (2, 8, 2),

(2, 9, 2), (2, 32, 2), (3, 3, 3), (3, 4, 2), (3, 4, 3), (3, 8, 3), (4, 5, 4),

(4, 8, 3), (4, 9, 4), (4, 14, 14), (5, 8, 5), (6, 8, 6), (6, 10, 8), (7, 9, 7),

(7, 18, 7), (7, 18, 12), (8, 9, 8), (8, 14, 14), (8, 18, 8), (14, 32, 14),

(16, 18, 16), (30, 32, 30), (31, 32, 31), (48, 49, 48), (48, 121, 48).

Remark 4.3. We guess that if a, b, c are positive integers with gcd(a, b, c) squarefree
such that any n ∈ N can be written as x2 + y2 + z2 + w2 (x, y, z, w ∈ N) with
ax+by+cz a square then we must have {a, b, c} = {1, 3, 5}. Concerning the 1-3-5-
Conjecture, see [S16, A271518, A273294, A273302, A278560] for related data; for
example, 43 = 12+52+42+12 with 1+3×5+5×4 = 62. We have verified parts (i)
and (ii) of Conjecture 4.3 for n up to 3× 107. The author would like to offer 1350
US dollars as the prize for the first complete solution of the 1-3-5-Conjecture.
We also conjecture that any n ∈ N can be written as x2 + y2 + z2 + w2 with
x, y, z, w ∈ Z such that x+3y+5z is a cube. For parts (iii) and (iv) of Conjecture
4.3, see the comments in [S16, A271775].

Conjecture 4.4. (i) For each c = 1, 2, 4, any n ∈ N can be written as w2 + x2 +
y2 + z2 with w, x, y, z ∈ N and y 6 z such that 2x+ y − z = ct3 for some t ∈ N.

(ii) Any n ∈ N can be written as w2 + x2 + y2 + z2 with w ∈ Z and x, y, z ∈ N
such that w + x+ 2y − 4z is twice a nonnegative cube.

(iii) Any n ∈ N not of the form 42k+1 × 7 (k ∈ N) can be written as w2 +
x2 + y2 + z2 (w, x, y, z ∈ N) with w + 2x + 3y + 5z a square. Also, for any
a, b, c, d ∈ Z+, there are infinitely many positive integers which cannot be written
as w2 + x2 + y2 + z2 (w, x, y, z ∈ N) with aw + bx+ cy + dz a square.

(iv) Let a, b, c, d ∈ Z+ with a 6 b 6 c and gcd(a, b, c, d) squarefree. Then
ax + by + cz − dw is suitable if and only if (a, b, c, d) is among the following
quadruples

(1, 1, 2, 1), (1, 2, 3, 1), (1, 2, 3, 3), (1, 2, 4, 2), (1, 2, 4, 4), (1, 2, 5, 5),

(1, 2, 6, 2), (1, 2, 8, 1), (2, 2, 4, 4), (2, 4, 6, 4), (2, 4, 6, 6), (2, 4, 8, 2).

(v) Any positive integer can be written as w2 + x2 + y2 + z2 with w+ x+ y− z
a square, where w ∈ Z and x, y, z ∈ N with |w| 6 x > y 6 z < x + y. Also, any
n ∈ N can be written as w2 + x2 + y2 + z2 with w+ x+ y− z a nonnegative cube,
where w, x, y, z are integers with |x| 6 y > z > 0.
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(vi) Any n ∈ Z+ can be written as w2+x2+y2+z2 with w ∈ Z+ and x, y, z ∈ Z
such that aw + bx+ cy + dz is a nonnegative cube, whenever (a, b, c, d) is among
the quadruples

(1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 2, 4), (1, 1, 3, 3), (8, 2, 6, 8), (8, 4, 4, 8), (8, 4, 8, 12).

Remark 4.4. See [S16, A273432, A273568, A279522, A272620 and A273458] for
related data.

Conjecture 4.5. Let a, b, c ∈ Z+ with a 6 b 6 c and gcd(a, b, c) squarefree.
Then the polynomial w(ax + by + cz) is suitable if and only if (a, b, c) is among
the five triples

(1, 2, 3), (1, 3, 6), (1, 6, 9), (5, 6, 9), (18, 30, 114).

Remark 4.5. See [S16, A271724] for the number of ways to write n = w2 + x2 +
y2 + z2 with w, y, z ∈ N and x ∈ Z+ such that w(x+ 2y + 3z) is a square.

Conjecture 4.6. (i) Any n ∈ Z+ can be written as w2+x2+y2+z2 with w ∈ Z+

and x, y, z ∈ N such that wx+ 2xy + 2yz (or 2wx+ xy + 4yz) is a square. Also,
any n ∈ Z+ can be written as w2 + x2 + y2 + z2 with w ∈ Z+, x, y, z ∈ N and
x 6 y such that 2xy + yz − zw − wx is a square.

(ii) Any n ∈ Z+ can be written as w2+x2+y2+z2 with w ∈ Z+ and x, y, z ∈ N
such that w2 + 4xy + 8yz + 32zx is a square.

(iii) For each k = 1, 2, 8, 16, 48, 336, any positive integer can be written as
w2 + x2 + y2 + z2 with w ∈ Z+ and x, y, z ∈ N such that w2 + k(xy + yz) is a
square.

(iv) Let a, b, c ∈ Z+ with gcd(a, b, c) squareferee. Then the polynomial axy +
byz + czx is suitable if and only if {a, b, c} is among

{1, 2, 3}, {1, 3, 8}, {1, 8, 13}, {2, 4, 45}, {4, 5, 7}, {4, 7, 23}, {5, 8, 9}, {11, 16, 31}.

(v) Any positive integer can be written as w2 + x2 + y2 + z2 with w ∈ Z+ and
x, y, z ∈ N such that wx + xy + 2yz + 3zx (or wx + 3xy + 8yz + 5zx) is twice a
square. Also, each n ∈ Z+ can be written as w2 + x2 + y2 + z2 with w ∈ Z+ and
x, y, z ∈ N such that 6wx+ 2xy + 3yz + 4zx = 3t2 for some t ∈ N.

Remark 4.6. See [S16, A271644, A273021 and A271665] for related data.

Conjecture 4.7. (i) Any natural number can be written as x2 + y2 + z2 + w2

with x, y, z, w ∈ N and x > y such that ax2 + by2 + cz2 is a square, provided that
the triple (a, b, c) is among

(1, 8, 16), (4, 21, 24), (5, 40, 4), (9, 63, 7), (16, 80, 25), (36, 45, 40), (40, 72, 9).
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(ii) ax2 + by2 + cz2 is suitable if (a, b, c) is among the triples

(1, 3, 12), (1, 3, 18), (1, 3, 21), (1, 3, 60), (1, 5, 15), (1, 8, 24), (1, 12, 15), (1, 24, 56),

(3, 4, 9), (3, 9, 13), (4, 5, 12), (4, 5, 60), (4, 9, 60), (4, 12, 21), (4, 12, 45), (5, 36, 40).

(iii) If a, b, c are positive integers with ax2+by2+cz2 suitable, then a, b, c cannot
be pairwise coprime.

Remark 4.7. See [S16, A271510 and A271513] for related data.

Conjecture 4.8. (i) Any n ∈ Z+ can be written as w2+x2+y2+z2 with w ∈ Z+

and x, y, z ∈ N such that (10w + 5x)2 + (12y + 36z)2 is a square.
(ii) Each positive integer can be written as x2+ y2+ z2+w2 with x, y, z, w ∈ N

and y > z such that (x+ y)2 + (4z)2 is a square.
(iii) Any integer n > 5 can be written as x2 + y2 + z2 +w2 with x, y, z, w ∈ N,

x+ y > 0 and z > 0 such that (8x+12y)2+(15z)2 is a square (i.e., 8x+12y and
15z are the two legs of a right triangle with positive integer sides).

(iv) Any n ∈ N can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N and
x+ y > z such that (x+ y + z)2 + (4(x+ y − z))2 is a square.

(v) Any n ∈ Z+ can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N and
y < z such that x+8y+8z+15w and 6(x+ y+ z+w) are the two legs of a right
triangle with positive integer sides. Also, all the polynomials

(x+ 3y + 6z + 17w)2 + (20x+ 4y + 8z + 4w)2,

(x+ 3y + 9z + 17w)2 + (20x+ 4y + 12z + 4w)2,

(x+ 3y + 11z + 15w)2 + (12x+ 4y + 4z + 20w)2,

(3(x+ 2y + 3z + 4w))2 + (4(x+ 4y + 3z + 2w))2,

(3(x+ 2y + 3z + 4w))2 + (4(x+ 5y + 3z + w))2

are suitable.

Remark 4.8. This conjecture is particularly mysterious since it is related to
Pythagorean triples. See [S16, A271714, A273108, A273107 and A273134] for
related data.

Conjecture 4.9. (i) Any n ∈ Z+ can be written as w2 + x2(1 + y2 + z2) with
w, x, y, z ∈ N, x > 0 and y ≡ z (mod 2). Moreover, any n ∈ Z+ with n ̸= 449
can be written as 4k(1 + x2 + y2) + z2 with k, x, y, z ∈ N and x ≡ y (mod 2).

(ii) Each n ∈ Z+ can be written as 4k(1 + x2 + y2) + z2 with k, x, y, z ∈ N and
x 6 y 6 z.

(iii) Any n ∈ Z+ can be written as 4k(1 + 5x2 + y2) + z2 with k, x, y, z ∈ N,
and also each n ∈ Z+ can be written as 4k(1 + x2 + y2) + 5z2 with k, x, y, z ∈ N.
Remark 4.9. This conjecture was motivated by Theorem 1.2(v). We can show the
first part provided that any integer n > 432 can be written as 2x2+2y2+z(4z+1)
with x, y, z ∈ Z. Under the GRH we are able to prove Conjecture 4.9(iii) with the
help of the work in [KS]. See [S16, A275738, A275656, A275675 and A275676] for
related data.
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Conjecture 4.10. (i) x2+kyz (k = 12, 24, 32, 48, 84, 120, 252), 9x2−4yz, 9x2+
140yz, 25x2 + 24yz and 121x2 − 20yz are all suitable.

(ii) The polynomials w(x2 + 8y2 − z2), (3x2 + 13y2)z, (5x2 + 11y2)z, (15x2 +
57y2)z, (15x2 + 165y2)z and (138x2 + 150y2)z are all suitable.

(iii) Any positive integer can be written as w2 + x2 + y2 + z2 with w ∈ Z+ and
x, y, z ∈ N such that 36x2y+12y2z+z2x (or x3+4yz(y−z), or x3+8yz(2y−z))
is a square.

(iv) Let a and b be nonzero integers with gcd(a, b) squarefree. Then the poly-
nomial ax4 + by3z is suitable if and only if (a, b) is among the ordered pairs

(1, 1), (1, 15), (1, 20), (1, 36), (1, 60), (1, 1680), (9, 260).

(v) For each triple (a, b, c) = (1, 20, 60), (1, 24, 56), (9, 20, 60), (9, 32, 96), any
n ∈ Z+ can be written as x2+ y2+ z2+w2 with x, y, z ∈ N and w ∈ Z+ such that
ax4 + by3z + cyz3 is a square.

Remark 4.10. See [S16, A272888, A272332, A279056, A272336, A280831 and
A272351] for related data and comments. Part (iii) of Conjecture 4.10 looks very
curious. The author ever guessed that x2−4yz, x2+4yz and x2+8yz are suitable,
then his student You-Yin Deng made a clever observation:

x2+2y2+6z2 = x2+(y+z)2+(y−z)2+(2z)2 with (2z)2+4(y+z)(y−z) = (2y)2.

Since x2±4yz = x2± (y+z)2∓ (z−y)2, and x(x+y−z) is suitable (cf. Theorem
1.4(i)), x2+4yz and x2− 4yz are indeed suitable. The author’s student Yu-Chen
Sun has proved that x2 + 8yz is also suitable.

Conjecture 4.11. (i) Any positive integer can be written as x2 + y2 + z2 + w2

with x, y, z, w ∈ N and z < w such that 4x2 + 5y2 + 20zw is a square. Also, the
polynomials x2+8y2+8zw, (3x+5y)2−24zw, (x−2y)2+24zw and (x−3y)2+16zw
are suitable.

(ii) The polynomials x2 + 3y2 + 4z2 + (x + y + z)2, x2 + 3y2 + 5z2 − 8w2,
(x − 2y)2 + 8z2 + 16w2, 4(x − 3y)2 + 9z2 + 12w2, (x + 2y)2 + 8z2 + 40w2 and
9(x+ 2y)2 + 16z2 + 24w2 are all suitable.

(iii) The polynomial w2x2 + 3x2y2 + 2y2z2 is suitable.
(iv) Any positive integer can be written as w2 + x2 + y2 + z2 with w ∈ Z+ and

x, y, z ∈ N such that w2x2 + 5x2y2 + 80y2z2 + 20z2w2 is a square.

Remark 4.11. See [S16, A272084, A271778, A271824, A273278, A269400 and
A262357] for related data and more similar conjectures.

Conjecture 4.12. (i) Let a, b, c, d ∈ Z+ with a 6 b and c 6 d, and gcd(a, b, c, d)
squarefree. Then ax + by − cz − dw is suitable if and only if (a, b, c, d) is among
the quadruples

(1, 2, 1, 1), (1, 2, 1, 2), (1, 3, 1, 2), (1, 4, 1, 3),

(2, 4, 1, 2), (2, 4, 2, 4), (8, 16, 7, 8), (9, 11, 2, 9), (9, 16, 2, 7).
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(ii) The polynomial ax2 + by2 − cz2 − dw2 is suitable if (a, b, c, d) is among the
quadruples

(3, 9, 3, 20), (5, 9, 5, 20), (5, 25, 4, 5), (9, 81, 9, 20), (12, 16, 3, 12), (16, 64, 15, 16),

(20, 25, 4, 20), (27, 81, 20, 27), (30, 64, 15, 30), (32, 64, 15, 32), (48, 64, 15, 48).

Remark 4.12. We also conjecture that ax2 − by2 − cz2 is suitable if (a, b, c) is
among the triples

(21, 5, 15), (36, 3, 8), (48, 8, 39), (64, 7, 8), (40, 15, 144), (45, 20, 144), (69, 20, 60).

Conjecture 4.13. (i) The polynomial xyz(x+ 9y + 11z + 10w) is suitable.
(ii) Any n ∈ Z+ can be written as x2 + y2 + z2 + w2 with x ∈ Z+, y, z, w ∈ N

and y > z such that xyz(x+ 3y + 13z) is a square.
(iii) Any n ∈ Z+ can be written as x2+y2+z2+w2 with xy(3x+5y+2z+3w)

(or xy(x+ 11y + z + 2w), or 2xy(x + 2y + z + 2w), or 2xy(x + 6y + z + 2w)) a
square, where x, y, z, w are nonnegative integers with w > 0 (or z > 0).

(iv) The polynomial xy(ax2 + by2 + cz2) is suitable whenever (a, b, c) is among
the triples

(1, 8, 20), (3, 5, 15), (6, 14, 4), (7, 9, 5), (7, 29, 5), (18, 38, 18), (39, 81, 51).

(v) If (a, b, c) is one of the six triples

(1, 2, 4), (1, 2, 9), (1, 3, 4), (2, 3, 4), (2, 4, 6), (4, 8, 10),

then any n ∈ Z+ can be written as w2 + x2 + y2 + z2 with w ∈ Z+ and x, y, z ∈ N
such that w(25w + 24(ax+ by + cz)) is a square.

Remark 4.13. See [S16, A267121, A260625, A261876 and A268197] for related
data.

Conjecture 4.14. (i) Any n ∈ N can be written as x2 + y2 + z2 + w2 with
x, y, z, w ∈ N such that xy + 2zw or xy − 2zw is a square. Also, each n ∈ N can
be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ N and max{x, y} > min{z, w}
such that xy + zw/2 or xy − zw/2 is a square.

(ii) Any n ∈ N can be written as x2 + y2 + z2 + w2 with x, y, z ∈ N, w ∈ Z
and x > z such that 3x2y + z2w is a square. Also, for each ordered pair (a, b) =
(7, 1), (8, 1), (9, 2), any n ∈ N can be written as x2+y2+z2+w2 with x, y, z ∈ N
and w ∈ Z such that ax2y + bz2w is a square.

(iii) Any n ∈ Z+ can be written as x2 + y2 + z2 + w2 with x ∈ Z+, y ∈ N and
z, w ∈ Z such that xy+yz+zw is a fourth power. Also, any n ∈ Z+ can be written
as x2 + y2 + z2 +w2 with x, y, z ∈ Z and w ∈ Z+ such that xy + yz + 2zw+ 2wx
is a fifth power.

Remark 4.14. See [S16, A270073, A272977 and A273826] for related data. We
have verified Conjecture 4.14(i) for all n = 0, 1, . . . , 2× 105.
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Conjecture 4.15. Any n ∈ N can be written as p5(u) + p5(v) + p5(x) + p5(y) +
p5(z) with u, v, x, y, z ∈ N such that u+2v+4x+5y+6z is a pentagonal number,
where p5(k) with k ∈ N denotes the pentagonal number k(3k − 1)/2.

Remark 4.15. As conjectured by Fermat and proved by Cauchy, each natural
number can be written as the sum of five pentagonal numbers (cf. [N96, pp. 27-
34] or [MW. pp. 54-57]). See [S16, A271608] for some data related to Conjecture
4.15.

Conjecture 4.16. (i) Any n ∈ N can be written as
∑9

i=1 x
3
i with xi ∈ N such

that
x1 + x2 + x3 + 2x4 + 3x5 + 4x6 + 4x7 + 9x8 + 15x9

is a cube.
(ii) Any n ∈ N can be written as

∑9
i=1 x

3
i with xi ∈ N such that

x3
1 + x3

2 + x3
3 + 2x3

4 + 3x3
5 + 4x3

6 + 5x3
7 + 14x3

8 + 19x3
9

is a cube.
(iii) Any n ∈ N can be written as

∑9
i=1 x

3
i with xi ∈ N such that

∑9
i=1 ix

4
i (or∑9

i=1 ix
2
i ) is a square.

Remark 4.16. It is well-known that any natural number is the sum of nine nonneg-
ative cubes (cf. [N96, pp. 41-43]). We even conjecture further that any n ∈ N can
be written as u3 + v3 +2x3 +2y3 +3z3 with u, v, x, y, z ∈ N (cf. [S16, A271099]).
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