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SUMS OF FOUR POLYGONAL NUMBERS WITH
COEFFICIENTS

XIANG-ZI MENG AND ZHI-WEI SUN

ABSTRACT. Let m > 3 be an integer. The polygonal numbers of order
m + 2 are given by ppy2(n) = m(5) +n (n =0,1,2,...). A famous
claim of Fermat proved by Cauchy asserts that each nonnegative integer
is the sum of m + 2 polygonal numbers of order m + 2. For (a,b) =
(1,1),(2,2),(1,3),(2,4), we study whether any sufficiently large integer
can be expressed as

Pmt2(21) + Pma2(22) + apmi2(23) + bpmya(ra)

with 1,29, x3, x4 nonnegative integers. We show that the answer is
positive if (a,b) € {(1,3),(2,4)}, or (a,b) = (1,1) & 4 | m, or (a,b) =
(2,2) & m # 2 (mod 4). In particular, we confirm a conjecture of Z.-W.
Sun which states that any natural number can be written as pg(z1) +
pe(x2) + 2pg(x3) + 4pe(x4) with x1, x9, x3, T4 nonnegative integers.

1. INTRODUCTION

Let m € ZT = {1,2,3,...}. The polygonal numbers of order m + 2
(or (m + 2)-gonal numbers), which are constructed geometrically from the

regular polygons with m + 2 sides, are given by
mn? — (m —2)n

Pmi2(n) ::m(g)—i-n: 5 forne N=14{0,1,2,...}. (1.1)

Clearly,

pm+2(0) = 07 pm+2(1) = 17 pm+2(2) =m+ 27 pm+2(3) =3m + 3a

and ppi2(x) with @ € Z are called generalized (m + 2)-gonal numbers. It
is easy to see that generalized hexagonal numbers coincide with triangular

numbers (i.e., those p3(n) = n(n + 1)/2 with n € N). Note that
n(3n —1
pa(n) =n?, ps(n) = %, pe(n) =n(2n —1) = p3(2n — 1).
Fermat’s claim that each n € N can be written as the sum of m+2 polygonal
numbers of order m+2 was proved by Lagrange in the case m = 2, by Gauss

in the case m = 1, and by Cauchy in the case m > 3 (cf. [9, pp. 3-35] and [7,
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pp. 54-57]). In 1830 Legendre refined Cauchy’s polygonal number theorem
by showing that any integer N > 28m? with m > 3 can be written as

Pmt2(21) + Prmta(T2) + Pmga(@3) + P2 (@) + 05 (V)

where 1,79, 23,24 € N, 6,,(N) = 0 if 2 4 m, and 6,,(N) € {0,1} if 2 |
m. Nathanson ([8] and [9, p.33]) simplified the proofs of Cauchy’s and
Legendre’s theorems.

In 1917 Ramanujan [10] listed 55 possible quadruples (a, b, ¢, d) of positive
integers with ¢ < b < ¢ < d such that any n € N can be written as
ax’+by*+cz? +dw? with z,y, z,w € Z, and 54 of them were later confirmed
by Dickson [2] while the remaining one on the list was actually wrong.

Recently, Sun [12] showed that any positive integer can be written as the
sum of four generalized octagonal numbers one of which is odd. He also
proved that for many triples (b, ¢, d) of positive integers (including (1,1,3),
(1,2,2) and (1,2,4)) we have

{pg(:vl) + bpg(QTz) + Cpg(ivg) + dp8($4) D X1,T2,T3,T4 € Z} =N.

In [12, Conjecture 5.3], Sun conjectured that any n € N can be written as
pe(x1) + pe(xa) + 2ps(x3) + 4pe(x4) With 1, x9, 23,24 € N.

Motivated by the above work, for (a,b) = (1,1),(2,2),(1,3),(2,4) and
m € {3,4,5,...}, we study whether any sufficiently large integer can be

written as

pm+2(x1) +pm+2($2) + apm+2(1:3) + bpm+2($4) with X1,T2,T3,T4 € N.

Now we state our main results.

Theorem 1.1. Let m € Z* with 4 | m.

(i) Any integer N = 28m® can be expressed as

DPm+2(%1) + Prmg2(T2) + Dmt2(®3) + Pma2(xs) (21,22, 23,24 € N).  (1.2)

(ii) There are infinitely many positive integers not of the form py,a(x1)+

Pmaa(2) + Pmaa(w3) + pmya(xy) with xq, x9, x5, 24 € N,

Remark 1.1. This can be viewed as a supplement to Legendre’s theorem.
By Theorem 1.1(ii), there are infinitely many positive integers none of which
is the sum of four octagonal numbers; in contrast, Sun [12] showed that any

n € N is the sum of four generalized octagonal numbers.
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Corollary 1.1. We have
{ps(x1) + po(w2) + pe(w3) + pe(wa) © @1, 20, 3,74 € N}
=N\ {5, 10, 11, 20, 25, 26, 38, 39, 54, 65, 70, 114, 130}

and hence any n € N can be written as the sum of a triangular number and

(1.3)

three hexagonal numbers. Also, any integer n > 2146 can be written as the

sum of four decagonal numbers and thus

{p1o(z1) + pro(z2) + pro(xs) + pro(xs) : 1,20, 23,24 € Z} = N\ {5, 6, 26}.
(1.4)

Proof. Via a computer, we can easily verify that
5, 10, 11, 20, 25, 26, 38, 39, 54, 65, 70, 114, 130

are the only natural numbers smaller than 28 x 4% which cannot be written as
the sum of four hexagonal numbers, but all these numbers can be expressed
as the sum of a triangular number and three hexagonal numbers. Also,
every n = 2147, ...,28 x 8 — 1 is the sum of four decagonal numbers, and
5, 6 and 26 are the only natural numbers smaller than 2147 which cannot be
written as the sum of four generalized decagonal numbers. Now it suffices
to apply Theorem 1.1 with m =4, 8. O

Remark 1.2. Sun [11, Conjecture 1.10] conjectured that any n € N can be
written as the sum of two triangular numbers and a hexagonal number.
Krachun [6] proved that
{ps(—w) + pe(—2) + ps(y) +ps(2) : w,z,y,2 € N}
={ps(—w) + 2ps(—7) + ps(y) + 2ps(2) : w,z,y, 2 €N} =N,

which was first conjectured by the second author [12].

Theorem 1.2. Let m > 3 be an integer.
(i) Suppose that 24 m or 4 | m. Then any integer N > 1628m3 can be

written as

Prmt2(21) + Pt (72) + 2Pmi2(23) + 2pia(w4) (21, 72,23, 24 €N). (1.5)

(ii) If m = 2 (mod 4), then there are infinitely many positive inte-
gers not represented by pmi2(x1) + Pmi2(T2) + 2pmio(23) + 2Dma2(xs) with
T1,T2,T3,Tq € N.

Remark 1.3. Actually our proof of Theorem 1.2(i) given in Section 3 allows
us to replace 1628m? by 418m? in the case m = 1 (mod 2). By Theorem
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1.2(ii), there are infinitely many positive integers not represented by pg(z1)+
ps(22)+2ps(x3)+2ps(xy) with 1, 29, x3, 24 € N; in contrast, Sun [12] proved
that any n € N can be written as ps(z1) + ps(x2) + 2ps(z3) + 2ps(x4) with

T1,T2,T3,Tq € Z.
Corollary 1.2. We have

{ps(x1) + ps(w2) + 2p5(x3) + 2ps(wa) = @1, T2, 23,24 € N} =N, (1.6)
{ps(x1) + pe(22) + 2p6(w3) + 2p6(x4) : 21, T2, 73,24 € N} 7)
=N\ {22, 82, 100}, '

and
{pr(x1) + pr(22) + 2p7(x3) + 2p7(24) 0 21, T2, 73, 74 € N}

1.8
= N\ {13, 26, 31, 65, 67, 173, 175, 215, 247}. (18)

Also, for each k =9,10,11, any integer n > Cj can be written as px(x1) +
r(x2)+2pk(x3) +2pk(4) with 1, x9, 23, x4 € N, where Cy = 925, C = 840
and Cy; = 1799. Therefore,

{ps(w) + ps(z) + 2p6(y) + 2ps(2) : w,z,y,z € N} = (1.9)

{2ps(w) + pe(2) + po(y) + 2ps(2) : w,x,y,z € N} =N, (1.10)

{pr(w) + pr(x) +2p7(y) + 2p7(2) : we Z & x,y,z € N} =N, (1.11)
{po(w) + 2po(z) + po(y) + 2p9(2) : w,z € Z & y,z € N} =N, (1.12)
{p1o(w) + 2p10(x) + p1o(y) + 2p10(2) : w,x € Z & y,z € N} =N, (1.13)

and
{pu(w)+2p1i (@) +p1i(y)+2p1i(2) + w,x € Z& y, 2 € Np = N\{7}. (1.14)

Proof. Note that {ps(w) : w € Z} = {ps(w) : w € N}. It suffices to
apply Theorem 1.2(i) with m € {3,4,5,7,8,9} and check those n € N with
n < 1628m? via a computer. O

Remark 1.4. (1.6) appeared as part of [12, Conjecture 5.2(ii)], and it indi-
cates that the set {ps(z) +2p5(y) : x,y € N} is an additive base of order 2.
For positive integers a, b, ¢ with {aps(x)+bps(y)+cps(2) : x,y,2 € Z} =N,
see [11] and [4].

Theorem 1.3. Let m > 3 be an integer. Then each integer N > 924m?>
can be expressed as

Pm+2(21) + Pmt2(T2) + Dms2(x3) + 3pmia(z4) (21,22, 23,24 € N). (1.15)
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Corollary 1.3. We have

{ps(x1) +ps(w2) + ps(w3) +3ps(wa) © @1, 29, 23,24 € N} =N\ {19}, (1.16)
{ps(x1) + pe(w2) + pe(w3) + 3ps(w4) : x1, 72,73, 74 € N} (L17)
=N\ {14, 23, 41, 42, 83} '

and
{pr(z1) + pr(x2) + pr(23) + 3pr(wa) © 1, T2, 73,24 € N}
—N\ {13, 16, 27, 31, 33, 49, 50, 67, 87, 178, 181, 259}.
Also, for each k = 8,9,10, any integer n > My, can be written as px(z1) +
pr(22) + pr(23) + 3pr(x4) with xq, x9, x3, 24 € N, where Mg = 435, Mg = 695
and Myy = 916. Therefore
{p7(w) + pr(z) + pr(y) + 3p7(2) : weZ & x,y,2z € N} =N, (1.19)

{po(z1) + po(x2) + po(x3) + 3pg(xa) : @1, T2, 23,24 € Z} =N\ {17},
(1.20)

{p1o(x1) + pro(x2) + pro(xs) + 3p1o(xs) © @1, 29, 3,24 € Z} =N\ {16, 19}.
(1.21)

(1.18)

Proof. 1t suffices to apply Theorem 1.3 with m € {3,4,5,6,7,8} and check
those n € N with n < 924m3 via a computer. ([

Remark 1.5. Guy [5] thought that 10, 16 and 76 might be the only natural
numbers which cannot be written as the sum of three generalized heptag-
onal numbers. The second author [12, Remark 5.2 and Conjecture 1.2]
conjectured that {p7(x) + p7(y) +p7(2) : x,y,2 € Z} = N\ {10, 16, 76,307}
and

{ps(z) + ps(y) + 3ps(2) : z,y,z € Z} =N\ {7,14,18,91}.

Theorem 1.4. Let m > 3 be an integer. Then any integer N > 1056m?
can be written as

Pmt2(21) + Pmta(T2) + 2Dmy2(23) + 4ppga(a) (21, 22, 23,24 € N). (1.22)

Corollary 1.4. We have

{ps(x1) + ps(xa) + 2ps(x3) + 4ps(x4) © @1, T2, 23, 24 € N} =N| (1.23)

{ps(x1) + pe(w2) + 2pe(x3) + 4pe(z4) : 21, T2, 23,74 € N} =N, (1.24)

{p7(x1) + pr(xa) + 2p7(x3) + 4p7(xy) © 21, T2, w3, 24 € N} =N\ {17,51},
(1.25)

{ps(z1) + ps(w2) + 2ps(w3) + 4ps(ws) © x1, T2, 3, 74 € N}

(1.26)
= N\ {19, 30, 39, 59, 78, 91},
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and
{po(@1) + po(x2) + 2po(w3) + 4pg(w4) : 1, 79,23, 24 € N} (1.27)
=N\ {17, 21, 34, 41, 44, 67, 89, 104, 119, 170, 237, 245, 290}. '
Also, for each k =10,11,12 any integer n > Ny, can be written as py(x1) +
pk(ZL‘Q) —+ 2pk(l‘3) + 4pk({L‘4) with T1,T9,T3,T4 - N, where N10 = 333, N11 =
734 and Nyo = 1334. Therefore,
{pr(w) + pr() + 2pe(y) + 4pr(z) : w € Z & w,y, 2 €N} =N (1.28)
for k=179, and
{pr(w) + pre(x) + 2pk(y) + 4p(2) : w,x,y,2 € Z} =N (1.29)
for k=8,10,11,12.

Proof. 1t suffices to apply Theorem 1.4 with m € {3,...,10} and check
those n € N with n < 1056m? via a computer. O

Remark 1.6. (1.23) and (1.24) were first conjectured by the second author
[12, Conjecture 5.2(ii) and Conjecture 5.3|. Sun [12, Remark 5.2] also con-
jectured that

{pr(x) + 2p7(y) + 4pr(2) : 2, y,z € Z} = N\ {131, 146}.

We will show Theorems 1.1-1.4 in Sections 2-5 respectively.
Throughout this paper, for a prime p and a,n € N, by p*||n we mean
p® | n and p® § n. For example, 4||n if and only if n = 4 (mod 8).

2. PROOF OF THEOREM 1.1

We first give a lemma which is a slight variant of [9, Lemma 1.10].

Lemma 2.1. Let I,m, N € Z* with N > 7I?m3. Then the length of the
interval
1 6N 2 SN
P =Y o Y S Y it 2.1
! [2 + m "3 * m ] (21)

Proof. Let Ly denote the length of the interval I;. Then L; = /8x —
6z — 3+ 1/6, where x = N/m > TI?m?. Let ly = Im — 1/6. Then

Li>Im < V8 > +vbxr—3+1
& 20+ 3 —1[5 > 2lyv/6xr —3
= drx(z+3-T1)+ (5 —3)*+ 1212 >0

1s greater than Im.
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As x > 7I2, by the above we have L; > Im. This completes the proof. [
The following lemma is a slight modification of [9, Lemma 1.11].

Lemma 2.2. Let a,b,m, N € Z* with m > 3 and

2
Nz%(a—b)—i—b} 3
Suppose that b belongs to the interval Iy given by (2.1). Then

V> <4a and 3a <b®+2b+4. (2.2)

Proof. Observe that

and
2 N
62—4a:b2—4(1——>b—8—

m m

-2 (02 )

Asm >3 and b € I, we have

2 SN 2 2\? 2N
b< o4y <212 )+2q/(1=-2) + 22
3 m m m m

and hence b* — 4a < 0. On the other hand, since (1/2 — 3/m)? < 1 and
b € I; we have

1 6N 1 3 1 3\? 6N
b> -4/ ——3>-—"44/[=-2) -4+ —
2 m 2 m 2 m m

and hence

b 244 — 3a = — (1_E)b+2<4_@) |
A (e

This proves (2.2). O

Lemma 2.3. Let a, b, c be positive integers and let x,y, z be real numbers.

Then we have the inequality

(ax + by + c2)* < (@ + b+ c)(ax® + by* + cz?). (2.3)
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Proof. By the Cauchy-Schwarz inequality (cf. [9, p.178]),
(Va(vaz) + VB(Vby) + Ve(vez))
< (Vo + (Vo) + (Vo) ((Vaz)® + (Voy) + (vez)?)

This yields the desired (2.3). O
The following lemma with 2 t ab is usually called Cauchy’s Lemma (cf.
9, pp. 31-34]).

Lemma 2.4. Let a and b be positive integers satisfying (2.2). Suppose that
2tab, or2|la and 2 | b. Then there exist s,t,u,v € N such that

a=s+t*+u*+v* and b=s+t+u+wv. (2.4)
Proof. By the Gauss-Legendre theorem (cf. [9, Section 1.5]), we have
{22+ >+ 2% 2,y,2€Z} =N\ {481 +7): k1 € N}. (2.5)

We claim that there are z,y, 2 € Z with 4a — b*> = 2% + y® + 2? such that
all the numbers

b+r+y+=z . b+x—y—=z2
S=——— e ——

4 ’ 4 ’
b—x+y—=z2 b—x—y+=z2 (2:6)
Uy=—m——, V= ——
4 ’ 4

are integers.

Case 1. 21 ab.

In this case, 4a — b*> = 3 (mod 8) and hence 4a — b* = 22 + y? + 22 for
some z,y,z € Z with 2 { zyz. Without loss of generality, we may assume
that z =y = 2 = b (mod 4). (If z = —b (mod 4) then —x = b (mod 4).)
Thus the numbers in (2.6) are all integers.

Case 2. 2|la and 2 | b.

Write a = 2ag and b = 2by with ag,by € Z and 2 t ag. Since 2ag — b3 =
1,2 (mod 4), we have 2a¢— b2 = z2+y2 + 22 for some zg, yo, 20 € Z. Without
loss of generality, we may assume that o = by (mod 2) and yy = 2y (mod 2).
Set = 2wy, y = 2yp and z = 22p. Then 4a—b? = 4(2a9—b3) = > +y*+ 22,

and the numbers in (2.6) are all integers.
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In either case, there are z,y, z € Z for which 4a — b*> = 22 + 3% + 22 and
s,t,u,v € Z, where s,t,u,v are as in (2.6). Obviously, s+t+u-+v = b and

32—|—t2+u2—|—v2
2 2 2 2
s+t s—1 u—+v uUu—"v
=2 2 2 2
(7) w2 (07) () ()
b+’ y—l—z2 b—z\> y—22
=2 2 2 2
() 2 (1) 2 (557) (5
I e e

4

In view of Lemma 2.3 and the second inequality in (2.2), we have

(lz] + |y + |2))* < 3(2® + y* + 22) = 3(da — b%) < (b+4)%

Therefore

b— |zl — |yl —
PSPPSR i ol ] el

and hence s,t,u,v € N. O
Now we need one more lemma which is well known (cf. [1, p.59]).

Lemma 2.5. For any n € Z*, we have

ra(n) =8> d (2.7)

where

ra(n) = {(w,z,y,2) € Z* 1 w* +2* +y* + 2> =n}|.

Proof of Theorem 1.1. (i) Let I; = [«, 5] be the interval given by (2.1). As
N > 7 x 2’°m?, by Lemma 2.1 the length of the interval I; is greater than
2m. Choose by € {[a]+7r: r=0,...,m—1} with by = N (mod m). Then
by =by+m < [a] +2m —1 < o+ 2m < . Thus both by and b; lie in I;.
Note that

%(N—b1)+b1— (%(N—bo)jtb()) =m —2=2 (mod 4).

So, for some b € {by, b1} and a = 2(N — b) + b we have 2 { ab, or 2||a and
2 | b. Obviously,

2 2
b>minl; >0, a:—N+(1——)b>O, andN:@(a—b)ij.
m m 2
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Applying Lemmas 2.2 and 2.4, we see that there are s,t,u,v € N satisfying
(2.4). Therefore,

N:%(a—b)—f-b
:%(52—s+t2—t+u2—u—i—v2—v)+s+t+u+v

:pm-l—Q(s) + pm+2<t) + Pm+2 (u) + pm+2(v>'

(ii) Write m = 4l with [ € Z*. Let ¢ denote Euler’s totient function. We
want to show that none of the positive integers
4kg0(2l+1) -1

4ZQXT (1{521,2,)

can be written as 2?21 Pmaa(x;) with zq, 29, x5, 24 € N,
Suppose that for some n € Z* divisible by ¢(2[+1) there are w, x,y,z € N
such that

4" — 1
A X S =Pmra(w) + s (2) + Prsa(y) + Pt (z)
4 + 2
:T+(w2+w2+y2—l—22—w—x—y—z)+w+x+y+z.
Then

AP = (2L+Dw =12+ (20 + D= D2+ (2L + Dy =D+ (2L + 1)z — 1)

As ry(4"1?) = ry(41%) by Lemma 2.5, there are wy, To, Yo, 20 € Z with
wg + 23 + Y2 + 22 = 41? such that

(2l 4+ Dw — 1 =2"wp, (214 1)x —1 = 2"x,,
204+ 1)y —1=2"yy, 21+ 1)z —1=2"%,.
Since 2" =1 (mod 2{ + 1) by Euler’s theorem, we have
Wo = To = Yo = 20 = —! (mod 20 + 1).
As w2 + 22 + y2 + 22 = 41?, we must have wy = x¢g = yo = 20 = —I. Thus
(2l + Dw = 2"wo + 1 = 1(1 — 2") < 0, which contradicts w € N. O
3. PROOF OF THEOREM 1.2

Lemma 3.1. Let I,m, N € ZT with N > 11m?(Ilm + 1). Then the length

of the interval
3 [10N [12N
I, = [— +\/— =3, 1+14/—
2 m m

s greater than Im.

(3.1)
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Proof. The length Lo of the interval I, is v/12x — /100 — 3 — 1/2, where
x=N/m > 1lm(lm +1). Let Iy = Im + 1/2. Then

Ly >1lm <= 12z > V10x — 3+,
& 20 +3—15+3 > 2lpv/10z — 3
— da(r— 115 +3) + (I — 3)> + 12 > 0.

As
11
x> 1Um(Im + 1) > 111°m* + 11Im + - 3= 11 — 3,
we have Ly > Im as desired. O
Lemma 3.2. Let a,b,m, N € Z* with m > 3 and
3
Nz%(a—b)—i—b} .
Suppose that b belongs to the interval Iy given by (3.1). Then
b> < 6a and 5a < b* + 2b+ 6. (3.2)

2 2N
a:(l——>b+—.
m m

) 12N
b2—6a=b2—6(1——>b——
m m

2 2
(-2 2022
m m m
As b € I, we have
12N 2 2\? 12N
b<1+,/_<3(1__)+¢9(1__> REL
m m m m

and hence b — 6a < 0. On the other hand,

1 10N
b2+2b+6—5a:b2—(3——O>b+(6—0—)
m

(22 )
since (3/2 — 5/m)? <>9O/4 < 3 and

3 10N 3 5 3 5\? 10N

b> 4/ —— —3>-—Z44/[2-2) —64+ —.
2 m 2 m 2 m m
(3.2

). O

Proof. Note that

Thus

This proves
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Lemma 3.3. Let a and b be positive integers with a = b (mod 2) satisfying
(3.2). Suppose that 2 1 a or 4||a, and that 3 | a or 310b. Then there exist
s,t,u,v € N such that

a=s"+1*+2u*+20% and b= s+t + 2u + 2uv. (3.3)

Proof. 1If n € N is not of the form 4%(8] + 7) with k,l € N, then by (2.5)
there are z,u,v € Z with u = v (mod 2) such that
5 (u + 0)2 ‘
2

2
n:x2+u2+02:x2+2(u2v)

We claim that there are x,y, z € Z with 6a — b*> = 2% + 2y® + 222 such that

all the numbers

bt +2y+22 tib—x—2y+22
- 6 T 6 ’

b—zr+y—=z b+x—y—=z2 (3-4)
S

6

S

are integral.

Case 1. 3 1.

Ifa=b=1 (mod 2), then 6a — 1> = 1 (mod 4). When 4||a and 2 | b,
we have 6a — b* = 4,8 (mod 16). Thus 6a — b* = 22 + 2y* + 222 for some
z,y,z € Z. Clearly, x = b (mod 2) and y = z (mod 2). Note that

2%+ 2y* +22° = 6a — b* = 2 (mod 3).

As 2% # 2 (mod 3), we have 31y or 31 2. Without loss of generality, we
assume that 3 1 z and moreover z = b (mod 3). (If 2 = —b (mod 3) then
—2z = b (mod 3).) As 22 —y*> = 2% + 2y* = 0 (mod 3), without loss of
generality we may assume that x = y (mod 3). Now it is easy to see that
all the numbers in (3.4) are integers.

Case 2. 3| a and 3| b.

In this case, a = 3ay and b = 3b, for some ag, by € Z. If a = b =1 (mod 2),
then 2ag — b3 = 1 (mod 4). When 4|ja and 2 | b, we have 2aq — b3 =
4,8 (mod 16). Thus 2ay — b2 = 23 + 2y2 + 22¢ for some xg, yo, 20 € Z. It
follows that zq = by (mod 2) and yg = 2¢ (mod 2) since ag = by (mod 2). Set
r = 310, y = 3yo and z = 3z9. Then 6a — b* = 9(2ag — b3) = 2 + 2y + 22
and all the numbers in (3.4) are integers.

By the above, in either case, there are x,y, 2 € Z for which 2% +2y%4-222 =
6a — b* and s,t,u,v € Z, where s,t,u,v are as in (3.4). Observe that

b+ 2z b— =z
+ 2 X 3

s+t+2u+wv)= =b
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and also

24+t 420+ 2°

) (S"QH)2+2(S;t)2+(u+v)2+(u—v)2

b+2z\° T+ 2y 2 b—2\? r—y 2
2(55) () - () ()
_b2+x2+2y2+222
B 6
In view of Lemma 2.3 and (3.2),

(|| + 2ly| +2|2])* < 5(2? + 2y* + 22%) = 5(6a — b*) < (b + 6)*

and hence
b—|x| = 2ly| — 2|z| > —6.
So we have
s, tyu,v > b= Izl —?y! — 221 > —1,
and hence s,t,u,v € N.
In view of the above, we have completed the proof of Lemma 3.3. O

Remark 3.1. For s,t,u,v given in (3.4), the identity
6(s* + 12 + 2u® + 20%) =b* + 22 + 2y* + 227
=(s+t+2u+20)*+ (s —t — 2u + 2v)*
+2(s—t+u—0v)>+2(s+t—u—0v)?
is a special case of our following general identity
(a+b)(c+ d)(w® + abx® + cdy® + abedz?)
=ac(w + bx + dy + bdz)? + ad(w + bz — cy — bez)? (3.5)
+ be(w — ax + dy — adz)® + bd(w — ax — cy + acz)’.
We have also found another similar identity:
(3b + 4)(w* + 22° + (b+ 1)y* + 2b27)
=(w+ 2z + (b+ 1)y + 2b2)* + 2(w — (b + 1)y + bz)? (3.6)
+ (b4 1)(w — 2z +y)? + 2b(w + = — 22)*.
Proof of Theorem 1.2. (i) Let Iy = [«, 5] be the interval given by (3.1). As
N > 1628m3 = (12+1/3)m x 132m? > 11m? x 12(12m + 1), by Lemma 3.1
the length of the interval I, is greater than 12m. We distinguish two cases

to construct integers b € Iy and a = b (mod 2) for which N = %(a —b) +b,
and 21 a or 4||a, and 3 | a or 3 1.
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Case 1. 3fmor 31 N.

Choose by = N (mod m) with by € {[a]+7r: r=0,...,m — 1}, and let
bj =by+jmfor j=1,...,7. Since [a] +8m —1 < o+ 8m < S, we have
bjel,foralli=0,...,7.

If 2 + m, then we choose i € {0,1} with b; odd. When 4 | m, we may
choose i € {0,1,2,3} with

2

@ i= —(N = b) +b =4 (mod §)

since a; — ag = —2i +im = 2i(m/2 — 1) with m/2 — 1 odd. If 3 | m and
341N, then b =0 =N # 0 (mod 3). When 3 tm, we choose j € {i,i + 4}
with b = b; # 0 (mod 3), and note that

0 (mod 2) if 2 m,
0 (mod 8) if4|m.

As N = b (mod m), we see that a = 2(N — b)/m + b is an integer with
a = b (mod 2). By our choice, 21 b if 21 m, and a = 4 (mod 8) if 4 | m.
Note also that 3 1 b.

Case 2. m = N =0 (mod 3).

Choose by € {[a]+7r: r=0,1,...,3m — 1} with by = N (mod 3m).
If 2 1 m, then we choose b € {by,by + 3m} with b odd and hence a =
2(N—b)+b=b=1 (mod 2). When 4 | m, we may choose b € {by+ 3jm :

m

j=0,1,2,3} with a = 2(N —b) + b =4 (mod 8), for

ai+4—ai:4m—8z{

2 , _ 2 /m
E(N—bo—&]m)—i—bo—i-gjm— (E(N—bo)+bo) =67 (3—1)

with m/2 — 1 odd. Note that
a<by<bp+Im<L[a]+3m—-14+Im<a+12m<f

and hence b € I. Obviously, a =b= N =0 (mod 3).

Now we have constructed positive integers b € I, and a = b (mod 2) with
N = Z(a —b) + b such that 2 { a or 4||a, and 3 | a or 31b. So (3.2) holds
by Lemma 3.2. In view of Lemma 3.3, (3.3) holds for some s,t,u,v € N.

Therefore,

N:%(52+t2+2u2+202—s—t—2u—2v)—|—s+t+2u+2fu

S t U v
= 2 2 2 2
m(2)+m<2>—|— m<2>+ m<2>+s+t—|— U+ 2v

=Pimt2(8) + Pmt2(t) + 2pma2(w) + 2pmia(v).

This proves part (i) of Theorem 1.2.
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(ii) Now assume that m = 2] with [ € ZT odd. We want to show that
none of the positive integers
ko) _ 1

[

can be written as pp,4+2(w) 4+ Pm+2(2) + 2Pm12(y) + 2pm2(2) with w, z,y, z €
N.

Let n € Z* be a multiple of ¢(I). Then 2" = 1 (mod ) by Euler’s
theorem. Suppose that there are w, z,y, 2 € N for which
4 —1

l
=Pm+2 ("LU) + Pm+2 ($) + 2pm+2 (y) + 2pm+2(2)

(I—1)%x (k=1,2,3,...)

(1—-1)*x

21
:§(w2+x2+2y2+2z2—w—x—2y—22)+w+x+2y+22.

Then we have

47 —1)?
=Q2lw—(1—-1))+ Q2lz—(1—-1)*+22y— (1 —1))*+2(2z — (I — 1))
=2lw— -1+ 2lz— (1 -1)*+ 2y +2) —2(1—1))*+ (2l(y — 2))*

and hence
4"(1—-1) = (lw — Z—Tl)2+ (la: — Z_Tl>2+(l(y+z—1)+1)2+(l(y—z))2.

As 4] (I—1)%, by Lemma 2.5 we have 74(4"(l —1)?) = r4((I —1)?). So there

are wy, Lo, Yo, 20 € Z with
wg +xp +yp + 25 = (1 — 1) (3.7)

such that
[—1 [—1
lw—T = 2"wy, lx—T = 2"z, l(y+2—1)+1 = 2"y, l(y—2) = 2"2.
As 2" =1 (mod 1), we see that
1-1 1-1
wo = —5— (mod 1), zo = 5 (mod 1), yo =1 (mod 1), 2o =0 (mod [).

Observe that [ = m/2 > 2 and hence wozg # 0. Thus y2 +25 < (1—1)? —2.
Since yp = 1 (mod [) and zp = 0 (mod 1), we must have yo = 1 and
20 = 0. Now (3.7) yields wi + 23 = (1 —1)> =1 =1>—-2l. Aswy =19 =
(1—=1)/2 (mod 1), we must have {wq, o} C {(1—1)/2,(1+1)/2}. Tt is easy

to verify directly that none of the numbers

() () (5 )
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is equal to (I — 1)> — 1 = [? — 2[. This contradiction concludes the proof of
Theorem 1.2(ii). O

4. PROOF OF THEOREM 1.3

Lemma 4.1. Let a and b be positive integers satisfying (3.2) for which
a=0b (mod 2), and a = 3 (mod 9) or 31b. Then there exist s,t,u,v € N
such that

a=s"+t"+u’+3v* and b=s+t+u+ 3. (4.1)

Proof. 1t is known that (cf. Dickson [3, pp.112-113])
{2 + > +32%: 2,y,2€ Z} =N\ {991 +6) : k,l €N} (4.2)

If 310, then 6a —b? = 2 (mod 3). If @ = 3 (mod 9) and 3 | b, then
6a—b* = +£9 (mod 27). By (4.2), 6a—b* = 2> +y*+32? for some z,y, z € Z.
Clearly, 2% + y* = 2b* (mod 3). Without loss of generality, we may assume
that x = y = b (mod 3). (If z = —b (mod 3) then —x = b (mod 3).) If a
and b are both odd, then 2% +y?+32? = 6a—b*> = 1 (mod 4), and hence one
of x and y is odd. If a and b are both even, then 2% + 9% + 322 = 6a — b* =
0 (mod 4), and hence one of = and y is even. Without loss of generality,
we may assume that © = a = b (mod 2) and y = z (mod 2). Thus all the

numbers
b+z+y+3z ; b+x+y—3z b+x—2y b—ux (4.3)
S = — U= ————-—-. v = .
6 ’ 6 ’ 6 ’ 6
are integers. Observe that
b b—
s+t+u+3v= +w+3>< 6:[:[)

and

2+ 12+ u? + 302
2 2
t —t
= (S;r > +2(S2 ) +u? + 3
S (btxt+y 2+2(z>2+ b+x—2y 2+3 b—z\>
N 6 2 6 6

In view of Lemma 2.3 and (3.2),

(Jz] + [yl +3|2])* < 5(a” + y* + 32°) = 5(6a — b*) < (b +6)*
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and hence
b— |z = Jy| = 3|z] > —6.
So we have
b— x| — |yl —3
st > el =yl =3l
6
and hence s,t,u,v € N. This concludes the proof. O

Proof of Theorem 1.3. As

N > 924m* = 99m? (9 + é) > 99m? (9 + %) = 99m?(9m + 1),
the length of the interval I, = [«, 8] defined in Lemma 3.1 is greater than
9Im.

Let by € {[a]+7r: r=0,1,...,m—1} with bg = N (mod m). If 34 m or
31 N, then we may choose b € {by, bp+m} with b # 0 (mod 3). When 3 | m
and 3 | N, welet ¢g € {[a]+7r: r=0,...,3m—1} with ¢c¢ = N (mod 3m),
and set b = ¢y + j3m with j € {0, 1,2} such that

2
—(N —¢p) +co— 65 =3 (mod 9).
m

Note that b € I since

a<b<[a]+3m—14+6m<a+9m<p.

Let
2 m
=—(N—-0)+0b, ie., N=—(a—b)+0.
a= 2V +b ie N="(a—b)+
Then
2 2
a=—N+{(1-——)b>0 and a=0b (mod 2).
m m

If 3| b, then 3 | m and

2 (N—cy)—6j = 3 (mod 9).

2
a=—(N=b)+b (N—co—3jm)+co+3jm = —
m

m m
By Lemmas 3.2 and 4.1, there are s,t, u,v € N satisfying (4.1). Therefore,

N:%(s2+t2+u2+3v2—s—t—u—3fu)+s—l—t+u+3v

=Pim+2(8) + Dm+2(t) + Pmi2(w) + 3pmia(v).

This completes the proof of Theorem 1.3. U
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5. PROOF OF THEOREM 1.4

Lemma 5.1. Let ,m,N € Z with Im > 20 and N > 3Im?(5lm + 12).
Then the length of the interval

5 14N 4 N
I = | = — — 1, = +44/— 5.1
3 [2+V m ’3+ Vm] (5.1)

Proof. The length of the interval I3 is 4/ — /142 — 1 — 7/6, where x =
N/m. Set ly =Im + 7/6. Then

7
4\/_—\/1435—1—6>lm
& 4y/z > 14x — 1+

=20+ 1—1§ > 2yV/14x — 1
> dz(z+1—15) + (15 — 1)* + 41 > 0.

15 greater than Im.

Note that
2 9 2 9 245 2
x = 151°m~ + 36lm > 151°m +35lm—|—§—1 = 155 — 1.
So the desired result follows. O

Lemma 5.2. Let a,b,m, N be positive integers with m > 3,

4
N:%(a—b)qu} =m
and b € I3, where I3 is the interval given by (5.1). Then

b* < 8a and Ta < b*>+2b+ 8. (5.2)

Proof. Clearly,

m m

2 2N
az(l——)b—l——.

Thus

m m

() e(0-2)3)

As b € I3, we have

2
K%H,/ﬂd(l_z)ﬂﬂl_z) .
3 m m m

1;2—8a:b?—8(1—3>b—M

3=
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and hence b> — 8a < 0. On the other hand,

V¥ +20+8—Ta

(R (5)
R (R R

since (5/2 — 7/m)?* < 25/4 < 7 and

5 14N 5 7 5 7\% 14N
b4 — 1> ——44/[=—-—) + — =58
2 m 2 m 2 m m

2

Therefore (5.2) holds. O

Lemma 5.3. Let a and b be positive integers satisfying (5.2). Then there
are s,t,u,v € N such that

a=s"+1+2u* +40® and b=s+1t+2u+ 4o, (5.3)
under one of the following conditions (1)-(iii):
(i) 21 ab.
(i) 2 | a and 2||b.
(iii) 4 | @ and 4||b, or a = b+ 4 (mod 16) and 8 | b.
Proof. Tt is known (cf. [3, pp. 112-113]) that
{22+ 2% +42%: 2y, 2 € Z} =N\ {4°(161 4+ 14) : k, 1 eN}.  (5.4)

We claim that if one of (i)-(iii) holds then 8a — b* = x? + 2y? + 422 for some
x,1, z € Z such that all the numbers

b —2 b— —
u= +x8 y,v: Sx,s:u+¥,t:u+y : (5.5)
are integers.
Case 1. 21 ab.
Since 8a — b* = —1 (mod 8), we have 8a — b* = 2% + 2y* + 422 for
some z,y,z € Z. As 2° + 2y*> = —1 (mod 4), we have 2 { xy. Since

422 = —b* —2? = 2y* = —1 — 1 — 2 (mod 8), we also have 2 1 z. Note that
=8 b —2y  — 42> =8—-V*—-2—-4=2—-1*=b* (mod 16)

and hence © = £b (mod 8). Without loss of generality, we may assume that
x =b(mod8) and y = b (mod 4). (Ify = —b (mod 4) then —y = b (mod 4).)

Thus all the four numbers in (5.5) are integers.
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Case 2. 2 | a and 2||b.

Write a = 2ag and b = 2by with ag,by € Z and 2 { by. Since 4ag — b3 =
3 (mod 4), by (5.4) we have 4aq — b3 = 23+ 2y + 423 for some x, Yo, 20 € Z.
As 23 +2y2 = 3 (mod 4), both x and yo are odd. Without loss of generality,
we may assume that xg = yo = by (mod 4). Set x = 2z, y = 2yo and
z = 2z9. Then

8a — b* = 4(4ag — by) = 2° + 2% + 427
and all the numbers in (5.5) are integers.

Case 3. 4 | a and 4[|b, or a = b+ 4 (mod 16) and 8 | b.
Write a = 4ag and b = 4by with ag, by € Z. Then

o0 2 = 1 (mod 2) if 4||b (i.e., 21 by),
T )2+ 1) — 2 =2 (mod 8) ifa=b+4 (mod 16) and 8 | b.

Thus, by (5.4) we have 2ag — b2 = x% + 2y2 + 422 for some zg,yo, 20 € Z.
Obviously 29 = by (mod 2). Set © = 4xg, y = 4yo and z = 4z5. Then all
the numbers in (5.5) are integers.

Now assume that one of the conditions (i)-(iii) holds. By the claim we
have proved, there are z,y, 2z € Z such that 8a — b* = 2% + 2y* + 422 and
also s,t,u,v € Z, where s,t,u,v are given by (5.5). Clearly,
b+x b—=x

+ 2

st+t+2u+dv=y+2u+22u+4v = =0

and

s2 4+ 12 4 2u® + 4?
—2(u+g)2+2(3>2+ b+x_2y L= 2
B 2 2 8
2
:2<b+$+2y) (b—i—x—Zy) z_+(b x)
2 4
b+ x Yy 22 b—ux
_( 4 ) +(§) +3+( 4 )

_b2 + 2% + 2y + 422
N 8
In view of Lemma 2.3 and (5.2),

(J| + 2ly| + 4]2])? < 7(2* + 2y* + 42°) = 7(8a — b*) < (b + 8)?

and hence
b—|z| —2y| —4]z| > —8.
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So we have

b—|z| —2ly| —4
o] = 20yl = 42| _ _

u,v,Ss,t > 1
8
and hence s,t,u,v € N.
In view of the above, we have completed the proof of Lemma 5.3. 0

Proof of Theorem 1.4. As
N > 96m? x 11m > 96m?*(10m + 3) = 24m?*(40m + 12),

applying Lemma 5.1 with [ = 8 we find that the interval I3 = [, ] given
by (5.1) has length greater than 8m.

Case 1. 4fmor 8¢ N.
Choose by € {[a]+7r: r=20,...,m — 1} with N = by (mod m). Set
b1:b0+m. Then

a<by<b <Ja]|+2m—-1<a+8m<p

and thus b; € I3 for each j = 0,1. Note that

2 2 .
aj 1= —(N—bj)+bj = E(N—bo)+b0+(m—2)j

m

If 2 m, then a; = b; =1 (mod 2) for some j € {0,1}. If 2 | m and 2{ N,
then ag = by = 1 (mod 2).

If 2||m and 2 | N, then for some j € {0, 1} we have b; = 2 (mod 4) and 2 |
aj. When 4|m and 2||N, we have by = 2 (mod 4) and ag = by = 0 (mod 2).
If 4||m and 4|| N, then 4 | by, and for some j € {0, 1} we have b; = 4 (mod 8)
and a; = b; = 0 (mod 4). When 8 | m and 4||N, we have by = 4 (mod 8)
and ag = by (mod 2), hence for some j € {0,1} we have a; = 0 (mod 4) and
bj = by =4 (mod 8).

Case 2. 4| m and 8 | N.
Choose b € {[a]+r: r=0,...,8m—1} such that b = N —2m (mod 8m).
Since « < b < [a] +8m —1 < a+8m < 3, we have b € I3. Clearly, 8 | b
since 8 | N and 4 | m. Note that
2
—(N —=b)+b=4+b (mod B).
m
By the above, in either case we can always find b € I3 and a € Z for
which one of (i)-(iii) in Lemma 5.3 holds and also
m
5 (

2
a=—(N—-0)+b, ie, N= 5 a—>b)+0b.

m



22 X.-Z. MENG AND Z.-W. SUN

By Lemmas 5.2 and 5.3, there are s,t,u,v € N satisfying (5.3). Therefore,

N:%(32+t2+2u2+402—s—t—2u—4v)+s+t+2u~|—4v

=Pimt2(8) + Pmta(t) + 2pmi2(w) + 4ppga(v).

In view of the above, we have finished the proof of Theorem 1.4. O
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