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ABSTRACT. Define
 (m\2 —k
Dn($)=Z<)x(x+1)” forn=0,1,2,...
k=0 k

and

sn(z) = gn:l %(Z) (k: i l)xk_l(:c—l— H"k forn=1,2,3,....

Then D, (1) is the n-th central Delannoy number D, and s, (1) is the n-th little
Schréder number s,. In this paper we obtain some surprising arithmetic properties
of Dy (z) and sp(x). We show that

n—1
1
— E Di(2)sg+1(z) € Z[z(x +1)] foralln=1,2,3,....
n

k=0

Moreover, for any odd prime p and p-adic integer z Z 0, —1 (mod p), we establish
the supercongruence

p—1
Z Dy(z)sp41(z) =0 (mod p?).
k=0

As an application we confirm Conjecture 5.5 in [S14a], in particular we prove that
1 n—1
= > TpMp(=3)""'"F ez foralln=1,23,...,
n

k=0

where T}, is the k-th central trinomial coefficient and My, is the k-th Motzkin number.
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1. INTRODUCTION

For m,n € N={0,1,2,...}, the Delannoy number

D =Y (”]Z) (Z) ok (1.1)

keN

in combinatorics counts lattice paths from (0,0) to (m,n) in which only east (1,0),
north (0, 1), and northeast (1, 1) steps are allowed (cf. R. P. Stanley [St99, p. 185]).
The n-th central Delannoy number D,, = D,, ,, has another well-known expression:

" /n\ (n+k " n+k\ 2k
D, = — . 1.2
> () () -2 () () -2
k=0 k=0
For n € Z1t ={1,2,3,...}, the n-th little Schréder number is given by

Sp 1= zn:N(n, k)2k1 (1.3)
k=1

with the Narayana number N (n, k) defined by

N(n, k) := %(Z) (k " 1) e Z.

(See [Gr, pp.268-281] for certain combinatorial interpretations of the Narayana
number N(n,k) = N(n,n+1—k).) For n € N, the n-th large Schréder number is

given by
"\ (n+E\ 1 “(n+k
Sn::2<k)( . >k—+1:Z( ok )ck, (1.4)
k=0 k=0

where C} denotes the Catalan number ( ) /(k+1) = ( ) (,f_fl) It is well known
that S,, = 2s,, for every n = 1,2,3,.... Both little Schroder numbers and large
Schréder numbers have many combinatorial interpretations (cf. [St97] and [St99,
pp. 178, 239-240]); for example, s,, is the number of ways to insert parentheses into
an expression of n 4+ 1 terms with two or more items within a parenthesis, and S,
is the number of lattice paths from the point (0,0) to (n,n) with steps (1,0), (0,1)
and (1, 1) which never rise above the line y = x.

Surprisingly, the central Delannoy numbers and Schréoder numbers arising nat-
urally in enumerative combinatorics, have nice arithmetic properties. In 2011 the
author [S11b] showed that

= (-1)®»"Y/22E, 5 (mod p) and Z ﬂ =0 (mod p)

k= 1

~ Dy
k2

Trml
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for any prime p > 3, where Ey, Fq, Fo,... are the Euler numbers. In 2014 the
author [S14a] proved that

sz )D? € Z foralln=1,23,.

and that
p—1 9
Z D? = (—) (mod p) for any odd prime p,
p

where () denotes the Legendre symbol.
Definition 1.1. We define

n 2
D, (x) := Z (n) e (z +1)"% forn €N, (1.5)
k
k=0
and .
sp(z):=Y Nm,E)zF Y z+1)"* forneczt. (1.6)
k=1

Obviously D, (1) = D,, for n € N, and s,(1) = s,, for n € Z™.
In this paper we obtain somewhat curious results involving the polynomials
D, (x) and s, (z). Our first theorem is as follows.

Theorem 1.1. (i) For any n € Z", we have

- > Di(@)spr1(x) = Wa(z(z + 1)) (1.7)
where kzo
Wy(z) = . w(n, k)Cp_12"1 € Z[x] (1.8)
with -
w(n, k) = %(Z:D (Zj]f) € Z. (1.9)

(ii) Let p be an odd prime. For any p-adic integer x, we have
p—1

Z Dk: Sk+1

k=0
p(1 —z(x+1)) (mod p3) if t =0,—1 (mod p),
2p + 22 p?(22gp() — (2 4 1)%gy(z + 1)) (mod p®)  otherwise,

(1.10)
where q,(z) denotes the Fermat quotient (2P~ —1)/p for any p-adic integer z # 0
(mod p).

Remark 1.1. Tt is interesting to compare the new numbers w(n, k) with the Narayana
numbers N (n, k).

Clearly, Theorem 1.1 in the case x = 1 yields the following consequence.
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Corollary 1.1. For any positive integer n, we have

1 n—1 n
— Dys = w(n,k)Cr_12¥ 1 =1 (mod 2). 1.11
”kz:—okkﬂ I;()kl ( ) (1.11)
Also, for any odd prime p we have
p—1
S" Dysisr = 20°(1 — 3g,(2))  (mod p?). (1.12)
k=0

Remark 1.2. For the prime p = 588811, we have ¢,(2) = 1/3 (mod p) and hence
Zi;é Dysgr1 =0 (mod p?). In 2016 J.-C. Liu [L] confirmed the author’s conjec-
ture (cf. [S11b, Conjecture 1.1]) that

p—1 p—1 (_1>k +3
ZDkSk = —QpZ — (mod p*) for any prime p > 3.
k=1 k=1

From Theorem 1.1 we can deduce a novel combinatorial identity.

Corollary 1.2. For any n € Z*, we have

S0 )G )

k=1

Remark 1.3. If we let a,, denote the left-hand side of (1.13), then the Zeilberger
algorithm (cf. [PWZ, pp.101-119]) cannot find a closed form for a,, and it only
yields the following second-order recurrence relation:

(n41)2%an + 20+ 3)ani1 — (N +1)(n+3)apo =0 forn=1,2,3,....
Now we give our second theorem which can be viewed as a supplement to The-
orem 1.1.

Theorem 1.2. Let p be any odd prime. Then
p—1
> kDg(x)skia(x) = 2(x(z +1)) P2 (mod p). (1.14)
k=0

In particular,

Z kDySk+1 = 2 (%) (mod p). (1.15)

k=0

In the next section we are going to show Theorems 1.1-1.2 and Corollary 1.2.
In Section 3 we will give applications of Theorems 1.1-1.2 to central trinomial
coefficients, Motzkin numbers, and their generalizations. Section 4 contains two
related conjectures.

Throughout this paper, for any polynomial P(x) and n € N, we use [z"]P(z) to
denote the coefficient of 2™ in P(x).
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2. PROOFS OF THEOREMS 1.1-1.2 AND COROLLARY 1.2

Recall the following definition given in [S12a] motivated by the large Schroder
numbers.

Definition 2.1. For n € N we set

Sy (z) = Zn: (Z) (n Z k) k”_’f - = no (n;;k) Cra®. (2.1)

k=0 k=

Lemma 2.1. We have

Do) =S (Z) (” z k’) 2% forneN. (2.2)

k=0
Also, for any n € Z* we have
Dyy1(x) — Dp—1(z) = 22(2n + 1)S,(x) (2.3)

and
(x+ 1)sp(x) = Su(x). (2.4)

Proof. For k,n € N, we obviously have

41000 =613 (1) e =3 (1) (1 20)

D) -0

with the help of the Chu-Vandermonde identity (cf. [G, (3.1)]). This proves (2.2).
Now fix n € Z*. For k € N, by (2.2) we clearly have

(2" (Dpga () — Dpa ()
(")) (Y G
%ZI i (n 2; k) (2: ++12> _ 2(27:_—1—11) (n 2+/<; k) (2:)

:[xk+1]2x(2n +1)S,(x).

So (2.3) follows.
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For each k € N, it is apparent that

[#*](z + Dsn(z) =lz"(@+ 1) Y N(n,j)2/ " (@ + 1)

j=1
n—j) . n—j

SR (] i B SR O] R

0<j<k k=i) =3 k=j+1

()65

n = \j)\i-1)\k—j+1

1

_TL

DL
6= () 1)k -
This proves (2.4).

The proof of Lemma 2.1 is now complete. [

Remark 2.1. Note that the Legendre polynomial of degree n is given by

" /n\ (n+k r—1\"
P, = .
(@) Z(k)( : )( 7 )
k=0
Lemma 2.2. Letn € ZT. Then

s 0o =35 () () (e v e

k=1

Dy,_1(z) + Dypy1(x) S, (z) = (n;{k) (2:) (2]:_4—1;2 2+ 1) (2.6)

Remark 2.2. The identities (2.5) and (2.6) are (2.1) and (3.6) of the author’s paper
[S12a] respectively.

Lemma 2.3. For any m,n € Z" with m < n, we have the identity
[k 2k + 1
E m 2m—|—1—m(m—|—1)—+
2m k(k+1)
k=m (2.7)

e )
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Proof. When n = m, both sides of (2.7) vanish.
Let m,n € Z* with n > m. If (2.7) holds, then

nil (k;mm) (2m +1-—mm+ 1)%)

_?;Tim)(n%—m—l—l) n+m
B n+1 ( 2m )

+ <" +;m+ m) <2m+ 1 — m(m+ 1)(5(_7: le)(lii;))
() (e, e
:<(n+1)+m)(n+1—m)((n+1)+m+1)

2m (n+1)+1 '

In view of the above, we have proved Lemma 2.3 by induction. [
Let A and B be integers. The Lucas sequence u,(A,B) (n = 0,1,2,...) is
defined by uo(A4,B) =0, u1(A, B) = 1, and

Un+1(A, B) = Aun (A, B) — Bup—1(A,B) forn=1,2,3,....

It is well known that if A = A% — 4B # 0 then

un(A, B) = % for all n € N,

o —

where o and 3 are the two roots of the quadratic equation 22 — Az + B = 0 (so
that « + = A and a8 = B). It is also known (see, e.g., [S10, Lemma 2.3]) that
for any odd prime p we have

up(A,B) = <%) (mod p), and upf(%)(A,B) =0 (modp)ifptB.

In particular, F, = (15—7) (mod p) and p | F,,_ (s for any odd prime p, where F,, =
un (1, —1) with » € N is the n-th Fibonacci number.

Lemma 2.4. Let p be an odd prime, and let x be any integer not divisible by p.

Then
W,(z) = 49”21_ ! <(4x; 1) . 1) (mod p). (2.8)

Moreover, if x = —1/4 (mod p) then

W,(z) =2p (mod p?), (2.9)
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otherwise we have

W, (z) =2p + 4332;: ! (1 —aP 4 (p+1) <<4$; 1) - 1))

dr +1 4z +1
4 i(—“*l) (2$+( mp ))“p—(“:l) (22 +1,2%) (mod p*).
X P
(2.10)

Proof. Clearly,

<2p_1) pH<1+ >_1+p(p§/2( ! )zl (mod p?).

J. Wolstenholme |W| even showed that 2p 1) =1 (mod p?) if p > 3.) Thus
—1

w(p,p) = %(pQ_pl) - ]% (2;__11> 2(1—p) (mod p?),

and

For each k =1,... ,p— 1, clearly

%(k )(p*’“‘l)p
(D)
(

w(p, k) =
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Therefore
p—1
Wp(ﬂ?) :w(pap)cp—lxp_l + Z ’LU(p, k)ck—lxk_l
k=1
p—1
_ 1 k—1
=2(1 — p)Cp_12P" +; (1-p+2) Cus(—a)
p
=(2- 2p)Cp—1$p_1 +(+1) < Z Cr1(—2)" 1 +1 - Cp—l(_x)p_l)
k=2
p—1 1
—i—pz <E — 2) Ck_l(—aj)k_l

k=1

=p+1—(1=3p)(1+2p)a* "+ (p+1) ) _ Cp(—2)*
-1 /2k
DX ( )
2
k=1
o p p—1 (zk)
=2p+1—aP 1+ (p+1) Z_k_ﬁmz T];,k' (mod p?),
where m is an integer with m = —1/x (mod p?). By [S10, Theorem 1.1], we have

p—1
C _ m—4 A
Z—lz =mP -1 —— <(—> - 1+up_(§)(m—2,1)) (mod p?)

=1 2 p
22 (2))
where
A:=m(m—4) = —é <—i — 4) = 42—; ! (mod p?).

So (2.8) follows.
If m # 4 (mod p), then by [S12b, Lemma 3.5] we have

p

kmk P 2 P

=1

mp_l—l m—4<A> up—(é)(m_271)
= - — - (mod p)
b b
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and hence from the above we deduce that

Wy(z) =2p +1 — P?

+(p+1) (mp—l —-1- mT_LL ((%) — l—i—up(%)(m—ll)))
p (mp‘l ~1_m—4 <é> “p<ﬁ>(m‘2’1)>

2 p 2 p p
=9p+1—aP ! 4 (1— %) (m"™ = 1)~ (p+ 1) 1 ((4‘”;1) —1>

m—4 m (4x + 1
(5 (5 a0

_ 2¢ + 1 _ 4r +1 4r + 1
=p+1—aP !+ (1—zP"H+(p+1) -1
2x 2x P

4o +1 1 [4x+1 9
+ oo (1—1—%( p ))up_(sz)(m—Q,l) (mod p*)

which is equivalent to (2.10) since
(=) Yup(m —2,1) = up(—x(m — 2), (—2)?) = up (22 + 1,2%) (mod p?)

for all £ € N.
When m =4 (mod p) (i.e., x = —1/4 (mod p)), we have

3
I
3
I

< (%)
P ﬁ = 2¢,(2) (mod p)
1

< (%)

ey
I

1

e
I

by [ST, (1.12)], and hence

4
W,(z) =2p+1— 2P~ + (p+1) (mp—l 14 m—) — Pn2g,(2)

2 2
—4
=op+1—aPlmP -1+ mT _4(2rt 1)
4z +1
=2p+1—aP 1Pt - ”;;f —2(22(r-D )

=2(p+ @z +1)+1—2" ")+ (1-4""1)
=2(p+@r+1)+1—(dz+1-1)P")
=2(p+ 4z + 1)+ (p—1)(4x + 1)) = 2p (mod p?).

Therefore (2.9) is valid. O
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Proof of Theorem 1.1. (i) Fix n € Z*. For each k € Z", by (2.3) and Lemma 2.2
we have

Dk—l(l‘)ik—(fl) _ Dy (2 );‘Dk+1( x) ik_(fl) _(2k+1)xi1Sk(x)2
N (A () 2 j
—;o< 2] )<J> Gzt )
2k+1 N~ (k45 (27 ( 2 )
k(k+1)z( 2j )(j><j+1)(a:(a:+1))

) (e 2 )y

= (kﬂ)C? (2] +1—34(+ 1)%) (z(x +1)).

Combining this with (2.4) we obtain

Per@sn) =3 (* )0z (241564 DALY ey @)

for any k € Z*. Therefore,

& k+ . 2k + 1 .
;Dk_l(x kzljzo ( J) (2; +1—4(+ 1)m> (z(x + 1))7
_ =\ 5 ; +j B 2k +1
_n+;C’](ac(x—|—1)) qu( 2] )(2j+1 j(j+1)k(k+ ))
_n_l jn=g)n+j+1)/n+j
=3 cltete + P ( N )

with the help of Lemma 2.3. It follows that

SDk(x)SkH(l’) = Scj(ﬂf(ifﬂ))j - (n R 1) (n Tt 1) = nWy(z(z+1)).

k=0 j=0 AN J
For any k € Z™, we have
w(nk)—l n\(n+k) 1 n—1\/n+k
T \kJ\k—-1) n+1\k-1 k

and hence w(n, k) = (n+ Dw(n, k) —nw(n,k) € Z. So W, (x) € Z[z]. This proves
part (i) of Theorem 1.1.
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(ii) Let = be any p-adic integer, and let y be an integer with y = x(z + 1)
(mod p?). By (1.7) we have

§jDk Dt (x) = pWy(a(a +1) = pWl(y) (mod p?).  (212)

If y =0 (mod p), then
Wy(y) =w(p, 1) +w(p,2)y=1—z(z+1) (mod p?).

If z = —1/2 (mod p) (i.e., y = —1/4 (mod p)), then W,(y) = 2p (mod p*) by
Lemma 2.4. Thus (1.10) holds for x = 0,—1,—-1/2 (mod p).
Now assume that z # 0, —1,—1/2 (mod p), i.e., y Z0,—1/4 (mod p). Then

(45) - (232) -

up—1(2y + 1,9%) Eup_l(a:z + (z + 1), 2% (x +1)?)
(@1l - @

and

(x+1)2 — a2
(x+1)P~t 4 gPL B _
- 2z + 1 (@ + 1)t —ar™)
=t (1P ) ().
Combining this with Lemma 2.4, we obtain
(2$+ 1)? ~1 —1
=9+ (1 — P 1)?
2z + _ _
é%z:%@“$+”+1bx+1«w+ﬂp1—wpW
(22 +1)° ~1 -1
=2 ~— (1 —2P 1— 1)P
Pt @ L L@
20 +1 9 4 1
- (2242w +1 1Pt — P
roe £y 2 20+ D) (@ =)
2z +1 92/ p—1 9 po1 )
:2p+m(x (@' =1) = (z+1)* ((z+ )P~ = 1)) (mod p*).

Therefore (1.10) holds in light of (2.12).
So far we have completed the proof of Theorem 1.1. [

Proof of Corollary 1.2. Tt is known (cf. [G, (3.133)]) that

_1\k/2 k i
Dy, (—1) = P(0) = { (=1) (k/2)/2 £2]F,

0 otherwise.
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By (2.4) and [S1la, Lemma 4.3],

1 1 —1)k2C, 5 /2F if 2| E,
. (__) 95 (__) _ { (=1)"*=Ch/2/ |

2 2 0 otherwise.

5 (5)me ()
-3 (Y (e s

0<k<n = U
20k

Therefore

By induction,

mo () 2m+1)2 [2m\>
Yo for all m € N,
G+ 1)167 (m+1)16m(m> oraftme

J=0

So we have

301 (-5) e ()
_ @le-1/2+1)? 2n-1/2\° _ [e+1/2)( n
[(n+1)/2]16L(*=D)/2] ( L(n—l)/2J) 1o (Ln/ZJ) |

On the other hand, by applying (1.7) with x = —1/2 we obtain

£ (-5) e (1) ()£ (1)

Combining these we get the desired identity (1.13). This concludes the proof. [

[y

Lemma 2.5. Let p be any odd prime. For each j =0,... ,p, we have

Cu, = { 2 (mod p) ifj=(p—1)/2,

= 2.13
0 (mod p) otherwise, (2.13)

where

uj = j;p(kz—l)(k;j‘j) <2j+1—j(j+l)%) . (2.14)

Proof. Clearly, u, = 0 and

up—1 = (p—1) (p;(p(p_—1>1)) (2(19 —+1-(p- 1)pp2£j: 1))

0 (mod p).
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If(p—1)/2 < j<p-—1,then C; = (25)!/(!(7 + 1)) = 0 (mod p) and hence
C?uj =0 (mod p) since pu; is a p-adic integer.
Note that

2 p—1 _
C _ e = _1 (p 1)/2 m d X

As

—1)/2 1
(k+](0p_1)/)50 (mod p) forallkzz%,---ypa

we have

p
B k+(p—1)/2 p—1 p—1 p+1 2k+1

Up-1)/2 = Eﬁ(k—l)( 1 2y e Ck(k+1)
k=p—1 p

1 & k4 (p—1)/2\ 2k+1
:Zk:zp;l(k_l)( p—1 )k(k:—i—l)

:]);2(]9—1-1-(19—1)/2)2(]9—1)—1—1 p—1<p+(p—1)/2> 2p+1
(p—1)/2 (p—1)p 4 (r+1)/2 )pp+1)

4
p=2 2p—1 Ihccpnp@—1+7)
4 p-1 ((p—1)/2)!

p—1 2p+1 Hrp:_ll)/Q(p—}—r)

4 p+r1 ((p+1)2)!

Obviously,

u():Z(k;—l): — 2 =0 (mod p).

k=1

Applying the Zeilberger algorithm via Mathematica 9, we find that

F,3)(%57)
2+ 1) +2)(27 +3)

(7 +2)u; +2(27 + Dy =

forall j =0,...,p—1, where
f,5)=@—)p+i+1) (2 +3)°p" = (2/°+8 +Tp— G+ 1(j+2).
This implies that for 0 < j < (p — 3)/2 we have
u; =0 (mod p) = u;j41 =0 (mod p).

Thus u; =0 (mod p) for all j =0,...,(p—3)/2.
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Combining the above, we immediately obtain the desired (2.13). O
Proof of Theorem 1.2. In view of (2.11),

(k — 1)Dg_1(x)sk(x)

k

k+j . . 2k +1 ;
(k—l)j;)( y )0]2 (2]+1—j(]+1)m> (x(x+1))

M- T T17-

(k—1)+

-

(o 1)), = P20 4 5 0 a1

>
Il
—_

1

J

where u; is given by (2.14). Thus, by applying Lemma 2.5 we find that

1/

;(Z KDy ()31 (2) — 2(a(z + 1>><p-1>/2) €Tz +1),  (215)
k=0

where Z, denotes the ring of p-adic integers. Therefore (1.14) holds. (1.14) with

x =1 gives (1.15). This concludes the proof. O

3. APPLICATIONS TO CENTRAL TRINOMIAL
COEFFICIENTS AND MOTZKIN NUMBERS

Let n € N and b,c € Z. The n-th generalized central trinomial coefficient
T, (b, ¢) is defined to be [2"](z? + bz + ¢)™, the coefficient of 2™ in the expansion of
(22 + bz + ¢)™. It is easy to see that

0= 3 () (%)t 1)

k=0

Note that 7;,(1, 1) is the central trinomial coefficient T}, and T},(2, 1) is the central
binomial coefficient (2:) Also, T},(3, 2) coincides with the central Delannoy number
D,,. Sun [S14a] also defined the generalized Motzkin number M, (b, c) by

ln/2]
M, (bc)= ) (2’;)0,65"—2%’“. (3.2)

k=0

Note that M, (1,1) is the usual Motzkin number M,, (whose combinatorial inter-
pretations can be found in [St99, Ex.6.38]) and M,,(2,1) is the Catalan number
Cp+1. Also, M, (3,2) coincides with the little Schréder number s,.1. The au-
thor [S14a, S14b] deduced some congruences involving 7, (b, ¢) and M, (b, c), and
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proposed in [S14b] some conjectural series for 1/7 involving T, (b, ¢) such as

= 66k + 17 o3 D40V/2
Ty (10,11%)3 =
k;) (21133)k k( 07 ) 117'[' Y
i 126k + 31Tk(22 2173 _880V5
port (—80)3k ’ 217
o~ 3990k + 1147 gy 432
e Tr(62,95%)% == (195V14 + 94V/2).
kZ:O (—asgyer #0295 =g +94v2)

Now we point out that T, (b, ¢) and M, (b, c) are actually related to the polyno-
mials D,,(z) and $,,4+1(x).

Lemma 3.1. Let b,c € Z with d = b*> — 4c # 0. For any n € N we have

T,(5.¢) = (Va)"D, (%) (33)
and
Moy (b,¢) = (V) $nse (W#) | (3.4)

Proof. In view of (3.1) and (3.2),
no S () () (%))

c [n/2] n
=2 (e (7

(@) 4

So, it suffices to show the polynomial identities

and

~
i1
[\
ES]
/N
Ll o
N————
>

Note that

n/2] n 2k I
2 <2k:> ( k ) (2 + )" (e +1)* = D) (3.5)
and
n/2] n
Z (2]€) Ck(Qx + 1>n—2k (1’(1‘ + 1>)k - 3n+1(33')- (36)
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It is easy to verify (3.5) and (3.6) for n = 0,1,2. Let u,(x) denote the left-
hand side or the right-hand side of (3.5). By the Zeilberger algorithm (cf. [PWZ,
pp. 101-119]), we have the recurrence

(n 4+ 2)upso(x) = (2 4+ 1)(2n + 3)upt1(x) — (n+ Duy(x) forn=0,1,2,....

Thus (3.5) is valid by induction. Let v, (x) denote the left-hand side or the right-
hand side of (3.6). By the Zeilberger algorithm, we have the recurrence

(n+4)vpio(x) = 22+ 1)2n 4+ 5)vpt1(z) — (n+ v, (z) forn=0,1,2,....

So (3.6) also holds by induction.

The proof of Lemma 3.1 is now complete. [

With the help of Theorem 1.1, we are able to confirm Conjecture 5.5 of the
author [S14a] by proving the following result.

Theorem 3.1. Let b,c € Z and d = b*> — 4c.
(i) For any n € Z", we have

n—1 n
— ZTk (b, ) My (b, 0)d" ™ F =N " w(n, k)Cr_rF1d" % € Z. (3.7)
k 0 k=1

Moreover, for any odd prime p not dividing cd, we have

A Th(b, ) Mk (b.c) _ pb? ((9) _ 1) (mod p), (3.8)

— 2c P

and furthermore

(g> - 1) +g—z (62 (qp(d) —gp(c) + (g)) _ d) (3.9)

pb? d
T (9 (20+ d (E)) up_(%)(bz —2¢,¢%) (mod p?).

(ii) For any odd prime p not dividing d, we have

p—1
kT (b, M (b, d
k(b ) Mi(be) _ <0—> (mod p). (3.10)

k=0 p

Proof. (i) Let’s first prove (3.7) for any n € Z*.
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We first consider the case d = 0, i.e., ¢ = b?/4. In this case, for any k € N we

have e (g)ka@,l) _ (g)k (2:)
and My(b.c) = (g)kMk(Q, 1) = (g)k Ch1-
Thus
% nzl To(b, ¢) My (b, ¢)d" ="
k=0

=" 1C,_1Cy, = w(n,n)Cp_1c" !

and hence (3.7) is valid.
Now assume that d # 0. By Lemma 3.1 and (1.7), we have

1 = Ti(b, ) My (b, )
n dk
k=0
12 <b/\/3—1> <b/\/8—1>
=— D —F— sk | —5—
n e 2 2
b/Vd—1 b/Vd+1 b?/d — 1 ¢
(1Y L) < (P < )

and hence (3.7) holds in view of (1.8).
Below we suppose that p is an odd prime not dividing cd. From the above, we

have

—

5 B _ iy, (S) =pwyte) (moas?), (311
k=0

where x is an integer with = ¢/d (mod p?). As ptd and d(4x +1) = dc+d = b?

(mod p?), we have
<4x+ 1> _ <d2(4x+ 1)) _ <b2d)
p p P/
In view of Lemma 2.4,

Wy (z) = 4655/?; ! ((495; 1) - 1) = Z—i ((g) —~ 1) (mod p).
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Combining this with (3.11) we immediately obtain (3.8).
Now we show (3.9). If x = —1/4 (mod p) (i.e., p | b), then by (2.9) we have

W, (z) =2p= 21;(40 —b%)  (mod p?)

and hence (3.9) holds by (3.11). Below we assume p{ b. Then

(B () () (),

D | upf(%)(Zac +1,2%) and

"G, 4y (22 +1,22)
=u,,_(a)(d(2z + 1), d*z?)

Eup_(%)(2c+ d,c?) = up_(%)(bQ —2¢,¢*) (mod p?).

So, applying (2.10) we get

= L (L () e (1) 1))

4e/d + 1 d
_ C/——i—d (22 + <_)) d(%)up_(g)(b2 . 20, 02)
Ac/d)*=) N\ d - \p g

=2p + Z—i (dp—l —1— (PP =)+ (p+1) (<g) — 1>)

b2 d
— m (20-1— d (2—9)) up_(g)(b2 — 2¢,¢%) (mod p?).

This, together with (3.11), yields the desired (3.9).

(ii) Fix an odd prime p not dividing d. Let z = b/v/d — 1. Then
Cb/Vd=1 b/Vd+1  BPd—1 ¢
2 2 4 d
is a p-adic integer. Thus, with the help of (2.15), we have

- c\ (p—1)/2 cd
kZ:Oka(m)Sk+1(.’E) =2 <E> =2 (;) (mod p).

Combining this with Lemma 3.1, we immediately obtain (3.10).
In view of the above, we have proved Theorem 3.1. [

Let w denote the primitive cubic root (—1++/—3)/2 of unity. Then w+w = —1
and ww = 1. So,

x(x+1)

W — @™ (=3w)" — (=30)"
n(—1,1) = ———— =0 and u,(3,9) = =
tn ) w—w and - un (3, 9) (—3w) — (—3w)
for any n € N with 3 | n. In view of this, Theorem 3.1 in the cases b = ¢ € {1,3}
yields the following consequence.

=0
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Corollary 3.1. For any positive integer n, we have

n—1 n
1 n—1-k __ n—=k
- > T My (-3) =Y w(n,k)Chr(-3)"F € Z (3.12)
and
n—1 n
1 T (3, 3 Mk 3,3)
— Jk)C— 7. 3.13

Moreover, for any prime p > 3 we have

pi Tk<3,(3_)gz(3,3> _ % (2)-1)+ P’ (3(2)+1) (modp?). (315)

>—\

p—1 p—
kT M, kT, 3 3 M 3,3 -1
E PR =9 (g) (mod p) and k( k( ) =2 (?) (mod p).

(3.16)

Remark 3.1. Let p > 3 be a prime. In the case p = 2 (mod 3), the author (cf.
[S14a, Conjecture 5.6]) even conjectured that

p—1
Ti (3, 3) M (
k33 k33)—p —p*—3p (mod p*)

k=0

which is stronger than (3.15). The author’s conjectural supercongruences (cf.
[S14a, Conjecture 1.1(ii)])

:;1)]\4,35(2—6}9) (g) (mod p?), ngk _(9p—1)(3> (mod p?),
and »
=1 () 1(-0()) owar
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The Lucas numbers Lo, Ly, L, ... are given by
L() :2, L1 = 1, and Ln_|_1 :Ln+Ln—1 for n = 1,2,3,... .

It is easy to see that L, = 2F, 1 — F,, = 2F,,_1 + F,, for all n € Z™. Thus, for any
odd prime p # 5 we have

Lyp(z)=2F, - (g) Fp—(z) =2 <§> (mod p)

and hence

(a2)p7(%) _ (52)19*(%)
Oé2 _ 62

where a = (1 ++/5)/2 and 8 = (1 — v/5)/2. Note also that

_o (P 2
=Fp)Lp-(z) =2 <g> Fy—() (mod p),

up—(2)(3:1) =
un(3 % 5,5%) = 5" tu,(3,1) =5""'F,L, foranyn € N.

Thus Theorem 3.1 with (b,c) = (1,—1),(5,5) leads to the following corollary.

Corollary 3.2. For any n € Z™", we have

n—1 n
1
=) Te(1,-1)M(1,-1)5" " F =Y (1) w(n, k)Cr15" P € Z (3.17)
n k=0 k=1
and .
1 <= T5(5,5) M (5,5 =
EZ (5, )5k £(5,5) _ w(n, k)Cr_1 € Z. (3.18)
k=0 k=1

Also, for any prime p # 2,5 we have the congruences

2

BN 1 (2)) 4 (- (5) 000

(]
Il

=0 (3.19)
T g (5 -2 (%)) F,_(zy (mod p?),
SECTREIL (B )60
- % (1 t2 (2)) Fp_(zy (mod p°),
and
( )”Zl KT (1 Mk(1 1) _ m(5,55)£\4k(5,5) 2 (modp). (3.21)
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4. TwWO RELATED CONJECTURES
In view of (1.8) and (1.9), we can easily see that

Wi(z) =1, Wa(z) =2z + 1, Wi(z) = 102 + 5z + 1,
Wy(z) = 7023 + 4222 + 9z + 1.

Applying the Zeilberger algorithm (cf. [PWZ, pp.101-119]) via Mathematica 9,
we obtain the following third-order recurrence with n € Z*:

(n+3)*(n+4)(2n + 3)Wyi3()
=(n+3)(2n +5)(4z(2n + 3)% + 3n? 4+ 11n + 10) W, 4o(x)

4.1
— (n41)(2n + 3)(42(2n + 5)% + 3n® + 13n + 14) W, 41 (z) (1)
+n(n+1)%(2n + 5)W,(z).
(This is a verified result, not a conjecture.)
For any n € Z*, we clearly have w(n,n) = C,,. For the polynomial
wp(x) == Zw(n, k)azF1, (4.2)
k=1
we have the relation
wn (=1 =) = (=1)" wy(z) (4.3)

since

Y R w(n, k) = w(n,m or all m = n
k;n( 1) (m—l) (n,k) = w(n,m) for all 1,....,n, (4.4)

which can be deduced with the help of the Chu-Vandermonde identity in the fol-
lowing way:

>0t (57wt
() E G ()

k=m
S 1 ) Dol g [ ey
S 6oy BN

Via the Zeilberger algorithm we obtain the recurrence

(n+ 3)wpi2(z) = 22+ 1)(2n + 3)wpy1(z) — nw,(z) forn=1,2,3,... (4.5)
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As wy(x) = 2z+1, this recurrence implies that ws,, (—1/2) = 0 and hence wa, (x)/(22+
1) € Z[z] for all n € ZT. We also note that

nz_:l wy (2)y" = LY 2x2yxzx\{r (zi); 1?2 — ey (4.6)

while

oo l—y—\y2—6y+1
5 - |
n=0 2y

Now we pose two conjectures for further research.

Conjecture 4.1. For any integer n > 1, all the polynomials

Wap ()
2z +1
are irreducible over the field of rational numbers.

Won—1(x), and W, (x)

Conjecture 4.2. (i) For any n € Z*, we have

n—1
1
()= =S Di(z)R 7z, 47
fulz) = — 1;) k(@) Ri(z) € Zla] (4.7)
where i i
E\ (k+1\ 2 E+1\ /20 «f

R = = . 4.8
£(@) ;(z)( l )21—1 ;(zz)(z)21—1 (48)

Also, fa(x), f3(x),... are all irreducible over the field of rational numbers, and

fa(1) = %ZDkRk = (—1)" (mod 32)
k=0

for each n € Z, where R, = Ry(1).
(ii) Let p be any odd prime. Then

p—! 2 3 AN
—p+8 2) —2p°F,_ d =1 d4
ZDkRkE{ Pt pqp(g) p°Ep-3 (mod p*) Z.fp (mod 4), (4.9)
=0 —5p (mod p~) if p=3 (mod 4).
Also,
p—1
-1
> Dt (4 - (—)) qp(2) (mod p), (4.10)
k p
k=1
p—1
1 3 -1 9
kEDyRr,=-+=-p(1—-2| — (mod p*), (4.11)
Py 2 2 P
and
p—1 1
xp
Z kDy(z)Ri(x) = 5 (mod p).
k=1
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