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Abstract. We mainly introduce two new kinds of numbers given by

Rn =
n∑

k=0

(n
k

)(n+ k

k

) 1

2k − 1
(n = 0, 1, 2, . . . )

and

Sn =
n∑

k=0

(n
k

)2(2k
k

)
(2k + 1) (n = 0, 1, 2, . . . ).

We find that such numbers have many interesting arithmetic properties. For exam-
ple, if p ≡ 1 (mod 4) is a prime with p = x2 + y2 (where x ≡ 1 (mod 4) and y ≡ 0
(mod 2)), then

R(p−1)/2 ≡ p− (−1)(p−1)/42x (mod p2).

Also,

1

n2

n−1∑
k=0

Sk ∈ Z and
1

n

n−1∑
k=0

Sk(x) ∈ Z[x] for all n = 1, 2, 3, . . . ,

where Sk(x) =
∑k

j=0

(k
j

)2(2j
j

)
(2j+1)xj . For any positive integers a and n, we show

that, somewhat surprisingly,

1

n2

n−1∑
k=0

(2k + 1)
(n− 1

k

)a(−n− 1

k

)a

∈ Z and
1

n

n−1∑
k=0

(n−1
k

)a(−n−1
k

)a
4k2 − 1

∈ Z.

We also solve a conjecture of V.J.W. Guo and J. Zeng, and pose several conjectures

for further research.
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1. Introduction

In combinatorics, the (large) Schröder numbers are given by

S(n) =

n∑
k=0

(
n

k

)(
n+ k

k

)
1

k + 1
=

n∑
k=0

(
n+ k

2k

)(
2k

k

)
1

k + 1
(n ∈ N), (1.1)

where N = {0, 1, 2, . . . }. They are integers since

Ck =
1

k + 1

(
2k

k

)
=

(
2k

k

)
−
(

2k

k + 1

)
∈ Z for all k ∈ N.

Those Cn with n ∈ N are the well-known Catalan numbers. Both Catalan numbers
and Schröder numbers have many combinatorial interpretations. For example, S(n)
is the number of lattice paths from the point (0, 0) to (n, n) with only allowed steps
(1, 0), (0, 1) and (1, 1) which never rise above the line y = x.

We note that (2k − 1) |
(
2k
k

)
for all k ∈ N. This is obvious for k = 0. For each

k ∈ Z+ = {1, 2, 3, . . . }, we have(
2k
k

)
2k − 1

=
2

2k − 1

(
2k − 1

k

)
=

2

k

(
2k − 2

k − 1

)
= 2Ck−1.

Motivated by this and (1.1), we introduce a new kind of numbers:

Rn :=
n∑

k=0

(
n

k

)(
n+ k

k

)
1

2k − 1
=

n∑
k=0

(
n+ k

2k

)(
2k

k

)
1

2k − 1
(n ∈ N). (1.2)

Below are the values of R0, R1, . . . , R16 respectively:

− 1, 1, 7, 25, 87, 329, 1359, 6001, 27759, 132689, 649815,

3242377, 16421831, 84196761, 436129183, 2278835681, 11996748255.

Applying the Zeilberger algorithm (cf. [PWZ, pp. 101-119]) via Mathematica 9,
we get the following third-order recurrence for the new sequence (Rn)n>0:

(n+1)Rn − (7n+15)Rn+1 +(7n+13)Rn+2 − (n+3)Rn+3 = 0 for n ∈ N. (1.3)

In contrast, there is a second-order recurrence for Schröder numbers:

nS(n)− 3(2n+ 3)S(n+ 1) + (n+ 3)S(n+ 2) = 0 (n = 0, 1, 2, . . . ).

So the sequence (Rn)n>0 looks more sophisticated than Schröder numbers.
For convenience, we also introduce the associated polynomials

Rn(x) :=
n∑

k=0

(
n

k

)(
n+ k

k

)
xk

2k − 1
=

n∑
k=0

(
n+ k

2k

)(
2k

k

)
xk

2k − 1
∈ Z[x]. (1.4)
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Note that Rn = Rn(1) and Rn(0) = −1. Now we list R0(x), . . . , R5(x):

R0(x) = −1, R1(x) = 2x− 1, R2(x) = 2x2 + 6x− 1,

R3(x) = 4x3 + 10x2 + 12x− 1, R4(x) = 10x4 + 28x3 + 30x2 + 20x− 1,

R5(x) = 28x5 + 90x4 + 112x3 + 70x2 + 30x− 1.

Applying the Zeilberger algorithm via Mathematica 9, we get the following third-
order recurrence for the polynomial sequence (Rn(x))n>0:

(n+ 1)Rn(x)− (4nx+ 10x+ 3n+ 5)Rn+1(x) + (4nx+ 6x+ 3n+ 7)Rn+2(x)

= (n+ 3)Rn+3(x).
(1.5)

Let p ≡ 1 (mod 4) be a prime. It is well-known that p can be written uniquely
as a sum of two squares. Write p = x2+y2 with x ≡ 1 (mod 4) and y ≡ 0 (mod 2).
In 1828 Gauss (cf. [BEW, (9.0.1)]) proved that(

(p− 1)/2

(p− 1)/4

)
≡ 2x (mod p);

in 1986 Chowla, Dwork and Evans [CDE] showed further that(
(p− 1)/2

(p− 1)/4

)
≡ 2p−1 + 1

2

(
2x− p

2x

)
(mod p2).

The key motivation to introduce the polynomials Rn(x) (x ∈ N) is our following
result.

Theorem 1.1. (i) Let p ≡ 1 (mod 4) be a prime, and write p = x2+y2 with x ≡ 1
(mod 4) and y ≡ 0 (mod 2). Then

R(p−1)/2 − p ≡
p−1∑
k=0

(
2k
k

)2
(2k − 1)(−16)k

≡ −2

(
2

p

)
x (mod p2), (1.6)

where ( ·
p ) denotes the Legendre symbol. Also,

R(p−1)/2(−2) + 2p

(
2

p

)
≡

p−1∑
k=0

(
2k
k

)2
(2k − 1)8k

≡
(
2

p

)
p

2x
(mod p2), (1.7)

R(p−1)/2

(
−1

2

)
+

p

2

(
2

p

)
≡

p−1∑
k=0

(
2k
k

)2
(2k − 1)32k

≡ p

4x
− x (mod p2). (1.8)

(ii) Let p ≡ 3 (mod 4) be a prime. Then

R(p−1)/2 ≡
p−1∑
k=0

(
2k
k

)2
(2k − 1)(−16)k

≡ −1

2

(
2

p

)(
(p+ 1)/2

(p+ 1)/4

)
(mod p) (1.9)
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and

R(p−1)/2(−2) ≡
p−1∑
k=0

(
2k
k

)2
(2k − 1)8k

≡ −1

2

(
2

p

)(
(p+ 1)/2

(p+ 1)/4

)
(mod p) (1.10)

We also have

R(p−1)/2

(
−1

2

)
+

p

2

(
2

p

)
≡

p−1∑
k=0

(
2k
k

)2
(2k − 1)32k

≡ − p+ 1

2p + 2

(
(p+ 1)/2

(p+ 1)/4

)
(mod p2).

(1.11)

Our following theorem is motivated by (1.7).

Theorem 1.2. Let p = 2n+ 1 be any odd prime. Then

p−1∑
k=0

(
2k
k

)(
2k
k+d

)
(2k − 1)8k

≡ 0 (mod p) (1.12)

for all d ∈ {0, . . . , n} with d ≡ n (mod 2).

Remark 1.1. In contrast with (1.12), by induction we have

n∑
k=0

(
2k
k

)(
2k
k+d

)
(2k − 1)16k

=
2n+ 1

(4d2 − 1)16n

(
2n

n

)(
2n

n+ d

)
for all d, n ∈ N.

Below is our third theorem.

Theorem 1.3. (i) For any odd prime p, we have

p−1∑
k=0

Rk ≡ −p−
(
−1

p

)
(mod p2). (1.13)

(ii) For any positive integer n, we have

Rn(−1) = −(2n+ 1) (1.14)

and consequently
n∑

k=0

(
n
k

)(−n
k

)
2k − 1

= −2n. (1.15)

Remark 1.2. Although there are many known combinatorial identities (cf. [G]),
(1.15) seems new and concise.

Now we introduce another kind of new numbers:

Sn :=
n∑

k=0

(
n

k

)2(
2k

k

)
(2k + 1) (n = 0, 1, 2, . . . ). (1.16)
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We also define the associated polynomials

Sn(x) :=
n∑

k=0

(
n

k

)2(
2k

k

)
(2k + 1)xk (n = 0, 1, 2, . . . ). (1.17)

Here are the values of S0, S1, . . . , S12 respectively:

1, 7, 55, 465, 4047, 35673, 316521, 2819295, 25173855,

225157881, 2016242265, 18070920255, 162071863425.

Now we list the polynomials S0(x), . . . , S5(x):

S0(x) = 1, S1(x) = 6x+ 1, S2(x) = 30x2 + 24x+ 1,

S3(x) = 140x3 + 270x2 + 54x+ 1,

S4(x) = 630x4 + 2240x3 + 1080x2 + 96x+ 1,

S5(x) = 2772x5 + 15750x4 + 14000x3 + 3000x2 + 150x+ 1.

Applying the Zeilberger algorithm via Mathematica 9, we get the following recur-
rence for (Sn)n>0:

9(n+1)2Sn−(19n2+74n+87)Sn+1+(n+3)(11n+29)Sn+2 = (n+3)2Sn+3, (1.18)

which looks more complicated than the recurrence relation (1.3) for (Rn)n>0. Also,
the Zeilberger algorithm could yield a very complicated third-order recurrence for
the polynomial sequence (Sn(x))n>0. Despite these complicated recurrences, we
are able to establish the following result which looks interesting.

Theorem 1.4. (i) For any positive integer n, we have

1

n2

n−1∑
k=0

Sk =

n−1∑
k=0

(
n− 1

k

)2

Ck ∈ Z (1.19)

and
1

n

n−1∑
k=0

Sk(x) ∈ Z[x]. (1.20)

(ii) For any prime p > 3, we have

p−1∑
k=1

Sk

k
≡ p

p−1∑
k=1

Sk

k2
≡ −p

2

(p
3

)
Bp−2

(
1

3

)
(mod p2),

where Bn(x) denotes the Bernoulli polynomial of degree n.

In 2012 Guo and Zeng [GZ, Corollary 5.6] employed q-binomial coefficients to
prove that for any a, b ∈ N and positive integer n we have

n−1∑
k=0

(−1)(a+b)k

(
n− 1

k

)a(−n− 1

k

)b

≡ 0 (mod n).

(Note that
(−n−1

k

)
= (−1)k

(
n+k
k

)
.) This, together with (1.15) and Theorem 1.4,

led us to obtain the following result via a new method.
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Theorem 1.5. (i) Let a1, . . . , am and n > 0 be integers. Then

n−1∑
k=0

(±1)k(2k + 1)
m∏
i=1

(
ain− 1

k

)
≡0 (mod n), (1.21)

n−1∑
k=0

(±1)k(4k3 − 1)
m∏
i=1

(
ain− 1

k

)
≡0 (mod n). (1.22)

Also,

gcd(a1+ · · ·+ am− 1, 2)
n−1∑
k=0

(−1)km(2k+1)
m∏
i=1

(
ain− 1

k

)
≡ 0 (mod n2), (1.23)

and

6
n−1∑
k=0

(−1)km(3k2 + 3k + 1)
m∏
i=1

(
ain− 1

k

)
≡ 0 (mod n2). (1.24)

Moreover,

n−1∑
k=0

(−1)k(4k3 − 1)
m∏
i=1

(
ain− 1

k

)(
−ain− 1

k

)
≡ 0 (mod n2), (1.25)

and

gcd(a1 + · · ·+ am − 1, 2)
n−1∑
k=0

(3k2 + 3k + 1)
m∏
i=1

(
ain− 1

k

)(
−ain− 1

k

)
≡ 0 (mod n3).

(1.26)

(ii) For any positive integers a, b, n, we have

1

n

n−1∑
k=0

(
n−1
k

)a(−n−1
k

)a
4k2 − 1

∈ Z,
1

n

n−1∑
k=0

(
n−1
k

)a(−n−1
k

)a(
k+2
2

) ∈ Z, (1.27)

1

n

n−1∑
k=0

(−1)k
(
1 +

2k

4k2 − 1

)(
n− 1

k

)a(−n− 1

k

)a

∈ Z, (1.28)

1

n

n−1∑
k=0

(−1)k
(
4− 2k + 3(

k+2
2

) )(n− 1

k

)a(−n− 1

k

)a

∈ Z, (1.29)
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and

n−1∑
k=0

(−1)(a+b)k

4k2 − 1

(
n− 1

k

)a(−n− 1

k

)b

∈ Z, (1.30)

n−1∑
k=0

(−1)(a+b−1)kk

4k2 − 1

(
n− 1

k

)a(−n− 1

k

)b

∈ Z, (1.31)

n−1∑
k=0

(−1)(a+b)k(
k+2
2

) (
n− 1

k

)a(−n− 1

k

)b

∈ Z, (1.32)

n−1∑
k=0

(−1)(a+b−1)k(2k + 3)(
k+2
2

) (
n− 1

k

)a(−n− 1

k

)b

∈ Z, (1.33)

n−1∑
k=0

(−1)(a+b)k(3k + 1)

(2k + 1)
(
2k
k

) (
n− 1

k

)a(−n− 1

k

)b

∈ Z, (1.34)

n−1∑
k=0

(−1)(a+b−1)k(5k + 3)

(2k + 1)
(
2k
k

) (
n− 1

k

)a(−n− 1

k

)b

∈ Z. (1.35)

Remark 1.3. For any positive integer n, using (1.15) we can deduce that

n−1∑
k=1

(
n−1
k

)(−n−1
k

)
4k2 − 1

=
1

2

n∑
k=0

(
n
k

)(−n
k

)
2k − 1

= −n.

An extension of (1.21) given in (4.5) confirms a conjecture of Guo and Zeng [GZ].
By (1.23), for any positive integers a, b, n we have the congruence

gcd(a+b−1, 2)
n−1∑
k=0

(−1)(a+b)k(2k+1)

(
n− 1

k

)a(−n− 1

k

)b

≡ 0 (mod n2). (1.36)

Corollary 1.1. For n ∈ N define

tn =
n∑

k=0

(
n

k

)2(
n+ k

k

)2
1

2k − 1
,

Tn =
n∑

k=0

(
n

k

)2(
n+ k

k

)2

(2k + 1),

T+
n =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

(2k + 1)2,

T−
n =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

(−1)k(2k + 1)2.
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Then, for any positive integer n, we have

1

n3

n−1∑
k=0

(2k + 1)tk ∈ Z,
1

n3

n−1∑
k=0

(2k + 1)Tk ∈ Z, (1.37)

and

1

n4

n−1∑
k=0

(2k + 1)T+
k ∈ Z,

1

n3

n−1∑
k=0

(2k + 1)T−
k ∈ Z. (1.38)

We will prove Theorems 1.1-1.3 in the next section. We are going to show
Theorem 1.4 and a q-congruence related to (1.21) in Section 3. Section 4 is devoted
to our proofs of Theorem 1.5 and Corollary 1.1 and some extensions. In Section 5
we pose several related conjectures for further research.

2. Proofs of Theorems 1.1-1.3

Lemma 2.1. Let p = 2n+ 1 be an odd prime. Then

Rn(x) ≡
n∑

k=0

(
2k
k

)2
2k − 1

(
− x

16

)k
≡

p−1∑
k=0

(
2k
k

)2
2k − 1

(
− x

16

)k
− p(−x)n+1 (mod p2).

(2.1)

Proof. As pointed out in [S11, Lemma 2.2], for each k = 0, . . . , n we have

(
(p− 1)/2 + k

2k

)
=

∏
0<j6k(p

2 − (2j − 1)2)

(2k)!4k
≡

(
2k
k

)
(−16)k

(mod p2).

Recall that (2k − 1) |
(
2k
k

)
for all k ∈ N. Therefore,

Rn(x) =
n∑

k=0

(
n+ k

2k

)(
2k

k

)
xk

2k − 1
≡

n∑
k=0

(
2k
k

)2
2k − 1

(
− x

16

)k
(mod p2).

Clearly, p |
(
2k
k

)
for all k = n+ 1, . . . , p− 1. Also,

(
p+1

(p+1)/2

)2
2× (p+ 1)/2− 1

(
− x

16

)(p+1)/2

=
4p
(

p−1
(p−3)/2

)2
((p− 1)/2)2

× (−x)(p+1)/2

4p+1

≡p(−x)(p+1)/2 (mod p2).

So the second congruence in (2.1) also holds. �
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Lemma 2.2. For any nonnegative integer n, we have

n∑
k=0

(
(16− x)k2 − 4

) (2k
k

)2
2k − 1

xn−k =
4(n+ 1)2

2n+ 1

(
2n+ 1

n

)2

. (2.2)

Proof. Let P (x) denote the left-hand side of (2.2). Then

P (x) =4
n∑

k=0

(4k2 − 1)

(
2k
k

)2
2k − 1

xn−k −
n∑

k=0

k2
(
2k
k

)2
2k − 1

xn+1−k

=4
n∑

k=0

(2k + 1)

(
2k

k

)2

xn−k − 4
n∑

k=1

(2k − 1)

(
2(k − 1)

k − 1

)2

xn−(k−1)

=4(2n+ 1)

(
2n

n

)2

=
4(n+ 1)2

2n+ 1

(
2n+ 1

n+ 1

)2

.

This concludes the proof. �
Proof of Theorem 1.1. Applying Lemma 2.1 with x = 1,−2,−1/2 we get the first
congruence in each of (1.6)-(1.11).

Let p be an odd prime. For any p-adic integer m ̸≡ 0 (mod p), by Lemma 2.2
we have

(16−m)

p−1∑
k=1

k2
(
2k
k

)2
(2k − 1)mk

− 4

p−1∑
k=0

(
2k
k

)2
(2k − 1)mk

≡ 0 (mod p2)

and hence

p−1∑
k=0

(
2k
k

)2
(2k − 1)mk

≡(16−m)

p−1∑
k=1

(2k − 1)

(
2(k−1)
k−1

)2
mk

=

(
16

m
− 1

)( p−1∑
j=0

(2j + 1)

(
2j
j

)2
mj

− (2p− 1)

(
2p−2
p−1

)2
mp−1

)

≡
(
16

m
− 1

) (p−1)/2∑
k=0

(2k + 1)

(
2k
k

)2
mk

(mod p2).

(Note that
(
2p−2
p−1

)
= (2p− 2)!/((p− 1)!)2 ≡ 0 (mod p).) Taking m = −16, 8, 32 we

obtain

p−1∑
k=0

(
2k
k

)2
(2k − 1)(−16)k

≡− 2

(p−1)/2∑
k=0

(2k + 1)

(
2k
k

)2
(−16)k

(mod p2), (2.3)

p−1∑
k=0

(
2k
k

)2
(2k − 1)8k

≡
(p−1)/2∑

k=0

(2k + 1)

(
2k
k

)2
8k

(mod p2), (2.4)

p−1∑
k=0

(
2k
k

)2
(2k − 1)32k

≡− 1

2

(p−1)/2∑
k=0

(2k + 1)

(
2k
k

)2
32k

(mod p2). (2.5)
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(i) Recall the condition p = x2+y2 with x ≡ 1 (mod 4) and y ≡ 0 (mod 2). By
[Su12a, Theorem 1.2],(

2

p

)
x ≡

(p−1)/2∑
k=0

2k + 1

(−16)k

(
2k

k

)2

≡
(p−1)/2∑

k=0

k + 1

8k

(
2k

k

)2

(mod p2).

The author [Su11, Conjecture 5.5] conjectured that(
2

p

) (p−1)/2∑
k=0

(
2k
k

)2
8k

≡
(p−1)/2∑

k=0

(
2k
k

)2
32k

≡ 2x− p

2x
(mod p2)

which was later confirmed by the author’s brother Z.-H. Sun [S11], who also showed
that

(p−1)/2∑
k=0

k
(
2k
k

)2
32k

≡ 0 (mod p2).

Combining these with (2.3)-(2.5), we immediately get the second congruences in
(1.6)-(1.8).

(ii) Now we consider the case p ≡ 3 (mod 4). By [Su13a, Theorem 1.3],

(p−1)/2∑
k=0

2k + 1

(−16)k

(
2k

k

)2

≡
(p−1)/2∑

k=0

2k

(−16)k

(
2k

k

)2

≡ 1

4

(
2

p

)(
(p+ 1)/2

(p+ 1)/4

)
(mod p)

and

(p−1)/2∑
k=0

2k + 1

8k

(
2k

k

)2

≡
(p−1)/2∑

k=0

2k

8k

(
2k

k

)2

≡ −1

2

(
2

p

)(
(p+ 1)/2

(p+ 1)/4

)
(mod p).

Combining this with (2.3) and (2.4), we obtain the second congruences in (1.9) and
(1.10).

Z.-H. Sun [S11, Theorem 2.2] confirmed the author’s conjectural congruence

(p−1)/2∑
k=0

(
2k
k

)2
32k

≡ 0 (mod p2).

He also showed [S11, Theorem 2.3] that

(p−1)/2∑
k=0

k
(
2k
k

)2
32k

≡
(
2

p

)
p+ 1

4× 2(p−1)/2

(
(p+ 1)/2

(p+ 1)/4

)
(mod p2).

Observe that

2p−1 + 1 =2 +

((
2

p

)
2(p−1)/2 + 1

)((
2

p

)
2(p−1)/2 − 1

)
≡2 + 2

((
2

p

)
2(p−1)/2 − 1

)
= 2

(
2

p

)
2(p−1)/2 (mod p2).
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Therefore,

(p−1)/2∑
k=0

2k + 1

32k

(
2k

k

)2

≡ p+ 1

2p−1 + 1

(
(p+ 1)/2

(p+ 1)/4

)
(mod p2).

Combining this with (2.5) we obtain the second congruence in (1.11).

The proof of Theorem 1.1 is now complete. �

Proof of Theorem 1.2. Clearly
(
2k
k

)
/(2k − 1) ≡ 0 (mod p) if n+ 1 < k < p. Thus

p−1∑
k=0

(
2k
k

)(
2k

k+n

)
(2k − 1)8k

≡
n+1∑
k=n

(
2k
k

)(
2k

k+n

)
(2k − 1)8k

=

(
p−1
n

)
(2n− 1)8n

+

(
p+1
n+1

)(
p+1
p

)
p8n+1

≡1

2
(−1)n+1

(
8

p

)
+

2 p
n

(
p−1
n−1

)
(p+ 1)

p8n+1
≡ 0 (mod p).

So (1.12) holds for d = n.

Define

um(d) =
m∑

k=0

(
2k
k

)(
2k
k+d

)
(2k − 1)8k

for d,m ∈ N.

Applying the Zeilberger algorithm via Mathematica 9, we get the recurrence

(2d− 1)um(d) + (2d+ 5)um(d+ 2) = (d+ 1)

(
2m
m

)(
2m+2
m+d+2

)
(m+ 1)8m

.

If 0 6 d 6 n− 2, then

(
2(p−1)
p−1

)(
2p

p+d+1

)
8p−1p

=

p
2p−1

(
2p−1

p

)
2p

p+d+1

(
2p−1
p+d

)
8p−1p

≡ 0 (mod p)

and hence

(2d− 1)up−1(d) ≡ −(2d+ 5)up−1(d+ 2) (mod p),

therefore

up−1(d+ 2) ≡ 0 (mod p) =⇒ up−1(d) ≡ 0 (mod p).

In view of the above, we have proved the desired result by induction. �
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Lemma 2.3. For any integers k > 0 and n > 0, we have the identity

(−1)k
(
n
k

)(−n
k

)(
2k−1

k

) =
2n

n+ k

(
n+ k

2k

)
=

(
n+ k

2k

)
+

(
n+ k − 1

2k

)
. (2.6)

Proof. Observe that

(−1)k
(
n

k

)(
−n

k

)
=

(
n

k

)(
n+ k − 1

k

)
=

(
n

k

)(
n+ k

k

)
n

n+ k

=

(
n+ k

2k

)(
2k

k

)
n

n+ k
=

2n

n+ k

(
n+ k

2k

)(
2k − 1

k

)
and

2n

n+ k

(
n+ k

2k

)
=

(
1 +

n− k

n+ k

)(
n+ k

2k

)
=

(
n+ k

2k

)
+

(
n+ k − 1

2k

)
.

So (2.6) follows. �
Proof of Theorem 1.3. (i) It is known that

m∑
n=0

(
n+ l

l

)
=

(
l +m+ 1

l + 1

)
for all l,m ∈ N

(cf. [G, (1.49)]). Thus

p−1∑
n=0

Rn =

p−1∑
n=0

n∑
k=0

(
n+ k

2k

) (
2k
k

)
2k − 1

=

p−1∑
k=0

(
2k
k

)
2k − 1

p−1∑
n=k

(
n+ k

2k

)

=

p−1∑
k=0

(
2k
k

)
2k − 1

(
p+ k

2k + 1

)
=

p−1∑
k=0

p

(2k + 1)(2k − 1)

∏
0<j6k

p2 − j2

j2

≡p

p−1∑
k=0

(−1)k

4k2 − 1
= −p+ p

(p−1)/2∑
k=1

(
(−1)k

4k2 − 1
+

(−1)p−k

4(p− k)2 − 1

)

≡− p+ p

(
(−1)(p−1)/2

4((p− 1)/2)2 − 1
+

(−1)(p+1)/2

4((p+ 1)/2)2 − 1

)
≡− p+

(
−1

p

)(
1

p− 2
− 1

p+ 2

)
≡ −p−

(
−1

p

)
(mod p2).

(ii) For any positive integer n, clearly

Rn(−1)−Rn−1(−1)

=
n∑

k=0

((
n+ k

2k

)
−
(
n− 1 + k

2k

))(
2k

k

)
(−1)k

2k − 1

=
n∑

k=1

(
n− 1 + k

2k − 1

)
(−1)k2Ck−1 = −2

n−1∑
j=0

(
n+ j

2j + 1

)
(−1)jCj
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and hence Rn(−1) − Rn−1(−1) = −2 with the help of [Su12b, (2.6)]. Thus, by
induction, (1.14) holds for all n ∈ N.

In view of (2.6) and (1.14), for each positive integer n we have

2
n∑

k=0

(
n
k

)(−n
k

)
2k − 1

=
n∑

k=0

((
n+ k

2k

)
+

(
n+ k − 1

2k

))(
2k

k

)
(−1)k

2k − 1

=
n∑

k=0

((
n

k

)(
n+ k

k

)
+

(
n− 1

k

)(
n− 1 + k

k

))
(−1)k

2k − 1

=Rn(−1) +Rn−1(−1) = −(2n+ 1)− (2n− 1) = −4n

and hence (1.15) holds.
The proof of Theorem 1.3 is now complete. �

3. Proof of Theorem 1.4 and a q-congruence related to (1.21)

Proof of (1.19). Define

hn :=
n∑

k=0

(
n

k

)2

Ck for n = 0, 1, 2, . . . .

We want to show that
∑n−1

k=0 Sk = n2hn−1 for any positive integer n. This is trivial
for n = 1. So, it suffices to show that

Sn = (n+ 1)2hn − n2hn−1 =

n∑
k=0

((n+ 1)2 − (n− k)2)

(
n

k

)2

Ck

for all n = 1, 2, 3, . . . . Define vn =
∑n

k=0((n+ 1)2 − (n− k)2)
(
n
k

)2
Ck for n ∈ N. It

is easy to check that vn = Sn for n = 0, 1, 2. Via the Zeilberger algorithm we find
the recurrence

9(n+ 1)2vn − (19n2 + 74n+ 87)vn+1 + (n+ 3)(11n+ 29)vn+2 = (n+ 3)2vn+3.

This, together with (1.18), implies that vn = Sn for all n ∈ N. �
For each integer n we set

[n]q =
1− qn

1− q
,

which is the usual q-analogue of n. For any n ∈ Z, we define[
n

0

]
q

= 1 and

[
n

k

]
q

=

∏k−1
j=0 [n− j]q∏k

j=1[j]q
for k = 1, 2, 3, . . . .

Obviously limq→1

[
n
k

]
q
=
(
n
k

)
for all k ∈ N and n ∈ Z. It is easy to see that[

n

k

]
q

= qk
[
n− 1

k

]
q

+

[
n− 1

k − 1

]
q

for all k, n = 1, 2, 3, . . . .



14 ZHI-WEI SUN

By this recursion,
[
n
k

]
q
∈ Z[q] for all k, n ∈ N. For any integers a, b and n > 0,

clearly
a ≡ b (mod n) =⇒ [a]q ≡ [b]q (mod [n]q).

Let n be a positive integer. The cyclotomic polynomial

Φn(q) :=
n∏

a=1
(a,n)=1

(
q − e2πia/n

)
∈ Z[q]

is irreducible in the ring Z[q]. It is well-known that

qn − 1 =
∏
d|n

Φd(q).

Note that Φ1(q) = q − 1.

Lemma 3.1 (q-Lucas Theorem (cf. [O])). Let a, b, d, s, t ∈ N with s < d and t < d.
Then [

ad+ s

bd+ t

]
q

≡
(
a

b

)[
s

t

]
q

(mod Φd(q)). (3.1)

Lemma 3.2. Let n be a positive integer and let k ∈ N with k < (n− 1)/2. Then

n−1∑
h=0

qh
[
h

k

]2
q

≡ 0 (mod Φn(q)). (3.2)

Proof. Note that
n−1∑
h=0

qh
[
h

k

]2
q

=

n−1−k∑
m=0

qk+m

[
k +m

m

]2
q

and[
k +m

m

]
q

=
m∏
j=1

1− qk+j

1− qj
=

m∏
j=1

(
qk+j q

−k−j − 1

1− qj

)

=(−1)mqkm+m(m+1)/2
m∏
j=1

1− q−k−j

1− qj
= (−1)mqkm+m(m+1)/2

[
−k − 1

m

]
q

.

Thus
n−1∑
h=0

qh
[
h

k

]2
q

=
n−1−k∑
m=0

qk+mq2km+m(m+1)

[
−k − 1

m

]2
q

≡q−k2−k−1
n−1−k∑
m=0

q(k+m+1)2
[
n− k − 1

m

]2
q

≡q−k(k+1)−1
n−1−k∑
m=0

q(n−k−m−1)2
[
n− k − 1

m

]
q

[
n− k − 1

n− k − 1−m

]
q

=q−k(k+1)−1

[
2(n− k − 1)

n− k − 1

]
q

(mod Φn(q))
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with the help of the q-Chu-Vandermonde identity (cf. [AAR, p. 542]). As 2(n−1−
k) > n > n− k − 1,

[
2(n−k−1)
n−k−1

]
q
is divisible by Φn(q). Therefore (3.2) holds. �

Theorem 3.1. For any integers n > k > 0, we have

[2k + 1]q

[
2k

k

]
q

n−1∑
h=0

qh
[
h

k

]2
q

≡ 0 (mod [n]q) (3.3)

and hence

(2k + 1)

(
2k

k

) n−1∑
h=0

(
h

k

)2

≡ 0 (mod n). (3.4)

Proof. Clearly (3.3) with q → 1 yields (3.4), and (3.3) holds trivially in the case
n = 1 and k = 0. Below we only need to prove (3.3) for n > 1.

As the polynomials Φ2(q),Φ3(q), . . . are pairwise coprime and

[n]q =
∏
d|n
d>1

Φd(q), (3.5)

it suffices to show

[2k + 1]q

[
2k

k

]
q

n−1∑
h=0

qh
[
h

k

]2
q

≡ 0 (mod Φd(q)) (3.6)

for any divisor d > 1 of n. Set m = n/d and write k = bd + t with b, t ∈ N and
t < d. If t < (d− 1)/2, then by applying Lemmas 3.1 and 3.2 we obtain

n−1∑
h=0

qh
[
h

k

]2
q

=
m−1∑
a=0

d−1∑
s=0

qad+s

[
ad+ s

bd+ t

]2
q

≡
m−1∑
a=0

d−1∑
s=0

qs
(
a

b

)2[
s

t

]2
q

=

m−1∑
a=0

(
a

b

)2 d−1∑
s=0

qs
[
s

t

]2
q

≡ 0 (mod Φd(q)).

If t = (d− 1)/2, then

[2k + 1]q = [2bd+ 2t+ 1]q = [(2b+ 1)d]q ≡ 0 (mod [d]q).

When d/2 6 t < d, by Lemma 3.1 we have[
2k

k

]
q

=

[
(2b+ 1)d+ 2t− d

bd+ t

]
q

≡
(
2b+ 1

b

)[
2t− d

t

]
q

= 0 (mod Φd(q)).

So (3.6) holds, and this completes the proof. �
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Proof of (1.20). In light of (3.4),

1

n

n−1∑
h=0

Sh(x) =
1

n

n−1∑
h=0

h∑
k=0

(
h

k

)2(
2k

k

)
(2k + 1)xk

=
n−1∑
k=0

xk

n
(2k + 1)

(
2k

k

) n−1∑
h=0

(
h

k

)2

∈ Z[x].

This concludes the proof. �

Proof of Theorem 1.4(ii). Let p > 3 be a prime. By a well-known result of Wol-
stenholme [W],

p−1∑
k=1

1

k
≡ 0 (mod p2) and

p−1∑
k=1

1

k2
≡ 0 (mod p).

Clearly,

p−1∑
n=1

Sn

n2
=

p−1∑
n=1

1

n2

n∑
k=0

(
n

k

)2(
2k

k

)
(2k + 1)

≡
p−1∑
k=1

(
2k

k

)
2k + 1

k2

p−1∑
n=k

(
n− 1

k − 1

)2

=

p−1∑
k=1

2k + 1

k3
2(2k − 1)

(
2(k − 1)

k − 1

) p−1∑
h=0

(
h

k − 1

)2

−
p−1∑
k=1

2k + 1

k2

(
2k

k

)(
p− 1

k − 1

)2

≡−
p−1∑
k=1

2k + 1

k2

(
2k

k

)
(mod p)

with the help of Theorem 3.1. Note that

p−1∑
k=1

(
2k
k

)
k

≡ 0 (mod p2) and

p−1∑
k=1

(
2k
k

)
k2

≡ 1

2

(p
3

)
Bp−2

(
1

3

)
(mod p)

by [ST] and [MT] respectively. Therefore,

p−1∑
n=1

Sn

n2
≡ −2

p−1∑
k=1

(
2k
k

)
k

−
p−1∑
k=1

(
2k
k

)
k2

≡ −1

2

(p
3

)
Bp−2

(
1

3

)
(mod p).
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Observe that

p−1∑
n=1

Sn

n
=

p−1∑
n=1

1

n

n∑
k=0

(
n

k

)2(
2k

k

)
(2k + 1)

≡
p−1∑
k=1

(
2k

k

)
2k + 1

k

p−1∑
n=k

(
n− 1

k − 1

)(
n

k

)

≡
p−1∑
k=1

(
2k

k

)
2k + 1

k

( p−1+k∑
n=k

(
n− 1

k − 1

)(
n

k

)
−
(
p− 1

k − 1

)(
p

k

))

=

p−1∑
k=1

2k + 1

k

(
2k

k

)( p−1∑
j=0

(
k + j − 1

j

)(
k + j

j

)
− p

k

(
p− 1

k − 1

)2)

≡
p−1∑
k=1

2k + 1

k

(
2k

k

) p−1∑
j=0

(
−k

j

)(
−k − 1

j

)
−

p−1∑
k=1

2k + 1

k

(
2k

k

)
p

k

=

p−1∑
k=1

2k + 1

k2
k

(
2k

k

) p−1∑
j=0

(
−k

j

)(
−k − 1

j

)
− p

p−1∑
k=1

2k + 1

k2

(
2k

k

)
(mod p2).

By [Su16, Lemma 3.4],

k

(
2k

k

) p−1∑
j=0

(
−k

j

)(
−k − 1

j

)
≡ p (mod p2) for all k = 1, . . . , p− 1.

So we have

p−1∑
n=1

Sn

n
≡p

p−1∑
k=1

2k + 1

k2
− p

p−1∑
k=1

2k + 1

k2

(
2k

k

)
≡− p

2

(p
3

)
Bp−2

(
1

3

)
(mod p2).

This concludes the proof of Theorem 1.4(ii). �
Now we present a q-congruence related to (1.21).

Theorem 3.2. Let a, b ∈ N, and let n be a positive integer. For each a′ ∈ {a, a−1},
we have

n−1∑
k=0

(−1)a
′kqa

′k(k+1)/2−k[2k + 1]q

[
n− 1

k

]a
q

[
n+ k

k

]b
q

≡ 0 (mod [n]q). (3.7)

Therefore
n−1∑
k=0

(±1)k(2k + 1)

(
n− 1

k

)a(
n+ k

k

)b

≡ 0 (mod n). (3.8)
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Proof. (3.8) follows from (3.7) with q → 1. Note that (3.7) is trivial for n = 1.
Below we assume n > 1 and want to prove (3.7). In view of (3.5), it suffices to

show that the left-hand side of (3.7) is divisible by Φd(q) for any divisor d > 1 of
n. Write n = dm. By Lemma 3.1,

n−1∑
k=0

(−1)a
′kqa

′k(k+1)/2−k[2k + 1]q

[
n− 1

k

]a
q

[
n+ k

k

]b
q

=

m−1∑
j=0

d−1∑
r=0

(−1)a
′(jd+r)qa

′(jd+r)(jd+r+1)/2−(jd+r)

(
[2(jd+ r) + 1]q

×
[
(m− 1)d+ d− 1

jd+ r

]a
q

[
(m+ j)d+ r

jd+ r

]b
q

)

≡
m−1∑
j=0

(−1)a
′jdqa

′jd(jd+1)/2

×
d−1∑
r=0

(−1)a
′rqa

′r(r+1)/2−r[2r + 1]q

(
m− 1

j

)a[
d− 1

r

]a
q

(
m+ j

j

)b[
r

r

]b
q

=

m−1∑
j=0

(−1)a
′jdqa

′jd(jd+1)/2

(
m− 1

j

)a(
m+ j

j

)b

×
d−1∑
r=0

(−1)a
′rqa

′r(r+1)/2−r[2r + 1]q

[
d− 1

r

]a
q

(mod Φd(q)).

For each r = 0, . . . , d− 1, we have[
d− 1

r

]
q

=
∏

0<s6r

1− qd−s

1− qs
=

∏
0<s6r

(
q−s qs − 1 + (1− qd)

1− qs

)
≡(−1)rq−r(r+1)/2 (mod Φd(q)).

So, by the above, it suffices to show that

d−1∑
r=0

(−1)a
′rqa

′r(r+1)/2−r[2r + 1]q

(
(−1)rq−r(r+1)/2

)a
≡ 0 (mod Φd(q)).

As a′ ∈ {a, a− 1}, this reduces to

d−1∑
r=0

q−r[2r + 1]q ≡ 0 ≡
d−1∑
r=0

(−1)rq−r(r+1)/2−r[2r + 1]q (mod Φd(q)). (3.9)

It is clear that

d−1∑
r=0

q−r[2r + 1]q =
d−1∑
r=0

q−r 1− q2r+1

1− q
≡

d−1∑
r=0

qd−r − qr+1

1− q
= 0 (mod Φd(q)).
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Also,

d−1∑
r=0

(−1)rq−(r2+3r)/2 1− q2r+1

1− q

=
1

1− q

d−1∑
r=0

(−1)r
(
q−r(r+3)/2 − q−(r−2)(r+1)/2

)
=

1

1− q

( d−1∑
r=0

(−1)rq−r(r+3)/2 −
d−3∑
r=−2

(−1)rq−r(r+3)/2

)
=

1

1− q

(
(−1)d−1q−(d−1)(d+2)/2 + (−1)d−2q−(d−2)(d+1)/2

)
=
(−1)d−1

1− q

(
q1−d(d+1)/2 − q1−d(d−1)/2

)
= (−1)d−1q1−d(d+1)/2[d]q

and hence the second congruence in (3.9) holds too. This concludes the proof. �

4. Proofs of Theorem 1.5 and Corollary 1.1 and some extensions

Theorem 4.1. Let a1, . . . , am ∈ Z and b1, . . . , bm ∈ N. Let f : N → Z be a
function with k | f(k) for all k ∈ N. Let n be a positive integer and set d =
gcd(a1, . . . , am, b1, . . . , bm, n). Then we have

n−1∑
k=0

f̄(k)

m∏
i=1

(
ai − 1

bi + k

)
≡ 0 (mod d), (4.1)

where f̄(k) = f(k + 1)− (−1)mf(k). If k2 | f(k) for all k ∈ N, then

n−1∑
k=0

f̄(k)
m∏
i=1

(
ai − 1

bi + k

)
≡ (−1)m

( m∑
i=1

ai

) ∑
0<k<n

f(k)

k

m∏
i=1

(
ai − 1

bi + k

)
(mod d2).

(4.2)

Proof. Clearly f(0) = 0. Observe that

n−1∑
k=0

f̄(k)

m∏
i=1

(
ai − 1

bi + k

)

=
n−1∑
k=0

f(k + 1)
m∏
i=1

(
ai − 1

bi + k

)
− (−1)m

n−1∑
k=0

f(k)
m∏
i=1

(
ai − 1

bi + k

)

=
n∑

k=1

f(k)
m∏
i=1

(
ai − 1

bi + k − 1

)
− (−1)m

n−1∑
k=0

f(k)
m∏
i=1

(
ai − 1

bi + k

)

=f(n)
m∏
i=1

(
ai − 1

bi + n− 1

)
+
∑

0<k<n

f(k)dk,
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where

dk :=
m∏
i=1

((
ai

bi + k

)
−
(
ai − 1

bi + k

))
− (−1)m

m∏
i=1

(
ai − 1

bi + k

)
can be written as

∑m
i=1 ci,k

(
ai

bi+k

)
with ci,k ∈ Z. Since k | f(k) and

k

(
ai

bi + k

)
= ai

(
ai − 1

bi + k − 1

)
− bi

(
ai

bi + k

)
≡ 0 (mod d) (4.3)

for all k = 1, 2, 3, . . . , we derive (4.1) from the above.
Now we assume k2 | f(k) for all k ∈ N. For any 0 < k < n, if 1 6 i < j 6 m

then

f(k)

(
ai

bi + k

)(
aj

bj + k

)
=

f(k)

k2

(
k

(
ai

bi + k

))(
k

(
aj

bj + k

))
≡ 0 (mod d2),

thus we may use (4.3) to deduce that

f(k)dk ≡f(k)
m∑
i=1

(
ai

bi + k

)∏
j ̸=i

(
−
(
aj − 1

bj + k

))

=
f(k)

k

m∑
i=1

(
ai

(
ai − 1

bi + k − 1

)
− bi

(
ai

bi + k

))
(−1)m−1

∏
j ̸=i

(
aj − 1

bj + k

)

=
f(k)

k2

m∑
i=1

(
−kai

(
ai − 1

bi + k

)
+ (ai − bi)k

(
ai

bi + k

))
(−1)m−1

∏
j ̸=i

(
aj − 1

bj + k

)

≡f(k)

k
(a1 + · · ·+ am)(−1)m

m∏
i=1

(
ai − 1

bi + k

)
(mod d2).

Therefore, (4.2) follows. �
Corollary 4.1. Let a1, . . . , am ∈ Z and b1, . . . , bm ∈ N. Let n be any positive
integer and set d = gcd(a1, . . . , am, b1, . . . , bm, n). Then we have

n−1∑
k=0

(−1)km
m∏
i=1

(
ai − 1

bi + k

)
≡0 (mod d), (4.4)

n−1∑
k=0

(±1)k(2k + 1)
m∏
i=1

(
ai − 1

bi + k

)
≡0 (mod d), (4.5)

n−1∑
k=0

(±1)k(4k3 − 1)
m∏
i=1

(
ai − 1

bi + k

)
≡0 (mod d). (4.6)

Also,

gcd

(
a1 + · · ·+ am

d
− 1, 2

) n−1∑
k=0

(−1)km(2k+1)
m∏
i=1

(
ai − 1

bi + k

)
≡ 0 (mod d2) (4.7)
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and

6
n−1∑
k=0

(−1)km(3k2 + 3k + 1)
m∏
i=1

(
ai − 1

bi + k

)
≡ 0 (mod d2). (4.8)

Proof. Clearly, (−1)km+m = (−1)(k+1)m(k + 1)− (−1)m((−1)kmk),

(±1)k(2k + 1) =(±1)(k+1)−1(k + 1)± (±1)k−1k,

=(±1)(k+1)−1(k + 1)2 ∓ (±1)k−1k2,

and

(±1)k(4k3 − 1) =(±1)(k+1)−1(k + 1)2(2(k + 1)− 3)± (±1)k−1k2(2k − 3)

=(−1)(k+1)−1
(
(k + 1)2k2 − (k + 1)

)
∓ (±1)k−1

(
k2(k − 1)2 − k

)
.

So (4.4)-(4.6) follow from the first assertion in Theorem 4.1.
Now we prove (4.7). Let f(k) = (−1)kmk2 for all k ∈ N. Then

f(k + 1)− (−1)mf(k) = (−1)(k+1)m(2k + 1).

Applying the second assertion in Theorem 4.1, we get

n−1∑
k=0

(−1)km+m(2k + 1)
m∏
i=1

(
ai − 1

bi + k

)

≡(−1)m(a1 + · · ·+ am)
n−1∑
k=0

(−1)kmk
m∏
i=1

(
ai − 1

bi + k

)
(mod d2)

and hence

gcd

(
a1 + · · ·+ am

d
− 1, 2

) n−1∑
k=0

(−1)km(2k + 1)
m∏
i=1

(
ai − 1

bi + k

)

≡ (a1 + · · ·+ am)/d

gcd((a1 + · · ·+ am)/d, 2)
d

n−1∑
k=0

(−1)km((2k + 1)− 1)

m∏
i=1

(
ai − 1

bi + k

)
(mod d2).

Combining this with (4.4) and (4.5), we immediately obtain the desired (4.7).
It remains to show (4.8). Let g(k) = (−1)kmk3 for all k ∈ N. Then

g(k + 1)− (−1)mg(k) = (−1)(k+1)m(3k2 + 3k + 1).

Applying the second assertion in Theorem 4.1, we obtain

n−1∑
k=0

(−1)km+m(3k2 + 3k + 1)
m∏
i=1

(
ai − 1

bi + k

)

≡(−1)m(a1 + · · ·+ am)

n−1∑
k=0

(−1)kmk2
m∏
i=1

(
ai − 1

bi + k

)
(mod d2)

≡0 (mod d)
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and hence

6
n−1∑
k=0

(−1)km(3k2 + 3k + 1)
m∏
i=1

(
ai − 1

bi + k

)

≡a1 + · · ·+ am
d

d
n−1∑
k=0

(−1)km(2(3k2 + 3k + 1)− 3(2k + 1) + 1)
m∏
i=1

(
ai − 1

bi + k

)
≡0 (mod d2)

with the use of (4.4) and (4.5). Thus (4.8) holds.
The proof of Corollary 4.1 is now complete. �

Remark 4.1. (4.4) was first established by Guo and Zeng [GZ, Theorem 5.5] via
q-binomial coefficients, while (4.5) was conjectured by them in [GZ, Conjecture
5.8].

Theorem 4.2. Let a1, . . . , am ∈ Z, and let f : N → Z be a function with k3 | f(k)
for all k ∈ N. Then, for any positive integer n, we have

n−1∑
k=0

∆f(k)
m∏
i=1

(
ain− 1

k

)(
−ain− 1

k

)

≡n2(a21 + · · ·+ a2m)
∑

0<k<n

f(k)

k2

m∏
i=1

(
ain− 1

k

)(
−ain− 1

k

)
(mod n3),

(4.9)

where ∆f(k) = f(k + 1)− f(k).

Proof. Note that f(0) = 0 and

n−1∑
k=0

(f(k + 1)− f(k))

m∏
i=1

(
ain− 1

k

)(
−ain− 1

k

)

=
n∑

k=1

f(k)
m∏
i=1

(
ain− 1

k − 1

)(
−ain− 1

k − 1

)
−

n−1∑
k=0

f(k)
m∏
i=1

(
ain− 1

k

)(
−ain− 1

k

)

=f(n)
m∏
i=1

(
ain− 1

n− 1

)(
−ain− 1

n− 1

)
+
∑

0<k<n

f(k)dk(n)− f(0),

where

dk(n) :=
m∏
i=1

(
ain− 1

k − 1

)(
−ain− 1

k − 1

)
−

m∏
i=1

(
ain− 1

k

)(
−ain− 1

k

)
.

Since(
ain− 1

k

)(
−ain− 1

k

)
−
(
ain

k

)(
−ain

k

)
=
ain− k

k

(
ain− 1

k − 1

)
−ain− k

k

(
−ain− 1

k − 1

)
− ain

k

(
ain− 1

k − 1

)
−ain

k

(
−ain− 1

k − 1

)
=

(
k2 − (ain)

2

k2
+

(ain)
2

k2

)(
ain− 1

k − 1

)(
−ain− 1

k − 1

)
=

(
ain− 1

k − 1

)(
−ain− 1

k − 1

)



TWO NEW KINDS OF NUMBERS AND RELATED DIVISIBILITY RESULTS 23

and

k3
(
ain

k

)(
−ain

k

)(
ajn

k

)
= (ain)(−ain)ajn

(
ain− 1

k − 1

)(
−ain

k − 1

)(
ain

k − 1

)
,

for 0 < k < n we have

k3dk(n) =k3
m∏
i=1

((
ain− 1

k

)(
−ain− 1

k

)
−
(
ain

k

)(
−ain

k

))

− k3
m∏
i=1

(
ain− 1

k

)(
−ain− 1

k

)

≡− k3
m∑
i=1

(
ain

k

)(
−ain

k

)∏
j ̸=i

(
ajn− 1

k

)(
−ajn− 1

k

)

=n2
m∑
i=1

a2i k

((
ain

k

)
−
(
ain− 1

k

))((
−ain

k

)
−
(
−ain− 1

k

))
×
∏
j ̸=i

(
ajn− 1

k

)(
−ajn− 1

k

)

≡n2(a21 + · · ·+ a2m)k

m∏
i=1

(
ain− 1

k

)(
−ain− 1

k

)
(mod n3).

Therefore (4.9) follows from the above. �
Lemma 4.1. For any k, n ∈ N, we have

k(
2k−1

k

)(n
k

)(
−n

k

)
≡ 0 (mod n). (4.10)

Proof. The assertion holds trivially for k = 0, below we assume k > 0. In view of
(2.6),

(−1)k
(
n

k

)(
−n

k

)
=

(
2k − 1

k

)
2n

n+ k

(
n+ k

2k

)
=

(
2k − 1

k

)
n

k

(
n+ k − 1

2k − 1

)
and thus (4.10) follows. �
Theorem 4.3. Let a1, . . . , am be positive integers with min{a1, . . . , am} = 1, and
let f be a function from N to the field Q of rational numbers. Let n be any positive
integer.

(i) If
(
2k−1

k

)
f(k) ∈ Z for all k ∈ N, then we have

n−1∑
k=0

∆f(k)
m∏
i=1

(
ain− 1

k

)(
−ain− 1

k

)
∈ Z. (4.11)
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(ii) If
(
2k−1

k

)
f(k) ∈ kZ for all k ∈ N, then we have

1

n

n−1∑
k=0

∆f(k)

m∏
i=1

(
ain− 1

k

)(
−ain− 1

k

)
∈ Z. (4.12)

Proof. As in the proof of Theorem 4.2, by Abel’s partial summation we have

n−1∑
k=0

∆f(k)
m∏
i=1

(
ain− 1

k

)(
−ain− 1

k

)

=f(n)
m∏
i=1

(
ain− 1

n− 1

)(
−ain− 1

n− 1

)
+
∑

0<k<n

f(k)dk(n)− f(0),

(4.13)

where

dk(n) :=
m∏
i=1

((
ain− 1

k

)(
−ain− 1

k

)
−
(
ain

k

)(
−ain

k

))

−
m∏
i=1

(
ain− 1

k

)(
−ain− 1

k

)

can be written as
∑m

i=1

(
ain
k

)(−ain
k

)
ci,k(n) with ci,k(n) ∈ Z.

(i) By Lemma 2.3,
(
2k−1

k

)
|
(
ain
k

)(−ain
k

)
for any i = 1, . . . ,m and k = 0, . . . , n.

If f(k)
(
2k−1

k

)
∈ Z for all k ∈ N, then

f(0) ∈ Z, f(n)

(
−n− 1

n− 1

)
= f(n)(−1)n−1

(
2n− 1

n

)
∈ Z,

and f(k)dk(n) ∈ Z for all 0 < k < n, thus (4.11) follows (4.13).

(ii) By Lemma 4.1, for any i = 1, . . . ,m and k = 0, . . . , n we have

k(
2k−1

k

)(ain
k

)(
−ain

k

)
≡ 0 (mod n).

If
(
2k−1

k

)
f(k) ∈ kZ for all k ∈ N, then f(0) = 0,

(−1)n−1f(n)

(
−n− 1

n− 1

)
= f(n)

(
2n− 1

n

)
≡ 0 (mod n),

and f(k)dk(n) ≡ 0 (mod n) for all 0 < k < n, therefore (4.12) follows from (4.13).

The proof of Theorem 4.3 is now complete. �



TWO NEW KINDS OF NUMBERS AND RELATED DIVISIBILITY RESULTS 25

Theorem 4.4. Let a, b and n be positive integers. For any function f : N → Q
with f(k)

(
2k−1

k

)
∈ Z for all k ∈ N, we have

n−1∑
k=0

(f(k + 1)− (−1)a+bf(k))

(
n− 1

k

)a(−n− 1

k

)b

∈ Z. (4.14)

Proof. Clearly Theorem 4.3(i) implies (4.14) in the case a = b. To handle the
general case, we need some new ideas.

By Abel’s partial summation,

n−1∑
k=0

(f(k + 1)− (−1)a+bf(k))

(
n− 1

k

)a(−n− 1

k

)b

=
n∑

k=1

f(k)

(
n− 1

k − 1

)a(−n− 1

k − 1

)b

− (−1)a+b
n−1∑
k=0

f(k)

(
n− 1

k

)a(−n− 1

k

)b

=f(n)

(
−n− 1

n− 1

)b

+
n−1∑
k=0

f(k)

((
n

k

)
−
(
n− 1

k

))a((−n

k

)
−
(
−n− 1

k

))b

− (−1)a+b
n−1∑
k=0

f(k)

(
n− 1

k

)a(−n− 1

k

)b

.

Note that
(−n−1

n−1

)
= (−1)n−1

(
2n−1

n

)
. For each k = 0, . . . , n − 1, we have

(
2k−1

k

)
|(

n
k

)(−n
k

)
by (2.6), and(

±n

k

)(
∓n− 1

k

)
=(−1)k

(
±n

k

)(
±n+ k

k

)
=(−1)k

(
±n+ k

2k

)(
2k

k

)
= (−1)k2

(
±n+ k

2k

)(
2k − 1

k

)
,

therefore((
n

k

)
−
(
n− 1

k

))a((−n

k

)
−
(
−n− 1

k

))b

− (−1)a+b

(
n− 1

k

)a(
n− 1

k

)b

is divisible by
(
2k−1

k

)
. As f(k)

(
2k−1

k

)
∈ Z for all k = 0, . . . , n, combining the above

we obtain (4.14). �
Proof of Theorem 1.5. (i) (1.21)-(1.24) are special cases of (4.5)-(4.8) respectively.
For the function f(k) = (−1)k−1k2(2k−3), we clearly have ∆f(k) = (−1)k(4k3−1)
for all k ∈ N. So, (1.25) follows from the last part of Theorem 4.1. As 3k2+3k+1 =
(k + 1)3 − k3, Theorem 4.2 implies that

n−1∑
k=0

(3k2 + 3k + 1)
m∏
i=1

(
ain− 1

k

)(
−ain− 1

k

)

≡n2(a21 + . . .+ a2n)
n−1∑
k=0

k
m∏
i=1

(
ain− 1

k

)(
−ain− 1

k

)
(mod n3).
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By Corollary 4.1,

n−1∑
k=0

((2k + 1)− 1)
m∏
i=1

(
ain− 1

k

)(
−ain− 1

k

)
≡ 0 (mod n).

Therefore

gcd(a1 + · · ·+ am − 1, 2)
n−1∑
k=0

(3k2 + 3k + 1)
m∏
i=1

(
ain− 1

k

)(
−ain− 1

k

)

≡n2 a21 + · · · a2m
gcd(a1 + · · ·+ am, 2)

n−1∑
k=0

((2k + 1)− 1)
m∏
i=1

(
ain− 1

k

)(
−ain− 1

k

)
≡0 (mod n3).

This proves (1.26).
(ii) Now let a, b, n be positive integers. Note that

2

k + 1

(
2k − 1

k

)
=

(
2k
k

)
k + 1

= Ck and

(
2k−1

k

)
2k − 1

=

{
Ck−1 if k > 0,

−1 if k = 0.

For k ∈ N, define

f1(k) =
k

2k − 1
, f2(k) =

(−1)kk

2k − 1
, f3(x) =

2k

k + 1
, f4(x) =

(−1)k2k

k + 1
.

Then fi(k)
(
2k−1

k

)
∈ kZ for all i = 1, . . . , 4. Clearly,

∆f1(k) =
k + 1

2k + 1
− k

2k − 1
= − 1

4k2 − 1
,

∆f2(k) =
(−1)k+1(k + 1)

2k + 1
− (−1)kk

2k − 1
= (−1)k−1

(
1 +

2k

4k2 − 1

)
,

∆f3(k) =
2(k + 1)

k + 2
− 2k

k + 1
=

1(
k+2
2

) ,
∆f4(k) =

(−1)k+12(k + 1)

k + 2
− (−1)k2k

k + 1
= (−1)k−1

(
4− 2k + 3(

k+2
2

) ) .

Applying Theorem 4.3(ii) with f = f1, . . . , f4, we immediately get (1.27)-(1.29).
Write m = a+ b. For k ∈ N, define

f5(k) =
(−1)km

2k − 1
, f6(k) =

(−1)k(m−1)

2k − 1
, f7(k) =

(−1)km2

k + 1
,

f8(k) =
(−1)k(m−1)2

k + 1
, f9(k) =

(−1)km(
2k−1

k

) , f10(k) =
(−1)k(m−1)(

2k−1
k

) .
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Then fi(k)
(
2k−1

k

)
∈ Z for all i = 5, . . . , 10. Let f̄i(k) = fi(k + 1)− (−1)mfi(k) for

i = 5, . . . , 10. Observe that

f̄5(k) =
(−1)(k+1)m

2k + 1
− (−1)m

(−1)km

2k − 1
= (−1)(k−1)m −2

4k2 − 1
,

f̄6(k) =
(−1)(k+1)(m−1)

2k + 1
− (−1)m

(−1)k(m−1)

2k − 1
= (−1)(k−1)(m−1) 4k

4k2 − 1
,

f̄7(k) =
(−1)(k+1)m2

k + 2
− (−1)m

(−1)km2

k + 1
= (−1)(k−1)m −1(

k+2
2

) ,
f̄8(k) =

(−1)(k+1)(m−1)2

k + 2
− (−1)m

(−1)k(m−1)2

k + 1
= (−1)(k−1)(m−1) 2k + 3(

k+2
2

) ,
f̄9(k) =

(−1)(k+1)m(
2k+1
k+1

) − (−1)m
(−1)km(
2k−1

k

) = (−1)(k−1)m −(3k + 1)

(2k + 1)
(
2k
k

) ,
and

f̄10(k) =
(−1)(k+1)(m−1)(

2k+1
k+1

) − (−1)m
(−1)k(m−1)(

2k−1
k

) =
(−1)(k−1)(m−1)(5k + 3)

(2k + 1)
(
2k
k

) .

Theorem 4.4 with f = f5, . . . , f10 clearly yields (1.30)-(1.35).

The proof of Theorem 1.5 is now complete. �

Lemma 4.2. Let a0, a1, . . . be a sequence of complex numbers, and define

ãn =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

ak for n ∈ N. (4.15)

Then, for any positive integer n, we have

1

n2

n−1∑
k=0

(2k + 1)ãk =
n−1∑
k=0

ak
2k + 1

(
n− 1

k

)2(
n+ k

k

)2

. (4.16)

Proof. By [Su12b, Lemma 2.1],

n−1∑
m=0

(2m+ 1)

(
m+ k

2k

)2

=
(n− k)2

2k + 1

(
n+ k

2k

)2

for all k ∈ N.
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Thus

n−1∑
m=0

(2m+ 1)ãm =
n−1∑
m=0

(2m+ 1)
m∑

k=0

(
m+ k

2k

)2(
2k

k

)2

ak

=
n−1∑
k=0

(
2k

k

)2

ak

n−1∑
m=0

(2m+ 1)

(
m+ k

2k

)2

=

n−1∑
k=0

(
2k

k

)2
ak

2k + 1
(n− k)2

(
n+ k

2k

)2

=
n−1∑
k=0

ak
2k + 1

(n− k)2
(
n

k

)2(
n+ k

k

)2

=n2
n−1∑
k=0

ak
2k + 1

(
n− 1

k

)2(
n+ k

k

)2

.

This proves (4.16). �
Proof of Corollary 1.1. By Lemma 4.2 and (1.27), we have

1

n3

n−1∑
k=0

(2k + 1)tk =
1

n

n−1∑
k=0

(
n−1
k

)2(n+k
k

)2
4k2 − 1

∈ Z.

In light of Lemma 4.2,

1

n2

n−1∑
k=0

(2k + 1)Tk =
n−1∑
k=0

(
n− 1

k

)2(
n+ k

k

)2

.

By [GZ, (1.9)] or (4.4),

n−1∑
k=0

(
n− 1

k

)2(
n+ k

k

)2

≡ 0 (mod n).

So we have
∑n−1

k=0(2k + 1)Tk ≡ 0 (mod n3). By Lemma 4.2 and (1.36) and (1.21),

1

n4

n−1∑
k=0

(2k + 1)T+
k =

1

n2

n−1∑
k=0

(2k + 1)

(
n− 1

k

)2(
n+ k

k

)2

∈ Z

and
1

n3

n−1∑
k=0

(2k + 1)T−
k =

1

n

n−1∑
k=0

(−1)k(2k + 1)

(
n− 1

k

)2(
n+ k

k

)2

∈ Z.

Therefore both (1.37) and (1.38) hold. This concludes the proof. �
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5. Some related conjectures

Conjecture 5.1. Let p ≡ 3 (mod 4) be a prime. Then

p−1∑
k=0

(
2k
k

)2
(2k − 1)8k

≡ −
(
2

p

)
p+ 1

2p−1 + 1

(
(p+ 1)/2

(p+ 1)/4

)
(mod p2) (5.1)

and

3

p−1∑
k=0

(
2k
k

)(
2k
k+1

)
(2k − 1)8k

≡ p+

(
2

p

)
2p(

(p+1)/2
(p+1)/4

) (mod p2). (5.2)

Conjecture 5.2. (i) The sequence (Rn+1/Rn)n>3 is strictly increasing to the limit

3 + 2
√
2, and the sequence ( n+1

√
Rn+1/

n
√
Rn)n>5 is strictly decreasing.

(ii) The sequence (Sn+1/Sn)n>3 is strictly increasing to the limit 9, and the

sequence ( n+1
√
Sn+1/

n
√
Sn)n>1 is strictly decreasing.

Remark 5.1. The author [Su13b] made many similar conjectures for some well-
known integer sequences.

Conjecture 5.3. For any positive integer n, both Rn(x) and Sn(x) are irreducible
over the field of rational numbers.

Conjecture 5.4. For any n ∈ Z+, the number 3
n

∑n−1
k=0 R

2
k is always an odd inte-

ger; moreover,

3

n

n−1∑
k=0

Rk(x)
2 ∈ Z[x] and

1

n

n−1∑
k=0

(2k + 1)R2
k ∈ Z. (5.3)

Also, for any odd prime p we have

p−1∑
k=0

R2
k ≡ p

3

(
11− 4

(
−1

p

))
(mod p2) (5.4)

and
p−1∑
k=0

(2k + 1)R2
k ≡ 4p

(
−1

p

)
− p2 (mod p3). (5.5)

Remark 5.2. For any positive integer n, we can easily deduce that

3

n

n−1∑
k=0

(2k + 1)Rk(x) =
n−1∑
k=0

(n− k)

(
n+ k

2k

)(
2k

k

)(
2

2k − 1
− 1

k + 1

)
xk ∈ Z[x].

(5.6)
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Conjecture 5.5. We have

4

n2

n−1∑
k=0

kSk ∈ Z for all n = 1, 2, 3, . . . . (5.7)

Also, for any prime p we have

p−1∑
k=0

kSk ≡ p2

8

(
5− 9

(p
3

))
(mod p3). (5.8)

Conjecture 5.6. For n ∈ N define

sn :=
n∑

k=0

(
n

k

)2(
2k

k

)
1

2k − 1
,

S+
n :=

n∑
k=0

(
n

k

)2(
2k

k

)
(2k + 1)2,

S−
n :=

n∑
k=0

(
n

k

)2(
2k

k

)
(2k + 1)2(−1)k.

Then, for any positive integer n, we have

1

n2

n−1∑
k=0

sk ∈ Z,
1

n2

n−1∑
k=0

S+
k ∈ Z and

1

n2

n−1∑
k=0

S−
k ∈ Z. (5.9)

Remark 5.3. For any positive integer n, we can easily deduce
∑n−1

k=0 S
±
k ≡ 0

(mod n) with the help of (3.4). We also conjecture that
∑p−1

k=0 sk ≡ −(9(p3 )+1)p2/2

(mod p3) for any prime p.

Conjecture 5.7. For n ∈ N define

sn(q) :=
n∑

k=0

[
n

k

]2
q

[
2k

k

]
q

qk

[2k − 1]q
.

Then, for any positive integer n, we have

1 + q

2

n−1∑
k=0

qksk(q) ≡ 0 (mod [n]2q). (5.10)

Remark 5.4. (5.10) is a q-analogue of the conjectural congruence
∑n−1

k=0 sk ≡ 0
(mod n2). We could prove (5.10) modulo [n]q.
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Conjecture 5.8. Let m be any positive integer.
(i) Define

S(m)
n (x) :=

n∑
k=0

(
n

k

)m
(km+ 1)!

(k!)m
xk for n = 0, 1, 2, . . . .

Then, for any positive integer n, we have

1

n

n−1∑
k=0

S
(m)
k (x) ∈ Z[x], (5.11)

i.e.,

(km+ 1)!

(k!)m

n−1∑
h=k

(
h

k

)m

≡ 0 (mod n) for all k = 0, . . . , n− 1. (5.12)

(ii) Define

S(m)
n (x; q) =

n∑
k=0

[
n

k

]m
q

∏km+1
j=1 [j]q

(
∏

0<j6k[j]q)
m
xk for n = 0, 1, 2, . . . . (5.13)

Then, for any integer n > 0, all the coefficients of the polynomial
∑n−1

k=0 q
kS

(m)
k (x; q)

in x are divisible by [n]q in the ring Z[q], i.e.,∏km+1
j=1 [j]q

(
∏

0<j6k[j]q)
m

n−1∑
h=k

qh
[
h

k

]m
q

≡ 0 (mod [n]q) for all k = 0, . . . , n− 1. (5.14)

Remark 5.5. (a) Note that S
(2)
n (x) = Sn(x), and (5.11) and (5.12) are extensions

of (1.20) and (3.4) respectively. Part (ii) of Conjecture 5.8 presents a q-analogue
of the first part, and our Theorem 3.1 confirms it for m = 2. Conjecture 5.8 for
m = 1 is easy, and we are also able to prove Conjecture 5.8 in the case m = 3.

(b) The congruence in (5.12) for k = 1 states that

(m+ 1)!
n−1∑
h=1

hm ≡ 0 (mod n).

This is easy since

1

n

n−1∑
h=0

hm =
1

m+ 1

m∑
k=0

(
m+ 1

k

)
Bkn

m−k

(cf. [IR, p. 230]) and (k + 1)!Bk ∈ Z by the von Staudt-Clausen theorem (cf. [IR,
p. 233]).
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