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ABSTRACT. We mainly introduce two new kinds of numbers given by

Re=3 ()T =012

and

Sp = i (2)2(2:)(2k+1) (n=0,1,2,...).
k=0

We find that such numbers have many interesting arithmetic properties. For exam-
ple, if p =1 (mod 4) is a prime with p = 22 + y? (where x = 1 (mod 4) and y = 0
(mod 2)), then

Rp—_1y2=p— (—=1)P=D/42z  (mod p?).

Also,
1 n—1 1 n—1
7ZSkEZ and —ZSk(x)EZ[x] forallm=1,2,3,...,
™ k=0 " k=0
where Sk (z) = ?:0 (];)2 (2]3) (27 +1)z7. For any positive integers a and n, we show

that, somewhat surprisingly,

. ) N 1 o 1NG 1\ O , . 1n71 (n;l)a(_r;c—l)a .

We also solve a conjecture of V.J.W. Guo and J. Zeng, and pose several conjectures
for further research.
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1. INTRODUCTION

In combinatorics, the (large) Schréder numbers are given by
" /n\ (n+k 1 L n+k\ (2K 1
S(n) = - = —— N 1.1
(n) kzzo(kzx k )k+1 kzz()(%)(k>k+1 (nel), (@1

where N = {0,1,2,...}. They are integers since

1 /2% ok ok
Cp = — _ - 7 for all k € N.
k k+1(k) (k) (k+1>€ orall i €

Those C),, with n € N are the well-known Catalan numbers. Both Catalan numbers
and Schréder numbers have many combinatorial interpretations. For example, S(n)
is the number of lattice paths from the point (0,0) to (n,n) with only allowed steps
(1,0), (0,1) and (1, 1) which never rise above the line y = z.

We note that (2k — 1) | (2]5) for all £ € N. This is obvious for k = 0. For each
keZt =1{1,2,3,...}, we have

(5 _ 2 (2k—1\_2/(2%k—2 e
2% —1 2k—1\ & K\ k—1 Rt

Motivated by this and (1.1), we introduce a new kind of numbers:

S I T o G ) I

k=0 k=0

Below are the values of Ry, Ry,..., Ri1g respectively:

-1, 1, 7, 25, 87, 329, 1359, 6001, 27759, 132689, 649815,
3242377, 16421831, 84196761, 436129183, 2278835681, 11996748255.

Applying the Zeilberger algorithm (cf. [PWZ, pp.101-119]) via Mathematica 9,
we get the following third-order recurrence for the new sequence (R,,),>0:

n+ 1R, —(Tn+15)Rpy1+ (Tm+13)Rpy2 — (n+3)Rpy3 =0 forn e N. (1.3)
In contrast, there is a second-order recurrence for Schroder numbers:
nS(n) —32n+3)S(n+1)+(n+3)S(n+2)=0 (n=0,1,2,...).

So the sequence (R,,)n>0 looks more sophisticated than Schréoder numbers.
For convenience, we also introduce the associated polynomials

B (x) := i (Z) (n _kt k) Qkxf 1 :;O (n;ck) (2:) 2/756i p €2l (14

k=0
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Note that R, = R, (1) and R, (0) = —1. Now we list Ry(x),... , R5(x):

Ro(z) = —1, Ry(z) =22 — 1, Ry(x) = 22° 4 62 — 1,
Rs(x) = 42® + 1022 + 122 — 1, Ry(z) = 102* + 2823 + 3022 + 20z — 1,
Rs(z) = 282° + 90z* + 11223 + 7022 + 30z — 1.

Applying the Zeilberger algorithm via Mathematica 9, we get the following third-
order recurrence for the polynomial sequence (R, (x))n>0:

(n+1)R,(z) — (4nx + 10x 4+ 3n + 5)Ryv1(x) + (4nz + 62 + 3n + 7) Ry 42(x)

= (n+3)Rny3(x).
(1.5)
Let p=1 (mod 4) be a prime. It is well-known that p can be written uniquely
as a sum of two squares. Write p = 22 +y? withz =1 (mod 4) and y = 0 (mod 2).
In 1828 Gauss (cf. [BEW, (9.0.1)]) proved that

((p— 1)/2
(p—1)/4

in 1986 Chowla, Dwork and Evans [CDE] showed further that

(Ei: 3;2) = &;1 <2x - %) (mod p?).

The key motivation to introduce the polynomials R, (z) (z € N) is our following
result.

) =2z (mod p);

Theorem 1.1. (i) Let p =1 (mod 4) be a prime, and write p = x> +1y? withx = 1
(mod 4) and y =0 (mod 2). Then

p—1 2k 2
Rp—1y/2—p= kzzo oF —(lk))(—16)k = -2 (%) z  (mod p?), (1.6)

where () denotes the Legendre symbol. Also,

9 p—1 2k\ 2 9
Rp—1)/2(—2) +2p (];) = ,;) —(2k(i)1)8’€ = (5) 2% (mod p2), (1.7)
1 9 p—1 2K\ 2 ,
Rp—1y/2 (—5) —|—g (2—?> = kzzo ﬁ = % —z (mod p?). (1.8)

(ii) Let p =3 (mod 4) be a prime. Then

S

. 1/2 (p+1)/2
Rovn= S bmr =1 (5) () 009 09

k=0
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and

Rp1)2(= 2 2k_12 E—% (2) (Eﬁi;ﬁ) (mod p)  (1.10)

k

We also have

e (3)30) - SaTh 25 1)

(1.11)
Our following theorem is motivated by (1.7).
Theorem 1.2. Let p =2n+1 be any odd prime. Then
p—1 (Zk)( 2k )
k) \k+d) _
—— = d 1.12

k=0

for alld € {0,... ,n} withd =n (mod 2).

Remark 1.1. In contrast with (1.12), by induction we have

n 2k 2k
Z (k ) (k+d) _ 2n+1 (2n> ( 2n ) for all d,n € N.
: ( n)\n+d

— (2k —1)16F  (4d? — 1)16"

Below is our third theorem.

Theorem 1.3. (i) For any odd prime p, we have

> = (p) (mod p?). (1.13)

(ii) For any positive integer n, we have
R,(-1)=—-(2n+1) (1.14)

and consequently

Z 5 on. (1.15)

Remark 1.2. Although there are many known combinatorial identities (cf. [G]),
(1.15) seems new and concise.

Now we introduce another kind of new numbers:

:§<2)2(2:)(2k+1) (n=0,1,2,...). (1.16)
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We also define the associated polynomials

n 2
n 2k
Sy (z) = 2k + 1)z* =0,1,2,...). 1.17
w=3 (1) (¥)erenet CEL)
Here are the values of Sp, S1, ..., S12 respectively:

1, 7, 55, 465, 4047, 35673, 316521, 2819295, 25173855,
225157881, 2016242265, 18070920255, 162071863425.
Now we list the polynomials Sy(z),... ,S5(x):
So(x) =1, Sy(x) =6z + 1, So(x) = 302% + 242 + 1,
Ss(x) = 14023 + 27022 + 54z + 1,
Sy(x) = 630z* + 22402 + 108022 + 96 + 1,
Ss(x) = 27722° + 157502 4 140002 + 3000z + 150z + 1.

Applying the Zeilberger algorithm via Mathematica 9, we get the following recur-
rence for (Sp)n>0:

9(n+1)2S, — (192 +74n+87)Sp 11+ (n+3)(11n4+29)Sp 1o = (n+3)%Snys, (1.18)

which looks more complicated than the recurrence relation (1.3) for (R,,)n,>0. Also,
the Zeilberger algorithm could yield a very complicated third-order recurrence for
the polynomial sequence (S, (z))n>0. Despite these complicated recurrences, we
are able to establish the following result which looks interesting.

Theorem 1.4. (i) For any positive integer n, we have

1 «— =1\ 2
— Cr€Z (1.19)
Ss-T ("o
and
1 n—1
- > Sk(x) € Zla]. (1.20)
k=0

(ii) For any prime p > 3, we have

p—1 p—1
Sk _ Sk _ p(p 1 9
2 k = pk:1 k2 = —2 (3) Bp_Q 3 (mOd P ),

where By, (x) denotes the Bernoulli polynomial of degree n.

In 2012 Guo and Zeng [GZ, Corollary 5.6] employed g-binomial coefficients to
prove that for any a,b € N and positive integer n we have

nz_:l(—l)(aer)k (” . l)a (_”k_ 1)b =0 (mod n).

k=0

(Note that (772;1) = (—1)k(”zk)) This, together with (1.15) and Theorem 1.4,

led us to obtain the following result via a new method.
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6
Theorem 1.5. (i) Let a1, ... ,a,, and n >0 be integers. Then
n—1 m an — 1
D (E1)F(2k + 1)H( ' . ) =0 (mod n), (1.21)
k=0 =1
n—1 m an — 1
D (1) (4k® — 1)H( ’ B ) =0 (mod n). (1.22)
k=0 =1
Also,

S km (9 + 1) ﬁ (ai" N 1) =0 (mod n?), (1.23)

ged(ag + -+ am —1,2) (—1) i
k=0 i=1
and
n—1 m a-n—l
6y (—1)F" (3K +3/<:+1)H( ’ L ) =0 (mod n?). (1.24)
k=0 i=1
Moreover
nt " lan — —a;n —1
> (-1)F(E - 1) H( )( h )zo (mod n?) (1.25)
k=0 i=1
and
nl " lan — —a;n —1
cd(a; + -+ + am — 1,2 (3k% + 3k + 1) ( )( )
ged(a >; 1;[1 L (1.26)
=0 (mod n?).

%ni ("% 2]@2(—721 1) €7, %nz_: U 1)(}35;;2_1) €z, (1.27)
— k=0 2

1= ok n—1\"(-n—-1
_1;)(_1)k<1+4k2—1>( k ) ( k ) - -
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z ;;?i‘;”’f(”;l)“(‘"; Yer o ow
Z:; % (n 5 1)“ (—nk— 1)b cz. (1.32)
:Z: (-1 <a+zk;’;<2k +3) (n . 1)“ (—”k— 1)b A (1.33)
U (e o
B O e

Remark 1.3. For any positive integer n, using (1.15) we can deduce that

ST 00

k=1 k=0

An extension of (1.21) given in (4.5) confirms a conjecture of Guo and Zeng [GZ].
By (1.23), for any positive integers a, b, n we have the congruence

cd(atb— n_l_ (a+b)k n—1\"/-n-1 b: mod n2
ged(a+b 1,2)1;( 1) (2k+1)( 3 ) ( L ) =0 (mod n?). (1.36)

Corollary 1.1. Forn € N define

b :;i—o <Z)2(nzk) 2/<:1— 1’
T, :ki:o (Z)2("Zk)2(2k+ 1),
T+ :;n::o (Z)Q(" Z k)Z(% +1)2
T, :i (Z)Q(n Z k)2<—1>’“(2k +1)?

T
@]
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Then, for any positive integer n, we have

n—1 n—1
1 1

— > (@k+ )ty € Z, — > k+1)T, €7, (1.37)

k=0 k=0
and

1 n—1 1 n—1

- 2k+ 1T €Z, — 2k + T, € Z. 1.38

a2 2E VT ngkg( +1)T; (1.38)

We will prove Theorems 1.1-1.3 in the next section. We are going to show
Theorem 1.4 and a g-congruence related to (1.21) in Section 3. Section 4 is devoted
to our proofs of Theorem 1.5 and Corollary 1.1 and some extensions. In Section 5
we pose several related conjectures for further research.

2. PROOFS OF THEOREMS 1.1-1.3

Lemma 2.1. Let p=2n+1 be an odd prime. Then

R N (Y
(@) :Z 2% — 1 <_E>
h=0 ay (2.1)
= x\k n+1 2
Ekzo 2;_ N <_E> —p(=2)"™ (mod p?).

Proof. As pointed out in [S11, Lemma 2.2], for each k = 0,... ,n we have

()

(2k) 14 (—16)F

((p —1)/2+ k) _ [locjcr(@® = (25 = 1)%)

2
ok (mod p*).

Recall that (2k — 1) | (2:) for all k£ € N. Therefore,

Bal@) = i (n;];k) (215) 2156i 1= i 2(Ijkk—)21 <_1£6)k (mod p%).

k=0 k=0
Clearly, p | (%) forall k=n+1,...,p— 1. Also,

(75
(p+1)/2
2x (p+1)/2—-1

_ 2

( x )<p+1>/2 (58 (—z)@rD/2

_r _ o
16 ((p—1)/2)? 4r+l
=p(—2) P12 (mod p?).

So the second congruence in (2.1) also holds. [
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Lemma 2.2. For any nonnegative integer n, we have

n 2k 2 9 2
4 1 2 1
((16 — z)k? — 4) @x”*k = An+1)" (2n+ ' (2.2)
2k —1 2n+1 n
k=0
Proof. Let P(z) denote the left-hand side of (2.2). Then
n k2
k® (2 ) n+l1—k

2k
2 ( ) nfk:_ k
4Z4k Dar 1% ];)2/@—1‘7”
_ k n—k _ - _ 2<k_1) ? n—(k—1)
_4;:0(2k+1)<k) T 4k§:1(2k 1)( 1 ) T

:4(2n+1)(2n)2 _ M(znﬂ)f

n 2n+1 n+1
This concludes the proof. [

Proof of Theorem 1.1. Applying Lemma 2.1 with x = 1, -2, —1/2 we get the first
congruence in each of (1.6)-(1.11).

Let p be an odd prime. For any p-adic integer m # 0 (mod p), by Lemma 2.2
we have

p—1 2 2k) p—1 (Zk)
o — 2
(16 — m; 2 m 4; % m - =0 (mod p?)

and hence

p—1 Qk)

Z Iizl (2(k: 1))
=(16 — m) 2k —1)———
(2k — 1)mF —

L e e &)

: m
j=0
(p—1)/2 2k\ 2
16 (29
=(— -1 g o2k + 1)~ mod p?).
(m ) Py (2 + )mk (mod p)

(Note that (*=7) = (2p - 2)!/((p—1)!))> = 0 (mod p).) Taking m = —16,8,32 we
obtain

p—1 (Qkk) (p—1)/2 ( ) ,
;)(%_1)( 9 Z Ok + 1) e (mod 7). (2.3)
p—1 2k) (p—l)/2 (2k>2
Z (2k — 1)8F — Y. (2k+1)75= (mod p?), (2.4)
k= k=0
p—1 (Qkk) (p—1)/2 (2k)2

(2k — 1)32F _% kz_o (2k+1) 2ok (mod p?). (2.5)

=

=0
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(i) Recall the condition p = 22 +y? with z =1 (mod 4) and y =0 (mod 2). By
[Sul2a, Theorem 1.2],

2 (pzli”%ﬂ 2%\ 2 (pi/2k+1 ok 2 (mod p?)

-z = — = —_— m :

P 2o (Z16)F \ & 2o T8 \k b
The author [Sull, Conjecture 5.5] conjectured that

(p—1)/2 2k\2  (P—1)/2 (2k\2
(g) Z (k) = Z (k) —op— L (mod p?)

k
P Py P 32 2x

which was later confirmed by the author’s brother Z.-H. Sun [S11], who also showed
that o1/ )
p—1)/2 ; 2k
k) _ >
Z ok = 0 (mod p“).

k=0

Combining these with (2.3)-(2.5), we immediately get the second congruences in
(1.6)-(1.8).
(ii) Now we consider the case p = 3 (mod 4). By [Sul3a, Theorem 1.3],

B L A O ) e

k=

and
(p;zzlé/? 2k8_’: 1 (2;)2 _ <p;zzll/2 z_,;; (2:)2 _ _% (;) (Eﬁ j: 1%3 o o)

Combining this with (2.3) and (2.4), we obtain the second congruences in (1.9) and
(1.10).
Z.-H. Sun [S11, Theorem 2.2] confirmed the author’s conjectural congruence

(p—1)/2 (2k) 2

k) 2
Z gk = 0 (mod p°).
k=0

He also showed [S11, Theorem 2.3] that

P D2EEDT o\ prl [(p+1))2 )
kZ:O 3§k N (I_?) m((p+ 1)/4) (mod p©).

Observe that

o1 1 =94 ((%) o(p-1)/2 1) <(%) o(r-1)/2 _ 1)

=242 ((2) o(p=1)/2 _ 1> =2 (2) 2(P=1/2 (mod p?).
p p
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Therefore,

(p§/22k+1 2k\?_ pt+l [((p+1))2 (mod 1)
2o 732k k) T2 1\ +1)/4 p

Combining this with (2.5) we obtain the second congruence in (1.11).
The proof of Theorem 1.1 is now complete. [

Proof of Theorem 1.2. Clearly (2]5)/(2]{: —1)=0 (mod p) if n+1 < k < p. Thus

= (215) (k2kn) _n+1 (zkk) (k2kn)
2k - 1+)8k - ; (2k — 1+)8k
I G0 I (A5 [
~(2n—1)8» p8ntl
22 (11 1
E%(—l)”*l (;) + n%;ﬁff* )= (mod p).

So (1.12) holds for d = n.
Define

P17 R
Um = m or a,m c NN.
k=0

Applying the Zeilberger algorithm via Mathematica 9, we get the recurrence

2m)\ ( 2m+42
(2d = 1)um (d) + (2d + 5)um(d +2) = (d+ 1)M

(m+1)8™ °

If0<d<n-—2, then

2(p—1 2 2p—1\ 2 2p—1

( (;f)—l )) (p—i—j—i—l) o 2pp—1( pp )p—i—dp—i—l (]f)—’-d) =0 (mod )

8p—1p B 8p—1p o p
and hence
(2d — Dup—1(d) = —(2d + 5)up—1(d+2) (mod p),

therefore

Up—1(d+2)=0 (modp) = up_1(d) =0 (mod p).

In view of the above, we have proved the desired result by induction. [J
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Lemma 2.3. For any integers k > 0 and n > 0, we have the identity

(1)} (?k(_‘;f;) _ n2+nk (n;kk:) _ <n2+kk:) n (n +2k];— 1>.

k

Proof. Observe that

OO0

_n+k 2k n  2n n+k\ /(2k—1
\ 2k kE)n+k n+k\ 2k k

2n (n+k B 1+n—k: n+k B n+k n n+k-—1
n+k\ 2k ) n+k 2k )\ 2k 2k

and

So (2.6) follows. [
Proof of Theorem 1.3. (i) It is known that

3 D _(Em Y LmeN
I I+1

n=0

(cf. [G, (1.49)]). Thus

ZRn Sy (Hk) 21}i i Y 215: > (n;kk)

n=0 k=0 k=0 nk

p—1 p—1 2
= () (p+kY P 2!
kZ:O 2k —1\2k+1 Z_ (2k + 1)(2k — 1) 52

0<j<k

_ e + (pi/g 1)k (=1)p-*
Py T PTP W1 dp—kp2 =

k=0
) (_1)(p 1)/2 (_1)(p+1)/2

(ii) For any positive integer n, clearly
R,(-1)— R,_1(-1)

E(ED- ) B

k=0

_ (”z_klfl k’)(—nkzck_l — —2nz (273131) (—1)0;

k=1 =0

3
—_

S,

)

)

2

)
e () ) () e

(2.6)
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and hence R, (—1) — R,_1(—1) = —2 with the help of [Sul2b, (2.6)]. Thus, by

induction, (1.14) holds for all n € N.
In view of (2.6) and (1.14), for each positive integer n we have

(@)

=R, (-1)+ R, 1(-1)=—2n+1)— (2n—1) = —4n

and hence (1.15) holds.
The proof of Theorem 1.3 is now complete. [J

3. PROOF OF THEOREM 1.4 AND A ¢-CONGRUENCE RELATED TO (1.21)

Proof of (1.19). Define
n n 2
B ::;(k> C, forn=012,....

We want to show that ZZ;& Sy = n?h,,_, for any positive integer n. This is trivial
for n = 1. So, it suffices to show that

Sy = (n+1)%hy — 1’y =Y ((n+1)2 = (n—k)?) (Z) Ci
k=0

for all m = 1,2,3, ... Define v, = Sr_,((n+ 1)2 — (n — k)2)(?)°Cy, for n € N. Tt
is easy to check that v,, = S, for n = 0,1,2. Via the Zeilberger algorithm we find
the recurrence

9(n + 1)%v, — (19n% + 74n + 87) v, 11 + (n + 3)(11n + 29) v, 40 = (0 + 3)? v,y 3.

This, together with (1.18), implies that v, = S, for alln e N. O
For each integer n we set

1—q’

which is the usual g-analogue of n. For any n € Z, we define

k—1 .
{n} =1 and {n} :M for k=1,2,3,....
0 q k q Hj:1[]]q

Obviously limg_q [Z]q = (}) for all k € N and n € Z. It is easy to see that

—1 —1
m :qk{” } +{” } for all k,n=1,2,3,... .
k), ko, k-1,
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n

By this recursion, mq € Z[q] for all k,n € N. For any integers a, b and n > 0,
clearly
a=b (modn) = [a]y =[b]; (mod [n]y).

Let n be a positive integer. The cyclotomic polynomial

®,(q) := ﬁ (q - 62”“/”) € Z[q]

a=1
(a,n)=1

is irreducible in the ring Z[q]. It is well-known that
¢" —1=]]®alq)
d|n

Note that ®,(¢) = q — 1.
Lemma 3.1 (¢-Lucas Theorem (cf. [O])). Leta,b,d,s,t € N withs < d andt < d.

Then
s =G tmoa 2 (3.1)

Lemma 3.2. Letn be a positz’ve integer and let k € N with k < (n —1)/2. Then
Zq { ] =0 (mod ®,(q)). (3.2)

Proof. Note that

n—1 n—1—k 2
m | E+m
UG IS S
h=0 m=0 q
and
[kjtm} _ﬁ 1—g" ﬁ (qurjq_k_j - 1)
m |, =1 1—q =1 1—q
1—qFJ k-1
—(—1)™ km+m(m+1)/2 = (—1)™ km+m(m+1)/2 )
(-1D)™q H—l_q] (=1)™q .
j=1 q
Thus
n—1 n—1—k 2
m m+m(m k—1
ZQH & 2k+(+1)[ - }
h=0 m=0 q

n—1-k 2
—k2—kz 1 Z (ktmi1)? (P =k —1
=0 m q

n—1—k
—k(k+1)—1 g(n—k=m—1)? [” — k- 1] { n—k—1 }
q

=4 m qn—k—l—m

m=0

=g kD1 {2(:__:__11)} (mod @,,(q))
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with the help of the ¢-Chu-Vandermonde identity (cf. [AAR, p.542]). As 2(n—1—
ky>n>n—k—1, [2%1__:__11)}q is divisible by ®,,(q). Therefore (3.2) holds. O

Theorem 3.1. For any integers n > k > 0, we have

2% + 1], [2:] q :Z:: g mj —0 (mod [n],) (3.3)
and hence ) ,
(2k +1) (2:) }; (Z) =0 (mod n). (3.4)

Proof. Clearly (3.3) with ¢ — 1 yields (3.4), and (3.3) holds trivially in the case
n =1 and k = 0. Below we only need to prove (3.3) for n > 1.

As the polynomials ®2(q), P5(q), ... are pairwise coprime and
d|n
e

it suffices to show
2+ 1, Ty [h] =0 (mod B4(q) (3.6)

k 4 h=0 kq

for any divisor d > 1 of n. Set m = n/d and write k = bd + ¢ with b, € N and
t <d. Ift <(d—1)/2, then by applying Lemmas 3.1 and 3.2 we obtain

n—1 2 m—1d—1 2
th h _ and—l-s ad+8
29[, < |bd o

q =0 s= q
1

-5 ()], -5 0) Sl -0 omavior

Ift =(d—1)/2, then
2k + 1], =[2bd+ 2t + 1], =[(2b+1)d], =0 (mod [d],).

When d/2 < t < d, by Lemma 3.1 we have

[2:] . {(% ! zldjt% ) d} . (%: 1) Ft ¢ d} o 0 (mod Pa(q)).

So (3.6) holds, and this completes the proof. [
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Proof of (1.20). In light of (3.4),

1 Zz:sh@) L z z (1) (36 o e
_ k; x—;(Zk +1) (%f) h;) (Z) € Zfa]

This concludes the proof. [

Proof of Theorem 1.4(ii). Let p > 3 be a prime. By a well-known result of Wol-
stenholme [W],

1

3
I

p—1
1
=0 (modp*) and Z == 0 (mod p).
1 k=1

oyl
Il
T =

Clearly,

S 21@; 1 (2:) (Z - 1)2
2% +1 (Qkk) (mod p)

with the help of Theorem 3.1. Note that

i

) =0 moagy wma G =1 (2)5,0 (L) oy
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Observe that

?
[y
h?
—

3|
Il
S|
)=
VRN
> 3
[\]
VRN
LN
N——
o
Pl
_|_
=

3
Il
—_
“?3
=

F'%

*dlw
— =

Il
7~ N/ N
o= DO

N

[\

ol

=+

H
VRS
=

M=

_|_

£
VR
x> 3

I
= =
~_
VR
x> 3
~_

|
VR
3

[
—_ =
~_
VRS
>3
N~
~_

k=1 n==k
_§2k+1(2k>(p_1(k;+j—1)(k:+j)_B(p—l)z)

— Tk \k) = j K \k—1

:’S 2% + 1 (Qk) = (—k) (—k - 1) 2%+l (%) p
=N =AY j Lk \k)k

R0k 1, (2k\ BA =k [~k —1 Pl ok 1 /2%

:kzl /; k<k>j_0(1>< J )—pk:1 k;r (’f) (mod 2°)

By [Sul6, Lemma 3.4],
M\ B2 (kN (k-1
k‘( )Z()( . )Ep (mod p?) forallk=1,...,p— 1.
k) =\ J
So we have

Pls, Plok4+1 Rl ok+1/2k
ZWEPZT_I’ZT<1€)

n=1 k=1 k=1

235 () )

This concludes the proof of Theorem 1.4(ii). O
Now we present a g-congruence related to (1.21).

Theorem 3.2. Leta,b € N, and let n be a positive integer. For eacha’ € {a,a—1},
we have

g(_l)a'kqa'k(ml)ﬂ’f[% + 1], [n ; 1] : [n Z k}: =0 (mod [n],). (3.7)
Therefore
ni(ﬂ)k(zk +1) (" . l)a (” Z k)b =0 (mod n). (3.8)

k=0
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Proof. (3.8) follows from (3.7) with ¢ — 1. Note that (3.7) is trivial for n = 1.

Below we assume n > 1 and want to prove (3.7). In view of (3.5), it suffices to
show that the left-hand side of (3.7) is divisible by ®4(q) for any divisor d > 1 of
n. Write n = dm. By Lemma 3.1,

n—1

EM

a b
/ / — ]_
(— 1)akqak%+1w2kpk_klb{n ] {n—%k}
k q q

k
m—1d—1
(1) ) g G ) /2 (9d+r)([ Gd+7) +1],
j=0 =0
y {( —1)d+d—1r[(m+j)d+r} )
jd+r ‘ Jgd+r a
m—1

( 1)a jdqa jd(gd+1)/2

—1 a a N b b
(- 1>a’rq“’r<r+l>/2—’“[2r+1lq(m-_1> [d_l] (m'ﬂ> H
r=0 J " lq J "lq

-1 a N b
_ Z a ]d a jd(]d+1)/2( - 1) (m +])
2 j j

a

d—1
’ ’ _r d—1
X Z(_l)a rq" r(r+1)/2 [2r + 1]q |: , } (mod ®4(q))-
r=0

q

1
'M

<
I
& o

X

For each r =0,... ,d — 1, we have
d—1 1—¢%s L1+ (1 —q%
R I (R
4 0<s<r 0<s<r

=(—1)"q""*V/2 (mod Da(q)).

So, by the above, it suffices to show that

d—1
S (=) g 1, (1)7g /) =0 (mod Ba(g)).
r=0

As a' € {a,a — 1}, this reduces to

d—1 d—1
¢ 2r+1),=0=) (1) UV 2r 41), (mod Pa(g)). (3.9
r=0 r=0

It is clear that

d—1 d—1

Zq_’"[Qr +1]g = Zq_r—l 1

1—
r=0 r=0 r=0 q
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Also,
d—1 -
S (1yrg-ten/z Lo
r=0 1- q
1 d—1
_ Z ( —r(r43)/2 _ q—(r—2)(T+1)/2>
I e
d—1 d—3
< r fr(r+3)/2 Z (_1)rqr(r+3)/2)
—4q r=0 r=—2

-— <( 1)%- 1q7(d71)(d+2)/2+(_1)d—2q—(d—2)(d+1)/2>
q

(D) a2 a—dd-1)/2 d—1 1-d(d+1)/2
1——q (q —q ) =(-1)"""q [d]q

and hence the second congruence in (3.9) holds too. This concludes the proof. [

4. PROOFS OF THEOREM 1.5 AND COROLLARY 1.1 AND SOME EXTENSIONS

Theorem 4.1. Let ay,... ,0,, € Z and by,... by, € N. Let f : N — Z be a
function with k | f(k) for all k € N. Let n be a positive integer and set d =
ged(ay, ... ym,b1,... by, n). Then we have

Sl (5 ) =0 oaa, m

where f(k) = f(k+1) — (=1)"f(k). If k% | f(k) for all k € N, then

n—1 - m a; — 1 B . m f(k? m 1 )
Zf(k)H(biJrk) =) <Z‘”> W (b +k) (mod d7).
k=0 i=1 i=1 0<k<n i=1
(4.2)
Proof. Clearly f(0) = 0. Observe that
n—1 B m a — 1
oI5 )
k=0 i=1 bl + k
_n—l By 1 m CLz—l 1mn—1 . m Clz—l
=X s+ 0]l (3 e) - > ]l ()
n m a — 1 n—1 m a — 1
=S rlI (%) - oIl (5
k=1 i=1 v k=0 i=1 v
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w1 (o) - T ()

can be written as Y ;" ¢k (baik) with ¢; € Z. Since k | f(k) and

a; - a; —1 a; B
k(bi + kz) - (bi k- 1) bi (bi n k) =0 (mod d) (4.3)

for all k =1,2,3,..., we derive (4.1) from the above.
Now we assume k2 | f(k) for all k € N. Forany 0 < k <mn,if 1 <i<j<m
then

0,52 - () o e

thus we may use (4.3) to deduce that
. u“ a; aj——l
s =1, k) Il (G)
ai——l a; nz
(ai<bi+k—1)_bi(bi+k>) 1H(b +k>

AEE () (2 T

where

Therefore, (4.2) follows. [
Corollary 4.1. Let ay,... 0, € Z and by,... b, € N. Let n be any positive

integer and set d = ged(ay, ... ,Qm,b1,... ,bm,n). Then we have
n—1 a 1
km T _
> (-1 H (bi N k) =0 (mod d), (4.4)
k=0 =1
n—1 m a —1
do@EDFer+ D] (bi N k) =0 (mod d), (4.5)
k=0 =1
n—1 m
3 a; — 1 _
pEILCEE N | (bi N k) =0 (mod d). (4.6)
k=0 i=1
Also,
n—1
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and

6%(—1)’“’”(31@2 + 3k +1) ﬁ (Z - ;) =0 (mod d?). (4.8)

k=0 i=1 T
Proof. Clearly, (—1)Fkm+m = (—1)(:+Dm (k4 1) — (=1)™((=1)F™k),
(£1)*(2k + 1) =(£1)*FFD "1k + 1) + (£1)F 1k,
=(+1)F(E 4+ 1) F (£1)F R,
and
(1) (k3 — 1) =(£D)FHD =1k + 1)2(2(k + 1) — 3) + (£1)*1k%(2k — 3)
=(-)F ((+ 1%k = (k+ 1)) F (£ (B (k- 1)% — k).
So (4.4)-(4.6) follow from the first assertion in Theorem 4.1.
Now we prove (4.7). Let f(k) = (—1)*"k? for all k € N. Then
Flk+1) = (1) f(k) = (=1) V™ (2k + 1).
Applying the second assertion in Theorem 4.1, we get
— " (a; — 1
> (=Rt 2k + 1)}:[1 <b2+ k)

k=0

n—1

=(=1)"(ay + - + am) Z(—mkmkﬂ (Z;;) (mod d?)

k=0 =1

and hence

n—1
a+ -+ any k a; —1
—_— 1 -1 +1 ”
ng( d ’2) (=)™ 2k +1) (bi—l—k)

_ (a1++am)/d m ai—l
“gcd((ar + -+ am)/d, 2>d2<—1>’“ ((2k+1) - 1)};[ (bi N k) (mod d?).

k
Combining this with (4.4) and (4.5), we immediately obtain the desired (4.7).
It remains to show (4.8). Let g(k) = (—1)¥™k3 for all k € N. Then

gk +1) — (=1)"g(k) = (=1)*kTYU™(3k2 4 3k + 1).

Applying the second assertion in Theorem 4.1, we obtain

= m+m 2 . a; — 1

;O(—l)k +m(3k *3’”1)E(bi+k)
B . n—1 o m ai—l )
=o)L Q(H ) (mod )

=0 (mod d)
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andhence
62 1)F7(3k2 + 3k + 1) H o
S \bi + k
n—1 m

_ap+ -t ay km 9 a; — 1
=—d —1 2(3k 3k+1)—3(2k+1 1

ek sk sk« DT ()
=0 (mod d?)

with the use of (4.4) and (4.5). Thus (4.8) holds.
The proof of Corollary 4.1 is now complete. [J

Remark 4.1. (4.4) was first established by Guo and Zeng [GZ, Theorem 5.5] via
g-binomial coefficients, while (4.5) was conjectured by them in [GZ, Conjecture
5.8].

Theorem 4.2. Letay,...,a, €7Z, and let f : N — Z be a function with k3 | f(k)
for all k € N. Then, for any positive integer n, we have

:é N k)f[l (amk— 1) (—a,ﬁ; - 1)
=n(a?+ - +a2) Y % ﬁ (amk— 1) (—aiz — 1) (mod n?),

0<k<n i=1
where Af(k) = f(k+1) — f(k).
Proof. Note that f(0) =0 and

nil(f(k +1) - f(k))f[ (amk;_ 1) (—aiz ~ 1)

(4.9)

Since

an—1\ (—an—1 a;n\ [ —a;n
_amn—kfan—1\—an—k(—an—1 a;n fa;n—1\ —a;n [—a;n — 1
Tk <k—1> k (k—1)_7(k—1)k(k—1)
B k? — (a;n)?  (a;n)? an —1\ (—a;n—1\  (a;n—1\ —amn—1
_< R k:2><k:—1)< k—l)_<k—1)< k:—1>
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F(E) ) = ecamen (T () ()
for 0 < k < n we have
o= fi ()17 -(1)(1)
B kSﬁ <aink— 1) (—aiZ — 1>
_ g8 é (a;gn) (_Zm) jl;[l (ajnk— 1) <—aj7; - 1)
() (D) - ()

< jl;[ (ajnk— 1) (—CL]'Z — 1)

1 (ain— 1\ (—amn —1
Enz(a%+-~-+a%)kn(a nk )( GZ ) (mod n?).

=1

and

Therefore (4.9) follows from the above. [

Lemma 4.1. For any k,n € N, we have

Ao i e

Proof. The assertion holds trivially for k = 0, below we assume k£ > 0. In view of
(2.6),

) = ()0 - (D05

and thus (4.10) follows. O

Theorem 4.3. Let ay,... ,a, be positive integers with min{ay,... ,a,} =1, and
let f be a function from N to the field Q of rational numbers. Let n be any positive
mnteger.

(i) If (%k_l)f(k) € Z for all k € N, then we have

= =1
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(i) If (** ") f(k) € KZ for all k € N, then we have
1 " fain—1\ [—a;n — 1
EZAJC(!@)H( . )( L )GZ. (4.12)
k=0 i=1

Proof. As in the proof of Theorem 4.2, by Abel’s partial summation we have

:é) N lj (amk— 1) (WZ - 1)

(4.13)

where

can be written as Y .-, ( 3 ) am)cz k(n) with ¢; x(n) € Z.

("
(i) By Lemma 2.3, (Qk 1)] (g )foranyz—l .,mand k=0,...,n.
If f(k)(* ") € Z for all k € N, then

ez fo( 7)) = () e

n

and f(k)dk(n) € Z for all 0 < k < n, thus (4.11) follows (4.13).
(ii) By Lemma 4.1, for any i = 1,... ,m and k = 0,... ,n we have

% <“k”) (_Z”) =0 (mod n).

If (1) (k) € kZ for all k € N, then £(0) =

:
o () = s () =0 mod ),

n—1 n

and f(k)dg(n) =0 (mod n) for all 0 < k < n, therefore (4.12) follows from (4.13).
The proof of Theorem 4.3 is now complete. [J
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Theorem 4.4. Let a, b and n be positive integers. For any function f : N — Q
with f(k) (Qkk_l) € Z for all k € N, we have

n—1

Sy - o (") () ez aw

k=0

Proof. Clearly Theorem 4.3(i) implies (4.14) in the case a = b. To handle the
general case, we need some new ideas.
By Abel’s partial summation,

n—1

> ite 1) - o (M) (7 1)b

k=0

S ) ) IS TC f)
) EmQ ()
) ()

Note that (_n"__1 ) = (—1)n—1(2n 1) For each k£ = 0,. — 1, we have (Qkk—l) |
(1) (") by (2.6), and

()

" (ir;;— k) <2:) _ (_1),€2<i712]—; k) (Qkk— 1)7
therefore

()-C)) () (‘”IJ1)>b—<—1>“*b(”21)a(”21)b

is divisible by (2’2—1). As f(k (2k 1) € Z for all k =0,...,n, combining the above

we obtain (4.14).

Proof of Theorem 1.5. (i) (1.21)-(1.24) are special cases of (4.5)-(4.8) respectively.
For the function f(k) = (—1)*"1k%(2k—3), we clearly have A f(k) = (—1)*(4k®>—1)
for all k € N. So, (1.25) follows from the last part of Theorem 4.1. As 3k*+3k+1 =
(k +1)3 — k3, Theorem 4.2 implies that

§(3k2 +3k+1) ﬁ (ai”k— 1) (—aiz _ 1)
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By Corollary 4.1,

ni((% +1)—1) ﬁ (amk_ 1) <_a“; - 1) =0 (mod n).

k=0 i=1
Therefore

ﬁ (amk— 1) (—aiz — 1)

=

n—1
ged(ar + -+ am — 1,2) Y (3K + 3k + 1)
k=0
n—1

a/%+

2 m
5 ~ar, ain—1\ (—an—1
= E 2k+1)—1

7

=0 (mod n?).

This proves (1.26).
(ii) Now let a,b,n be positive integers. Note that

2 (%-1) _ (%) _ ¢, and " :{Ck_l ?sz>0,
k+1\ k -1 ifk=0,

For k € N, define

k _(=1)*k

(—1)*2k
w1 P = '

E+1

fil) = fola) = T ) =

Then f;(k) (Qk 1) € kZ for all i = 1,... ,4. Clearly,

k+1 k 1
AR = T~ 1T T T
—1)H (k41 —1)Fk 2k
Ap(k) =t )zkiﬁ = (kal =y (1+4k2—1)’
2(k+1) 2%k 1
AW = Tk Ty
—1)H19(k 4+ 1 —1)k2k 2k +3
2

Applying Theorem 4.3(ii) with f = fi1,..., f4, we immediately get (1.27)-(1.29).
Write m = a + b. For k € N, define

_1\km _1\k(m—1) _1\km
s = S oty = S iy = S
-1 k(m—1)2 —1)km -1 k(m—1)
o0 = 2 aowy = (il o) = S
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Then f;(k)(** ") € Zfor all i =5,...,10. Let f;(k) = f;(k+ 1) — (=1)" fi(k) for
1 =25,...,10. Observe that

; (=p)+Dm (=1)km (k—)ym 2
= — (=™ =(-1 m
T T S ST ak2 =1’
£y (S (-1 o)Ak
k) = =1y (Bl
fo(k) 2k + 1 Y (=1) 4k2 — 1’
(k) :(—1)(kz+1)m2 B (_1)m(_1)km2 _ (_1)(k_1)m -1
k+2 k+1 (*1?)’
k+1)(m—1 k(m—1
Fu(k) _(zptdn—ba _1)mw _ (—1)(k-D0m-1) 2k +3
k42 k+1 ("“‘52) ’
k+1)m km
_g(k) :(_12); Jlr ) _ _1)m (;’1)1 _ (_1)(k—1)m _(3k + i])f ,
ey %) 2k +1)(%)
and
flo(k) B (_1)(k+1)(m—1) (1 m(_l)k(m—l) B (—l)(k_l)(m_l)(5k+3)
- 2k+1 2k—1 - 2k
iy %) (2k+ 1) (%)
Theorem 4.4 with f = f5,..., fio clearly yields (1.30)-(1.35).
The proof of Theorem 1.5 is now complete. [
Lemma 4.2. Let ag,aq,... be a sequence of complex numbers, and define

n

2 2
p = Z (Z) (n—;{—k) ar form € N. (4.15)

k=0

Then, for any positive integer n, we have

(n;1>2("2k>2. (4.16)

n—1 n—1
1 ~ ag
— 2k +1 =
n2 Z( +1)ay, Z ok + 1
k=0 k=0
Proof. By [Sul2b, Lemma 2.1],

n—1 2 2
m+k\"  (n—k)?(n+k

m=0
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Thus

This proves (4.16). O
Proof of Corollary 1.1. By Lemma 4.2 and (1.27), we have

n—1 n—1 m—1\2 (n+k\2
1 _ i~ () ()
ﬁk:0(2k+1)tk—5;)w€z.

By [GZ, (1.9)] or (4.4),
()

So we have -7—0(2k + 1)T}, = 0 (mod n®). By Lemma 4.2 and (1.36) and (1.21),

I
=)
=
@)
(oW

2

22k+ 22k+1(n_1) (nzk)QeZ

k= k=

and 1 1 2 2
1« I n—1 n+k
— > k+1)T, = - > (=1)F(2k + 1)( ) ) ( N ) A
k=0 k=0
Therefore both (1.37) and (1.38) hold. This concludes the proof. [
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5. SOME RELATED CONJECTURES

Conjecture 5.1. Let p =3 (mod 4) be a prime. Then

p—1 Qk
) 2\ p+1 [((p+1)/2
Y= () ilps o) e 6
e = G g

Conjecture 5.2. (i) The sequence (Ryp+1/Rn)n>3 is strictly increasing to the limit

34 2v/2, and the sequence ( "R/ R/ VRy)n>s is strictly decreasing.
(ii) The sequence (Spt+1/Sn)n>3 is strictly increasing to the limit 9, and the

sequence ( "N/ Spt+1/ V/ Sn)n>1 18 strictly decreasing.
Remark 5.1. The author [Sul3b] made many similar conjectures for some well-
known integer sequences.

Conjecture 5.3. For any positive integer n, both R, (x) and Sy, (x) are irreducible
over the field of rational numbers.

Conjecture 5.4. For any n € Z*, the number % ZZ;OI R% is always an odd inte-
ger; moreover,

n—1 n—1
3 2 1 2
- > Ri(x)® € Z[z] and - Y (2k+ 1)R; € Z. (5.3)
k=0 k=0
Also, for any odd prime p we have
p—1 1
rR="? (11 —4 <—>) (mod p?) (5.4)
k=0 p
and
p—1 1
Z(2kz +1)R% = 4p <?> —p? (mod p*). (5.5)
k=0

Remark 5.2. For any positive integer n, we can easily deduce that

n—1 n—1

3 Z(2k+ 1) Ry () = Z(n— k) (";;k) (2:) (%2_ i qu) z* e Z[x].

n
k=0 k=0
(5.6)
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Conjecture 5.5. We have

n—1

4

Fstkez foralln=1,2,3,.... (5.7)
k=0

Also, for any prime p we have

kS, = p <5 -9 <E>> (mod p?). (5.8)

n
sS4
Il
x~
| 3
(@)
VR
> 3
~—_
[\V]
7\
= R
~_
o
oyl
+
—_
S~—
\'l\D

3

s o3 (1) (%) ks

Then, for any positive integer n, we have

n—1 n—1 n—1
1 1 1 _
EZS;CGZ, EZS,;FEZ and EZS,CEZ. (5.9)
k=0 k=0 k=0
Remark 5.3. For any positive integer n, we can easily deduce EZ;& S,:f =0
(mod m) with the help of (3.4). We also conjecture that Zz;é sk =—(9(5)+1)p*/2
(mod p?) for any prime p.
Conjecture 5.7. Forn € N define
" [n]?[2k q"
mo =2 ]t
— kl, Lk q[2k—1]q
Then, for any positive integer n, we have
1+_qn—1
k _ 2
— kz_oq sk(q) =0 (mod [n]2). (5.10)

Remark 5.4. (5.10) is a g-analogue of the conjectural congruence ZZ;S sp =0
(mod n?). We could prove (5.10) modulo [n],.
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Conjecture 5.8. Let m be any positive integer.
(i) Define

n

m !
k=0 |

Then, for any positive integer n, we have

n—1
% S5 (@) € Zla], (5.11)

k=0

n—1 m
%Z(]D =0 (modn) foral k=0,...,n—1. (5.12)
' h=k
(ii) Define
n m km-+17y .
(m) (... . n Hj:l []]q k .

Sy (x5 q) = kz_o L{J (H0<j<k[j]q)mx for n=0,1,2,.... (5.13)

Then, for any integern > 0, all the coeﬁ‘iczents of the polynomial Y, _ 0 qkS( )(x q)
in x are divisible by [n], in the ring Z[q|, i.

km+1
(HI_OI <ella) qu [] =0 (mod [n|,) forallk=0,...,n—1.(5.14)

Remark 5.5. (a) Note that Sflz)(x) = Sp(z), and (5.11) and (5.12) are extensions
of (1.20) and (3.4) respectively. Part (ii) of Conjecture 5.8 presents a g-analogue
of the first part, and our Theorem 3.1 confirms it for m = 2. Conjecture 5.8 for

m = 1 is easy, and we are also able to prove Conjecture 5.8 in the case m = 3.
(b) The congruence in (5.12) for k = 1 states that

n—1

(m+1)! Z "™ =0 (mod n).
h=1

This is easy since

o /m+1 ke
_ m:— B m
z s (M)

(cf. [IR, p.230]) and (k + 1)!Bj, € Z by the von Staudt-Clausen theorem (cf. [IR,
p.233]).
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