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DIVISIBILITY RESULTS ON FRANEL NUMBERS AND
RELATED POLYNOMIALS

CHEN WANG AND ZHI-WEI SUN

Abstract. In this paper we establish some new divisibility results involving the

Franel numbers fn =
∑n

k=0

(
n
k

)3
(n = 0, 1, 2, . . .) and the polynomials gn(x) =∑n

k=0

(
n
k

)2(2k
k

)
xk (n = 0, 1, 2, . . .). For example, we show that for any positive

integer n we have

9

2n2(n + 1)2

n∑
k=1

k2(3k + 1)(−1)n−kfk ∈ {1, 2, 3, . . .}

and
2

n(n + 1)

n∑
k=1

k2(4k + 3)gk(2) ∈ {1, 3, 5, . . .},

and for any prime p > 3 we have

p−1∑
k=0

k2(3k+ 1)(−1)kfk ≡
2

9
p2 (mod p3) and

p−1∑
k=0

k2(4k+ 3)gk(2) ≡ 7

2
p (mod p2).

1. Introduction

It is well known that
n∑

k=0

(
n

k

)2

=

(
2n

n

)
for all n ∈ N = {0, 1, 2, . . .}. In 1895 Franel introduced the Franel numbers

fn :=
n∑

k=0

(
n

k

)3

(n ∈ N)

(cf. [10]) and noted the recurrence relation:

(n+ 1)2fn+1 = (7n(n+ 1) + 2)fn + 8n2fn−1 for all n ∈ Z+ = {1, 2, 3, . . .}.

2010 Mathematics Subject Classification. Primary 11B65; Secondary 11A07, 11B83.
Keywords. Franel numbers, combinatorial congruences, divisibility, integer sequences.
The second author is the corresponding author, and supported by the National Natural Science

Foundation of China (grant 11571162) and the NSFC-RFBR Cooperation and Exchange Program
(grant 11811530072).

1



2 CHEN WANG AND ZHI-WEI SUN

In 1975, Barrucand [1] found that

n∑
k=0

(
n

k

)
fk = gn for all n ∈ N,

where

gn :=
n∑

k=0

(
n

k

)2(
2k

k

)
.

Callan [2] provided a combinatorial interpretation of this identity. In 1994, Strehl
[11] obtained the following identity for Franel numbers:

fn =
n∑

k=0

(
n

k

)2(
2k

n

)
for all n ∈ N. (1.1)

In [16] Sun introduced the polynomials

gn(x) :=
n∑

k=0

(
n

k

)2(
2k

k

)
xk (n = 0, 1, 2, ...)

and proved the following extension of Barrucand’s identity

n∑
k=0

(
n

k

)
fk(x) = gn(x),

where

fk(x) :=
k∑

j=0

(
k

j

)2(
2j

k

)
xj.

(Note that gn(x) also appeared in [14, Conjecture 7.9].) The polynomials fn(x)
and gn(x) are also closely related to the Apéry polynomials (cf. [16]). In 2016,
Guo, Mao and Pan [7] showed that

1

n

n−1∑
k=0

(4k + 3)gk(x) ∈ Z[x] for all n ∈ Z+,

as conjectured by Sun [16].
In 2013 Sun [12, 13] studied congruences for Franel numbers systematically. Guo

[5] confirmed a conjecture of Sun which states that

1

2n2

n−1∑
k=0

(3k + 2)(−1)kfk ∈ Z for all n ∈ Z+.

Our first theorem provides new congruences involving Franel numbers.



DIVISIBILITY RESULTS ON FRANEL NUMBERS AND RELATED POLYNOMIALS 3

Theorem 1.1. For any n ∈ Z+ we have

9

2n2(n+ 1)2

n∑
k=1

k2(3k + 1)(−1)n−kfk ∈ Z+, (1.2)

3

n(n+ 1)2

n∑
k=1

(9k3 − 6k2 − 5k)(−1)kfk ∈ Z, (1.3)

3

4n(n+ 1)2

n∑
k=1

(9k3 − 15k2 − 10k)(−1)kfk ∈ Z, (1.4)

3

n(n+ 1)2

n∑
k=1

(9k3 + 12k2 + 5k)(−1)n−kfk ∈ Z+. (1.5)

Also, for any prime p we have the supercongruences

p−1∑
k=1

k2(3k + 1)(−1)kfk ≡
2

9
p2 (mod p3), (1.6)

p−1∑
k=1

(9k3 − 6k2 − 5k)(−1)kfk ≡
11

3
p2 (mod p3), (1.7)

p−1∑
k=1

(9k3 − 15k2 − 10k)(−1)kfk ≡
20

3
p2 (mod p3), (1.8)

p−1∑
k=1

(9k3 + 12k2 + 5k)(−1)kfk ≡ −
7

3
p2 (mod p3). (1.9)

Our second theorem is related to the sequence (gn)n>0 and related polynomials

Sn(x) :=
n∑

k=0

(
n

k

)2(
2k

k

)
(2k + 1)xk (n = 0, 1, 2, . . .)

introduced by Sun [15].

Theorem 1.2. For any n ∈ Z+ we have

4

3n(n+ 1)2

n∑
k=1

k(4k + 3)gk ∈ Z (1.10)

and
2

n(n+ 1)

n∑
k=0

kSk(x) ∈ Z[x]. (1.11)

Remark 1.1. Guo and Liu [6] proved that n2 | 4
∑n−1

k=0 kSk(1) for all n ∈ Z+ which
was first conjectured by Sun [15].
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Our third theorem involves the polynomials gn(x) (n = 0, 1, 2, . . .).

Theorem 1.3. For any n ∈ Z+ we have

2

n(n+ 1)

n∑
k=1

k(3k + 2)gk(−1) ∈ Z (1.12)

and
2

n(n+ 1)

n∑
k=1

k2(4k + 3)gk(2) ∈ {1, 3, 5, . . .}. (1.13)

Also, for any prime p > 3 we have the supercongruences

p−1∑
k=0

k(3k + 2)gk(−1) ≡ −5

8
p (mod p2) (1.14)

and
p−1∑
k=0

k2(4k + 3)gk(2) ≡ 7

2
p (mod p2). (1.15)

Remark 1.2. Sun [16] obtained the congruences

p−1∑
k=1

gk(−1)

k
≡ 0 (mod p2) and

p−1∑
k=1

gk(−1)

k2
≡ 0 (mod p)

for any prime p > 5, which are similar to the classical Wolstenholme congruences.

To prove Theorems 1.1–1.3, we need a telescoping method for double summations
developed by Chen, Hou and Mu [3]. Consider double sums of the form

Sn =
n−1∑
k=0

k∑
l=0

F (k, l) (n ∈ Z+),

where F (k, l) is a bivariate hypergeometric term of k and l. Once we use the Maple
package APCI (which can be downloaded from http://www.combinatorics.net.cn

/homepage/hou/apci.html) to find two hypergeometric termsG1(k, l) andG2(k, l)
such that

F (k, l) = ∆k (G1(k, l)) + ∆l (G2(k, l)) , (1.16)

where

G1(k, l) = F (k, l)R1(k, l) and G2(k, l) = F (k, l)R2(k, l)

with R1(k, l) and R2(k, l) being rational functions and

∆k (G1(k, l)) = G1(k + 1, l)−G1(k, l)

and

∆l (G2(k, l)) = G2(k, l + 1)−G2(k, l),
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the sum Sn can be transformed into a single sum:

Sn =
n−1∑
l=0

(G1(n, l)−G1(l, l)) +
n−1∑
k=0

(G2(k, k + 1)−G2(k, 0)) . (1.17)

Via this telescoping method, Mu and Sun [8] confirmed several conjectures of Sun
on congruences which could not be proved by other methods.

We are going to prove Theorems 1.1–1.3 in Sections 2–4 respectively.

2. Proof of Theorem 1.1

We just prove (1.2) and (1.6) in details. Formulas (1.3)–(1.5) and (1.7)–(1.9)
can be proved in a similar way.

Lemma 2.1. For any n ∈ Z+, we have

(−1)n
n∑

k=1

k2(3k + 1)(−1)kfk > 0. (2.1)

Proof. Let an denote the left-hand side of the inequality (2.1). Then a1 = 8,
a2 = 272, and

an+1 − an−1 = −n2(3n+ 1)fn + (n+ 1)2(3(n+ 1) + 1)fn+1 > 0

for all n = 2, 3, . . .. So the desired result follows. �

Proofs of (1.2) and (1.6). Let n ∈ Z+. In view of (1.1), we let

F (k, l) = k2(3k + 1)(−1)k
(
k

l

)2(
2l

k

)
be the summand and use the command MZeil of the package APCI in Maple to
obtain

G1(k, l) =
(−1)k

9
(k − l)(k − 1)(9k2 − 12kl − 17k + 4l)

(
k

l

)2(
2l

k

)
and

G2(k, l) =
(−1)k

9(k + 1)
l(k − 2l)(k − 2l + 1)(3kl + 14k − l + 1)

(
k

l

)(
k + 1

l

)(
2l

k

)
for which (1.16) holds. In light of (1.17) and noting that G1(l, l) = G2(k, k + 1) =
G2(k, 0) = 0 we arrive at

n−1∑
k=0

k∑
l=0

F (k, l) =
(−1)n(n− 1)

9

n−1∑
l=0

(n− l)(9n2 − 12nl − 17n+ 4l)

(
n

l

)2(
2l

n

)
.
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Thus we obtain that

(−1)n
9

2

n−1∑
k=0

k2(3k + 1)(−1)kfk

=
n− 1

2

n−1∑
l=0

(n− l)(9n2 − 12nl − 17n+ 4l)

(
n

l

)2(
2l

n

)

=n(n− 1)
n−1∑
l=1

(9n2 − 12nl − 17n+ 4l)

(
n− 1

l

)(
n− 1

l − 1

)(
2l − 1

n− 1

)

≡− n
n−1∑
l=1

4l

(
n− 1

l

)(
n− 1

l − 1

)(
2l − 1

n− 1

)

=− 2n2

n−1∑
l=1

(
n− 1

l

)(
n− 1

l − 1

)(
2l

n

)
≡0 (mod n2),

and hence
9

2

n∑
k=0

k2(3k + 1)(−1)kfk ≡ 0 (mod (n+ 1)2).

Obviously gcd(n, n+ 1) = 1 and

9

2
n2(3n+ 1)fn ≡ 0 (mod n2).

So we finally get (1.2) with the help of Lemma 2.1.
We can easily verify (1.6) for p = 2, 3. Below we let p > 3 be a prime. By the

previous argument,

− 9

2

p−1∑
k=0

k2(3k + 1)(−1)kfk

=
p− 1

2

p−1∑
l=0

(p− l)(9l2 − 12pl − 17p+ 4l)

(
p

l

)2(
2l

p

)

=
p− 1

2

p−1∑
l=(p+1)/2

(p− l)(9p2 − 12pl − 17p+ 4l)
p2

l2

(
p− 1

l − 1

)2(
2l

p

)

≡2p2
(p−1)/2∑
k=1

(
2(p− k)

p

)
= 2p2

(p−1)/2∑
k=1

p−2k∏
j=1

p+ j

j
≡ −p2 (mod p3).

This proves (1.6). �
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3. Proof of Theorem 1.2

Lemma 3.1. [9, p.132] For all n ∈ N we have

3
n∑

k=0

k

(
n

k

)2(
2k

k

)
= 2ngn.

Lemma 3.2. Let n be a positive integer and k, l be integers with n > k > l > 0.
Then we have (

n

k

)(
k

l

)(
2l

k + 1

)
≡ 0 (mod n). (3.1)

Proof. Clearly, (3.1) holds if and only if

νp((n− 1)!) + νp((2l)!)

>νp((n− k)!) + νp(l!) + νp((k − l)!) + νp((k + 1)!) + νp((2l − k − 1)!)

for any prime p, where νp(q) denotes the p-adic order of q ∈ Z+. Since νp(q!) =∑
s>1bq/psc for all q ∈ Z+, it suffices to prove for each m = 2, 3, . . . the inequality⌊
n− 1

m

⌋
+

⌊
2l

m

⌋
>

⌊
n− k
m

⌋
+

⌊
l

m

⌋
+

⌊
k − l
m

⌋
+

⌊
k + 1

m

⌋
+

⌊
2l − k − 1

m

⌋
.

(3.2)

This can be easily verified if n− k, l, k − l are all divisible by m.
Now we suppose that one of n − k, l, k − l is not divisible by m. Note that
bx/mc = b(x − 1)/mc for any integer x 6≡ 0 (mod m). Also, bxc + byc + bzc 6
bx+ y + zc for any real numbers x, y, z. So⌊

l

m

⌋
+

⌊
n− k
m

⌋
+

⌊
k − l
m

⌋
6

⌊
n− 1

m

⌋
and ⌊

k + 1

m

⌋
+

⌊
2l − k − 1

m

⌋
6

⌊
2l

m

⌋
.

Adding these two inequalities we obtain (3.2). This concludes the proof. �

Proof of Theorem 1.2. We first show (1.10). In view of Lemma 3.1,

n−1∑
k=0

2k(2kgk) =
n−1∑
k=0

3k
k∑

l=0

(
k

l

)2(
2l

l

)
2l

and hence
n−1∑
k=0

k(4k + 3)gk = 3
n−1∑
k=0

kSk(1). (3.3)
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Since n2 | 4
∑n−1

k=0 kSk(1) as conjectured by Sun [15] and proved in [6, Theorem
1.1], we have

4

3n2

n−1∑
k=0

k(4k + 3)gk =
4

n2

n−1∑
k=0

kSk(1) ∈ Z. (3.4)

Substituting n+ 1 for n, we obtain

4

3(n+ 1)2

n∑
k=1

k(4k + 3)gk ∈ Z. (3.5)

By Lemma 3.1,
4

3
n(4n+ 3)gn ≡

16

3
n2gn ≡ 0 (mod n).

Combining this with (3.4)–(3.5), we have proved (1.10).
Next, we show (1.11). Since

n∑
k=0

kSk(x) =
n∑

k=0

k
k∑

l=0

(
k

l

)2(
2l

l

)
(2l + 1)xl =

n∑
l=0

(2l + 1)

(
2l

l

)
xl

n∑
k=l

k

(
k

l

)2

,

it suffices to prove that

2

n
(2l + 1)

(
2l

l

) n−1∑
k=0

k

(
k

l

)2

∈ Z (3.6)

for any l = 0, . . . , n − 1. With helps of the Chu-Vandermonde identity (cf. [4,
(3.1)]) and the identity

n−1∑
k=0

k

(
k

j

)
=
n(j + 1)− 1

n+ 1

(
n+ 1

j + 2

)
,

we have
n−1∑
k=l

k

(
k

l

)2

=
n−1∑
k=l

k

(
k

l

) l∑
j=0

(
k − l
j

)(
l

l − j

)

=
n−1∑
k=l

k

l∑
j=0

(
k

l + j

)(
l + j

j

)(
l

j

)

=
l∑

j=0

n(l + j + 1)− 1

n+ 1

(
l + j

j

)(
l

j

)(
n+ 1

j + l + 2

)

≡−
l∑

j=0

(
l

j

)(
l + j

j

)(
n+ 1

j + l + 2

)
(mod n).
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For each j = 0, . . . , l, clearly

2(2l + 1)

(
2l

l

)(
l

j

)(
n+ 1

j + l + 2

)
=(n+ 1)

(
n

j + l + 1

)(
2l + 2

j + l + 2

)(
j + l + 1

l + 1

)
≡ 0 (mod n)

with the help of Lemma 3.2. Thus (3.6) holds and this ends the proof of (1.11). �

4. Proof of Theorem 1.3

Lemma 4.1. Let n be a positive integer. Then

n−1∑
k=0

k(3k + 2)gk(−1) =
n

4

n−1∑
l=0

(−1)n−l

2l + 1

(
n− 1

2l

)(
n

2l

)(
2l

l

)
P (n, l), (4.1)

where

P (n, l) = 3n3 − 18n2l + 30nl2 − 14n2 + 48nl − 50l2 + 11n− 30l.

Also,

n−1∑
k=0

k2(4k + 3)gk(2) = −n
6

n−1∑
l=0

2l

(l + 1)2

(
n− 1

l

)(
n

l

)(
2l

l

)
Q(n, l), (4.2)

where

Q(n, l) =176n4l − 240n3l2 − 70n2l3 + 98nl4 + 88n4 − 452n3l + 278n2l2 + 49nl3

− 168n3 + 374n2l − 192nl2 + 114n2 − 196nl + 98l2 − 55n+ 77l + 21.

Proof. (i) We first prove (4.1). By Sun [17, Remark 5.9],

gk(−1) =
k∑

l=0

(
k

2l

)2(
2l

l

)
(−1)k−l for all k = 0, 1, 2, . . . .

Thus we set

F (k, l) := k(3k + 2)

(
k

2l

)2(
2l

l

)
(−1)k−l

and find that (1.16) holds for

G1(k, l) =
(k − 2l)

4(2l + 1)

(
k

2l

)2(
2l

l

)
(−1)k−lP (k, l)

and

G2(k, l) = − l
3(3k − 5)

k + 1

(
k

2l

)(
k + 1

2l

)(
2l

l

)
(−1)k−l.
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Therefore, by (1.17) we have

n−1∑
k=0

k(3k + 2)gk(−1) =
n−1∑
k=0

k∑
l=0

F (k, l) =
n−1∑
l=0

G1(n, l),

which yields (4.1).
(ii) Next we show (4.2). For

F (k, l) = k2(4k + 3)

(
k

l

)2(
2l

l

)
2l,

we find that (1.16) holds with

G1(k, l) = − k2l

6(l + 1)2

(
k − 1

l

)(
k

l

)(
2l

l

)
Q(k, l)

and

G2(k, l) =
kl2l

6(k + 1)

(
k

l

)(
k + 1

l

)(
2l

l

)
× (44k2l + 6kl2 − 14l3 + 66k2 − 14kl + 43l2 + 66k + 29l).

Then (4.2) is valid since

n−1∑
k=0

k2(4k + 3)gk(2) =
n−1∑
k=0

k∑
l=0

F (k, l) =
n−1∑
l=0

G1(n, l)

by (1.17). �

Proof of Theorem 1.3. (i) We first prove (1.12) for any n ∈ Z+. In view of (4.1)
and noting that

n

2(2l + 1)

(
n

2l

)(
2l

l

)
l =

ln

n+ 1

(
n+ 1

2l + 1

)(
2l − 1

l

)
≡ 0 (mod n)

for all l = 0, . . . , n− 1, we have

2
n−1∑
k=0

k(3k + 2)gk(−1)

≡n(3n3 − 14n2 + 11n)

2(n+ 1)

n−1∑
l=0

(−1)n−l

(
n− 1

2l

)(
n+ 1

2l + 1

)(
2l

l

)
≡ 0 (mod n).

(4.3)

Substituting n+ 1 for n in the above formula we then get

2
n∑

k=0

k(3k + 2)gk(−1) ≡ 0 (mod n+ 1). (4.4)

Combining (4.3) and (4.4), we obtain the desired (1.12).
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Next we show (1.14) for any prime p > 3. In light of (4.1),

p−1∑
k=0

k(3k + 2)gk(−1) =
p

4

p−1∑
l=0

(−1)p−l

2l + 1

(
p− 1

2l

)(
p

2l

)(
2l

l

)
P (p, l).

Note that P (p, 0) ≡ 0 (mod p) and also(
p

2l

)
=

p

2l

(
p− 1

2l − 1

)
≡ 0 (mod p) for all l = 1, . . . ,

p− 3

2
.

Thus

p−1∑
k=0

k(3k + 2)gk(−1) ≡p
4
· (−1)p−(p−1)/2

p

(
p− 1

p− 1

)(
p

p− 1

)(
p− 1

(p− 1)/2

)
P

(
p,
p− 1

2

)
=
p

4
(−1)(p+1)/2

(
p− 1

(p− 1)/2

)
P

(
p,
p− 1

2

)
≡− p

4

(
−50

(
p− 1

2

)2

− 30
p− 1

2

)
≡ −5

8
p (mod p2).

(ii) Now we show (1.13) for any n ∈ Z+. By (4.2) we have

2
n−1∑
k=0

k2(4k + 3)gk(2) ≡− n

3

n−1∑
l=0

2l

(l + 1)2

(
n− 1

l

)(
n

l

)(
2l

l

)
(98l2 + 77l)

≡− n

3

n−1∑
l=0

2l

(l + 1)2

(
n− 1

l

)(
n

l

)(
2l

l

)
(2l2 + 2l)

=− 2n2

3

n−1∑
l=0

2l

l + 1

(
n− 1

l

)(
n− 1

n− l

)(
2l

l

)
≡0 (mod n)

since the Catalan number Cl =
(
2l
l

)
/(l+1) is always integral. Replacing n by n+1,

we get

2
n∑

k=0

k2(4k + 3)gk(2) ≡ 0 (mod n+ 1).

Therefore

an :=
2

n(n+ 1)

n∑
k=0

k2(4k + 3)gk(2) ∈ Z.
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By (4.2), we have

an =− 1

3n

n∑
l=0

2l

l + 1

(
n

l

)(
n+ 1

l

)
ClQ(n+ 1, l)

=− Q(n+ 1, 0)

3n
− n+ 1

3
Q(n+ 1, 1)

− 2

3

∑
1<l6n

2l−1

l(l + 1)

(
n− 1

l − 1

)(
n+ 1

l

)
ClQ(n+ 1, l).

If l > 1, then 2l−1/(l(l + 1)) = 2l−1/l − 2l−1/(l + 1) is a 2-adic integer. Also,
Q(n + 1, 0) ≡ n (mod 2n) and Q(n + 1, 1) ≡ 0 (mod 2). So we have an ≡ 1
(mod 2).

Finally we prove (1.15) for any prime p > 3. Clearly,

p

(l + 1)2

(
p

l

)
=

p2

l(l + 1)2

(
p− 1

l − 1

)
≡ 0 (mod p2) for all l = 1, . . . , p− 2.

Thus, by applying (4.2) with n = p we get

p−1∑
k=0

k2(4k + 3)gk(2)

≡− p

6

(
Q(p, 0) +

2p−1

p2

(
p

p− 1

)(
2(p− 1)

p− 1

)
Q(p, p− 1)

)
≡− p

6

(
21 +

2p−1

2p− 1

(
2p− 1

p

)
(98(p− 1)2 + 77(p− 1) + 21)

)
≡ 7

2
p (mod p2),

where we have used that 2p−1 ≡ 1 (mod p) (by Fermat’s little theorem) and(
2p−1
p

)
≡ 1 (mod p).

In view of the above, we have completed the proof of Theorem 1.3. �
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